File size: 2,873 Bytes
8a69b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter5_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter5_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1651
- Num Input Tokens Seen: 5121720

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.4516        | 0.0549 | 5    | 1.2704          | 281728            |
| 1.2569        | 0.1098 | 10   | 1.1896          | 560496            |
| 1.1565        | 0.1647 | 15   | 1.1711          | 843552            |
| 1.0247        | 0.2196 | 20   | 1.1630          | 1124256           |
| 0.999         | 0.2745 | 25   | 1.1730          | 1405360           |
| 0.9404        | 0.3294 | 30   | 1.1667          | 1687800           |
| 0.8346        | 0.3844 | 35   | 1.1909          | 1973600           |
| 0.8733        | 0.4393 | 40   | 1.1780          | 2246208           |
| 0.7992        | 0.4942 | 45   | 1.1868          | 2527096           |
| 0.597         | 0.5491 | 50   | 1.1766          | 2813840           |
| 0.6897        | 0.6040 | 55   | 1.1795          | 3093112           |
| 0.6487        | 0.6589 | 60   | 1.1741          | 3372936           |
| 0.6013        | 0.7138 | 65   | 1.1733          | 3651336           |
| 0.6563        | 0.7687 | 70   | 1.1680          | 3931512           |
| 0.5705        | 0.8236 | 75   | 1.1709          | 4216528           |
| 0.6287        | 0.8785 | 80   | 1.1732          | 4498448           |
| 0.5377        | 0.9334 | 85   | 1.1693          | 4778952           |
| 0.6489        | 0.9883 | 90   | 1.1661          | 5063320           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1