File size: 2,873 Bytes
08fd206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter6_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter6_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1833
- Num Input Tokens Seen: 5086248

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3794        | 0.0534 | 5    | 1.2685          | 268544            |
| 1.1344        | 0.1068 | 10   | 1.1908          | 540984            |
| 1.092         | 0.1602 | 15   | 1.1709          | 814280            |
| 0.9745        | 0.2136 | 20   | 1.1742          | 1088888           |
| 0.8742        | 0.2670 | 25   | 1.1718          | 1360592           |
| 0.9279        | 0.3204 | 30   | 1.1893          | 1633024           |
| 0.8757        | 0.3738 | 35   | 1.1800          | 1905464           |
| 0.7368        | 0.4272 | 40   | 1.2066          | 2182616           |
| 0.7263        | 0.4806 | 45   | 1.1794          | 2457160           |
| 0.5811        | 0.5340 | 50   | 1.1940          | 2735040           |
| 0.5781        | 0.5874 | 55   | 1.1842          | 3007976           |
| 0.6488        | 0.6409 | 60   | 1.1876          | 3283704           |
| 0.6015        | 0.6943 | 65   | 1.1807          | 3548216           |
| 0.6332        | 0.7477 | 70   | 1.1787          | 3816768           |
| 0.638         | 0.8011 | 75   | 1.1893          | 4083896           |
| 0.6347        | 0.8545 | 80   | 1.1804          | 4371088           |
| 0.5831        | 0.9079 | 85   | 1.1794          | 4646192           |
| 0.5994        | 0.9613 | 90   | 1.1799          | 4922280           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1