File size: 2,873 Bytes
2b2b2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter7_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter7_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1838
- Num Input Tokens Seen: 5084280

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3084        | 0.0532 | 5    | 1.2703          | 275232            |
| 1.1373        | 0.1065 | 10   | 1.1957          | 547312            |
| 1.1446        | 0.1597 | 15   | 1.1790          | 822336            |
| 0.9553        | 0.2129 | 20   | 1.1806          | 1090224           |
| 0.8531        | 0.2661 | 25   | 1.2067          | 1364032           |
| 0.7999        | 0.3194 | 30   | 1.2086          | 1638152           |
| 0.8383        | 0.3726 | 35   | 1.2081          | 1910656           |
| 0.6788        | 0.4258 | 40   | 1.2046          | 2184752           |
| 0.5638        | 0.4790 | 45   | 1.2050          | 2460296           |
| 0.7359        | 0.5323 | 50   | 1.1890          | 2726344           |
| 0.5884        | 0.5855 | 55   | 1.2006          | 2997416           |
| 0.5682        | 0.6387 | 60   | 1.1961          | 3277152           |
| 0.5166        | 0.6919 | 65   | 1.1880          | 3552712           |
| 0.6191        | 0.7452 | 70   | 1.1862          | 3828400           |
| 0.4679        | 0.7984 | 75   | 1.1922          | 4104744           |
| 0.5175        | 0.8516 | 80   | 1.1861          | 4374456           |
| 0.4754        | 0.9049 | 85   | 1.1885          | 4650432           |
| 0.489         | 0.9581 | 90   | 1.1839          | 4922224           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1