File size: 2,873 Bytes
990f272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1956
- Num Input Tokens Seen: 5023456

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3304        | 0.0541 | 5    | 1.2738          | 270256            |
| 1.1448        | 0.1082 | 10   | 1.2117          | 540696            |
| 1.0747        | 0.1623 | 15   | 1.2004          | 821656            |
| 1.0687        | 0.2164 | 20   | 1.2026          | 1098712           |
| 0.7675        | 0.2705 | 25   | 1.2266          | 1366240           |
| 0.7907        | 0.3245 | 30   | 1.2142          | 1643704           |
| 0.6795        | 0.3786 | 35   | 1.2293          | 1908672           |
| 0.6652        | 0.4327 | 40   | 1.2036          | 2181616           |
| 0.7058        | 0.4868 | 45   | 1.2256          | 2456960           |
| 0.6919        | 0.5409 | 50   | 1.2012          | 2735528           |
| 0.6422        | 0.5950 | 55   | 1.2120          | 3015304           |
| 0.6387        | 0.6491 | 60   | 1.2085          | 3286712           |
| 0.4768        | 0.7032 | 65   | 1.2063          | 3557760           |
| 0.5572        | 0.7573 | 70   | 1.1910          | 3824824           |
| 0.5535        | 0.8114 | 75   | 1.2021          | 4097760           |
| 0.4666        | 0.8654 | 80   | 1.1937          | 4378176           |
| 0.4766        | 0.9195 | 85   | 1.1977          | 4649040           |
| 0.5041        | 0.9736 | 90   | 1.1999          | 4914024           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1