--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd0 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter9_sftsd0 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1956 - Num Input Tokens Seen: 5023456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.3304 | 0.0541 | 5 | 1.2738 | 270256 | | 1.1448 | 0.1082 | 10 | 1.2117 | 540696 | | 1.0747 | 0.1623 | 15 | 1.2004 | 821656 | | 1.0687 | 0.2164 | 20 | 1.2026 | 1098712 | | 0.7675 | 0.2705 | 25 | 1.2266 | 1366240 | | 0.7907 | 0.3245 | 30 | 1.2142 | 1643704 | | 0.6795 | 0.3786 | 35 | 1.2293 | 1908672 | | 0.6652 | 0.4327 | 40 | 1.2036 | 2181616 | | 0.7058 | 0.4868 | 45 | 1.2256 | 2456960 | | 0.6919 | 0.5409 | 50 | 1.2012 | 2735528 | | 0.6422 | 0.5950 | 55 | 1.2120 | 3015304 | | 0.6387 | 0.6491 | 60 | 1.2085 | 3286712 | | 0.4768 | 0.7032 | 65 | 1.2063 | 3557760 | | 0.5572 | 0.7573 | 70 | 1.1910 | 3824824 | | 0.5535 | 0.8114 | 75 | 1.2021 | 4097760 | | 0.4666 | 0.8654 | 80 | 1.1937 | 4378176 | | 0.4766 | 0.9195 | 85 | 1.1977 | 4649040 | | 0.5041 | 0.9736 | 90 | 1.1999 | 4914024 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1