--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_massive_iter1_sftsd1 results: [] --- # collapse_gemma-2-2b_hs2_massive_iter1_sftsd1 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0638 - Num Input Tokens Seen: 5709936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.2754 | 0.0511 | 5 | 1.2593 | 285512 | | 1.2153 | 0.1021 | 10 | 1.1717 | 578296 | | 1.1556 | 0.1532 | 15 | 1.1341 | 873440 | | 1.1445 | 0.2042 | 20 | 1.1080 | 1168560 | | 1.0672 | 0.2553 | 25 | 1.0979 | 1463952 | | 1.1502 | 0.3063 | 30 | 1.0929 | 1754024 | | 1.0342 | 0.3574 | 35 | 1.0884 | 2046160 | | 1.0635 | 0.4084 | 40 | 1.0853 | 2341224 | | 1.1419 | 0.4595 | 45 | 1.0824 | 2635056 | | 1.0155 | 0.5105 | 50 | 1.0796 | 2927424 | | 1.0927 | 0.5616 | 55 | 1.0768 | 3221968 | | 1.1001 | 0.6126 | 60 | 1.0747 | 3519568 | | 1.0711 | 0.6637 | 65 | 1.0727 | 3816688 | | 1.0622 | 0.7147 | 70 | 1.0711 | 4117768 | | 1.0785 | 0.7658 | 75 | 1.0695 | 4418488 | | 1.154 | 0.8168 | 80 | 1.0683 | 4709408 | | 1.1034 | 0.8679 | 85 | 1.0669 | 5000912 | | 1.0458 | 0.9190 | 90 | 1.0655 | 5295112 | | 1.0685 | 0.9700 | 95 | 1.0642 | 5591032 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1