--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_replace_iter8_sftsd0 results: [] --- # collapse_gemma-2-2b_hs2_replace_iter8_sftsd0 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4272 - Num Input Tokens Seen: 4951896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.5175 | 0.0513 | 5 | 1.2789 | 257144 | | 0.9829 | 0.1026 | 10 | 1.3042 | 514112 | | 0.6046 | 0.1539 | 15 | 1.5441 | 764984 | | 0.2914 | 0.2053 | 20 | 1.7425 | 1029856 | | 0.1385 | 0.2566 | 25 | 1.9543 | 1280440 | | 0.0926 | 0.3079 | 30 | 2.1538 | 1540792 | | 0.0413 | 0.3592 | 35 | 2.3295 | 1791360 | | 0.0362 | 0.4105 | 40 | 2.3097 | 2050952 | | 0.0301 | 0.4618 | 45 | 2.3998 | 2309592 | | 0.0253 | 0.5131 | 50 | 2.3280 | 2558648 | | 0.0348 | 0.5645 | 55 | 2.3369 | 2824704 | | 0.0323 | 0.6158 | 60 | 2.3580 | 3080328 | | 0.0331 | 0.6671 | 65 | 2.3628 | 3333360 | | 0.0257 | 0.7184 | 70 | 2.3566 | 3579552 | | 0.0228 | 0.7697 | 75 | 2.3590 | 3836760 | | 0.021 | 0.8210 | 80 | 2.3724 | 4089776 | | 0.0232 | 0.8724 | 85 | 2.3932 | 4342392 | | 0.0223 | 0.9237 | 90 | 2.4080 | 4600240 | | 0.0243 | 0.9750 | 95 | 2.4271 | 4849520 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1