--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_replace_iter9_sftsd0 results: [] --- # collapse_gemma-2-2b_hs2_replace_iter9_sftsd0 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5305 - Num Input Tokens Seen: 4805008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.5231 | 0.0513 | 5 | 1.2790 | 249840 | | 0.9028 | 0.1027 | 10 | 1.2972 | 494032 | | 0.5406 | 0.1540 | 15 | 1.5467 | 747896 | | 0.2367 | 0.2054 | 20 | 1.8042 | 994456 | | 0.1891 | 0.2567 | 25 | 1.9924 | 1238888 | | 0.0891 | 0.3081 | 30 | 2.1582 | 1483192 | | 0.0613 | 0.3594 | 35 | 2.3303 | 1726032 | | 0.0361 | 0.4108 | 40 | 2.4317 | 1973864 | | 0.0255 | 0.4621 | 45 | 2.4696 | 2224064 | | 0.0251 | 0.5135 | 50 | 2.5037 | 2481064 | | 0.0244 | 0.5648 | 55 | 2.5279 | 2724856 | | 0.0234 | 0.6162 | 60 | 2.5367 | 2979392 | | 0.0255 | 0.6675 | 65 | 2.5210 | 3223656 | | 0.0291 | 0.7189 | 70 | 2.5165 | 3468936 | | 0.0237 | 0.7702 | 75 | 2.4977 | 3711296 | | 0.0233 | 0.8216 | 80 | 2.4937 | 3960920 | | 0.0217 | 0.8729 | 85 | 2.5052 | 4202464 | | 0.0228 | 0.9243 | 90 | 2.5141 | 4452272 | | 0.0221 | 0.9756 | 95 | 2.5258 | 4700624 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1