--- license: gemma base_model: google/gemma-2-9b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-9b_hs2_accumulate_iter2_sftsd0 results: [] --- # collapse_gemma-2-9b_hs2_accumulate_iter2_sftsd0 This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9438 - Num Input Tokens Seen: 9944616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 4 - eval_batch_size: 16 - seed: 0 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.2335 | 0 | | 1.1198 | 0.0263 | 5 | 1.1072 | 256304 | | 1.0654 | 0.0527 | 10 | 1.0185 | 519116 | | 0.8862 | 0.0790 | 15 | 0.9889 | 775168 | | 0.8666 | 0.1054 | 20 | 0.9891 | 1038920 | | 0.7782 | 0.1317 | 25 | 0.9886 | 1306500 | | 0.6537 | 0.1581 | 30 | 0.9872 | 1568200 | | 0.7345 | 0.1844 | 35 | 0.9877 | 1831700 | | 0.6292 | 0.2107 | 40 | 0.9795 | 2092712 | | 0.6696 | 0.2371 | 45 | 0.9755 | 2353476 | | 0.5445 | 0.2634 | 50 | 0.9722 | 2620524 | | 0.6364 | 0.2898 | 55 | 0.9687 | 2886160 | | 0.6564 | 0.3161 | 60 | 0.9671 | 3149304 | | 0.5167 | 0.3424 | 65 | 0.9640 | 3413380 | | 0.6553 | 0.3688 | 70 | 0.9627 | 3684636 | | 0.5201 | 0.3951 | 75 | 0.9603 | 3947600 | | 0.5839 | 0.4215 | 80 | 0.9603 | 4207528 | | 0.5599 | 0.4478 | 85 | 0.9587 | 4468996 | | 0.6981 | 0.4742 | 90 | 0.9590 | 4730728 | | 0.582 | 0.5005 | 95 | 0.9558 | 4991328 | | 0.5174 | 0.5268 | 100 | 0.9556 | 5253436 | | 0.6031 | 0.5532 | 105 | 0.9545 | 5518624 | | 0.6314 | 0.5795 | 110 | 0.9528 | 5780988 | | 0.4925 | 0.6059 | 115 | 0.9527 | 6041796 | | 0.5823 | 0.6322 | 120 | 0.9515 | 6307948 | | 0.5974 | 0.6585 | 125 | 0.9498 | 6573748 | | 0.4411 | 0.6849 | 130 | 0.9492 | 6836544 | | 0.4604 | 0.7112 | 135 | 0.9489 | 7098504 | | 0.564 | 0.7376 | 140 | 0.9475 | 7354740 | | 0.5769 | 0.7639 | 145 | 0.9477 | 7620140 | | 0.4886 | 0.7903 | 150 | 0.9468 | 7884420 | | 0.5637 | 0.8166 | 155 | 0.9462 | 8151036 | | 0.5161 | 0.8429 | 160 | 0.9460 | 8414540 | | 0.633 | 0.8693 | 165 | 0.9459 | 8677992 | | 0.5239 | 0.8956 | 170 | 0.9446 | 8937256 | | 0.6149 | 0.9220 | 175 | 0.9465 | 9204996 | | 0.5386 | 0.9483 | 180 | 0.9451 | 9467132 | | 0.6638 | 0.9746 | 185 | 0.9446 | 9732120 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1