File size: 1,920 Bytes
2213800
35b9929
 
 
 
 
9174afc
35b9929
1edbf29
 
93a12c1
 
 
 
 
f326b78
35b9929
1edbf29
35b9929
 
1edbf29
9be731a
1edbf29
 
9be731a
 
 
 
 
 
 
 
 
1edbf29
 
 
 
 
9be731a
1edbf29
9be731a
1edbf29
35b9929
29c90ae
fb7d5ee
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

---
language: "en"
tags:
- Financial Language Modelling
widget:
- text: "Stocks rallied and the British pound [MASK]."
---

## FLANG
FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\
[FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\
[FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\
[FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\
[FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\
[Flang-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA)

## FLANG-BERT
FLANG-BERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the BERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary.

## Citation
Please cite the model with the following citation:\
```bibtex
@INPROCEEDINGS{shah-etal-2022-flang,
    author = {Shah, Raj Sanjay  and
      Chawla, Kunal and
      Eidnani, Dheeraj and
      Shah, Agam and
      Du, Wendi and
      Chava, Sudheer and
      Raman, Natraj and
      Smiley, Charese and
      Chen, Jiaao and
      Yang, Diyi },
    title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain},
    booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year = {2022},
    publisher = {Association for Computational Linguistics}
}
```

## Contact information

Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-BERT related issues and questions.


---
license: afl-3.0
---