File size: 2,830 Bytes
a27c06c d6d5ca8 a27c06c 5319737 a27c06c ece6598 af3dc20 d1e3cfc af3dc20 ece6598 80e8580 a27c06c 990bfb0 a92e5ab 990bfb0 ece6598 f31e21e a27c06c 2ef77c9 a27c06c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
language: "en"
tags:
- Financial Language Modelling
widget:
- text: "Stocks rallied and the British pound <mask>."
---
## Dataset Summary
- **Homepage:** https://sites.google.com/view/salt-nlp-flang
- **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT
- **Repository:** https://github.com/SALT-NLP/FLANG
## FLANG
FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\
[FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\
[FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\
[FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\
[FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\
[FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA)
## FLANG-Roberta
FLANG-Roberta is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the RoBerta language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary.
## FLUE
FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets.
Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\
Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\
New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\
Named Entity Recognition: [NER](https://huggingface.co/datasets/SALT-NLP/FLUE-NER)\
Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3)
## Citation
Please cite the model with the following citation:
```bibtex
@INPROCEEDINGS{shah-etal-2022-flang,
author = {Shah, Raj Sanjay and
Chawla, Kunal and
Eidnani, Dheeraj and
Shah, Agam and
Du, Wendi and
Chava, Sudheer and
Raman, Natraj and
Smiley, Charese and
Chen, Jiaao and
Yang, Diyi },
title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain},
booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2022},
publisher = {Association for Computational Linguistics}
}
```
## Contact information
Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-Roberta related issues and questions.
---
license: afl-3.0
--- |