File size: 2,938 Bytes
eb5dbed
 
 
538111b
eb5dbed
 
29d0e16
eb5dbed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9745794
eb5dbed
9745794
eb5dbed
 
 
 
 
 
 
 
 
29d0e16
eb5dbed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9745794
eb5dbed
 
 
 
 
 
 
 
 
29d0e16
eb5dbed
 
 
 
 
 
29d0e16
eb5dbed
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
language:
- en

---
# Model Card for Password-Model

 
# Model Details
 
## Model Description
 
 
The Password Model is intended to be used with [Credential Digger](https://github.com/SAP/credential-digger) in order to automatically filter false positive password discoveries.
 
- **Developed by:** SAP OSS
- **Shared by [Optional]:** Hugging Face
- **Model type:** Text Classification
- **Language(s) (NLP):** en
- **License:** Apache-2.0
- **Related Models:** 
  - **Parent Model:** RoBERTa
- **Resources for more information:**
  - [GitHub Repo](https://github.com/SAP/credential-digger) 
  - [Associated Paper](https://www.scitepress.org/Papers/2021/102381/102381.pdf) 
 
# Uses
 
 
## Direct Use
The model is directly integrated into [Credential Digger]((https://github.com/SAP/credential-digger) and can be used to filter the false positive password discoveries of a scan.
 

## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
 
# Training Details
 
## Training Data
 
[CodeBERT-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) fine-tuned on a dataset for leak detection.
 
 
## Training Procedure
 
 
### Preprocessing
 
More information needed
 
### Speeds, Sizes, Times
 
More information needed
 
# Evaluation
 
More information needed
 
## Testing Data, Factors & Metrics
 
### Testing Data
 
More information needed
 
### Factors
 
More information needed
 
### Metrics
 
More information needed
 
## Results 
 
More information needed
 
 
# Model Examination
More information needed
 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
 
# Technical Specifications [optional]
 
## Model Architecture and Objective
 
More information needed
 
## Compute Infrastructure
More information needed
 
### Hardware
 
More information needed
 
### Software
 
More information needed
 
 
# Citation
 
**BibTeX:**
 
```
TBD
```
 
# Model Card Authors [optional]
 
SAP OSS in collaboration with Ezi Ozoani and the Hugging Face team.
 
# Model Card Contact
 
More information needed

# How to Get Started with the Model
 
The model is directly integrated into Credential Digger and can be used to filter the false positive discoveries of a scan
 
<details>
<summary> Click to expand </summary>

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
tokenizer = AutoTokenizer.from_pretrained("SAPOSS/password-model")
 
model = AutoModelForSequenceClassification.from_pretrained("SAPOSS/password-model")
 
 ```
</details>