wei
commited on
Commit
•
f1a3e9b
1
Parent(s):
018f280
Update from weiding
Browse files- README.md +89 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- spiece.model +3 -0
- tokenizer_config.json +1 -0
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- summarization
|
4 |
+
widget:
|
5 |
+
- text: "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
# CodeTrans model for code documentation generation python
|
11 |
+
Pretrained model on programming language python using the t5 large model architecture. It was first released in
|
12 |
+
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized python code functions: it works best with tokenized python functions.
|
13 |
+
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets. It is then fine-tuned on the code documentation generation task for the python function/method.
|
18 |
+
|
19 |
+
## Intended uses & limitations
|
20 |
+
|
21 |
+
The model could be used to generate the description for the python function or be fine-tuned on other python code tasks. It can be used on unparsed and untokenized python code. However, if the python code is tokenized, the performance should be better.
|
22 |
+
|
23 |
+
### How to use
|
24 |
+
|
25 |
+
Here is how to use this model to generate python function documentation using Transformers SummarizationPipeline:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
|
29 |
+
|
30 |
+
pipeline = SummarizationPipeline(
|
31 |
+
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune"),
|
32 |
+
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune", skip_special_tokens=True),
|
33 |
+
device=0
|
34 |
+
)
|
35 |
+
|
36 |
+
tokenized_code = "def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD ) if exit_code is not None : sys . exit ( exit_code )"
|
37 |
+
pipeline([tokenized_code])
|
38 |
+
```
|
39 |
+
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/fine-tuning/function%20documentation%20generation/python/large_model.ipynb).
|
40 |
+
## Training data
|
41 |
+
|
42 |
+
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Multi-task Pretraining
|
47 |
+
|
48 |
+
The model was trained on a single TPU Pod V3-8 for half million steps in total, using sequence length 512 (batch size 4096).
|
49 |
+
It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
|
50 |
+
The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
|
51 |
+
|
52 |
+
### Fine-tuning
|
53 |
+
|
54 |
+
This model was then fine-tuned on a single TPU Pod V2-8 for 500 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing python code.
|
55 |
+
|
56 |
+
|
57 |
+
## Evaluation results
|
58 |
+
|
59 |
+
For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score):
|
60 |
+
|
61 |
+
Test results :
|
62 |
+
|
63 |
+
| Language / Model | Python | Java | Go | Php | Ruby | JavaScript |
|
64 |
+
| -------------------- | :------------: | :------------: | :------------: | :------------: | :------------: | :------------: |
|
65 |
+
| CodeTrans-ST-Small | 17.31 | 16.65 | 16.89 | 23.05 | 9.19 | 13.7 |
|
66 |
+
| CodeTrans-ST-Base | 16.86 | 17.17 | 17.16 | 22.98 | 8.23 | 13.17 |
|
67 |
+
| CodeTrans-TF-Small | 19.93 | 19.48 | 18.88 | 25.35 | 13.15 | 17.23 |
|
68 |
+
| CodeTrans-TF-Base | 20.26 | 20.19 | 19.50 | 25.84 | 14.07 | 18.25 |
|
69 |
+
| CodeTrans-TF-Large | 20.35 | 20.06 | **19.54** | 26.18 | 14.94 | **18.98** |
|
70 |
+
| CodeTrans-MT-Small | 19.64 | 19.00 | 19.15 | 24.68 | 14.91 | 15.26 |
|
71 |
+
| CodeTrans-MT-Base | **20.39** | 21.22 | 19.43 | **26.23** | **15.26** | 16.11 |
|
72 |
+
| CodeTrans-MT-Large | 20.18 | **21.87** | 19.38 | 26.08 | 15.00 | 16.23 |
|
73 |
+
| CodeTrans-MT-TF-Small | 19.77 | 20.04 | 19.36 | 25.55 | 13.70 | 17.24 |
|
74 |
+
| CodeTrans-MT-TF-Base | 19.77 | 21.12 | 18.86 | 25.79 | 14.24 | 18.62 |
|
75 |
+
| CodeTrans-MT-TF-Large | 18.94 | 21.42 | 18.77 | 26.20 | 14.19 | 18.83 |
|
76 |
+
| State of the art | 19.06 | 17.65 | 18.07 | 25.16 | 12.16 | 14.90 |
|
77 |
+
|
78 |
+
|
79 |
+
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"T5Model"
|
4 |
+
],
|
5 |
+
"d_ff": 4096,
|
6 |
+
"d_kv": 64,
|
7 |
+
"d_model": 1024,
|
8 |
+
"decoder_start_token_id": 0,
|
9 |
+
"dropout_rate": 0.1,
|
10 |
+
"eos_token_id": 1,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"is_encoder_decoder": true,
|
13 |
+
"layer_norm_epsilon": 1e-06,
|
14 |
+
"model_type": "t5",
|
15 |
+
"n_positions": 512,
|
16 |
+
"num_decoder_layers": 24,
|
17 |
+
"num_heads": 16,
|
18 |
+
"num_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"relative_attention_num_buckets": 32,
|
22 |
+
"task_specific_params": {
|
23 |
+
"summarization": {
|
24 |
+
"max_length": 512,
|
25 |
+
"num_beams": 4,
|
26 |
+
"prefix": "function documentation generation python: "
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"vocab_size": 32128
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd0ff2630a30506c8680cbaf28b536a595167f92f169b8ed89b8d70924825b7
|
3 |
+
size 2950910481
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9856b76e9978cc5805f0566cedabd2fc7bdb1a3ee22d52545100c056cb09a59c
|
3 |
+
size 797030
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false}
|