File size: 5,953 Bytes
c100893 0818340 c100893 d7dfada 0818340 c100893 1ffd489 c100893 1ffd489 c100893 b13807a 1ffd489 c100893 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---
# Model Details
Model Developers: Sogang University SGEconFinlab
### Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
- **Developed by:** [Sogang University SGEconFinlab]
- **Language(s) (NLP):** [Ko/En]
- **License:** [apache-2.0]
- **Base Model:** [yanolja/KoSOLAR-10.7B-v0.2]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## How to Get Started with the Model
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
import re
def gen(x):
inputs = tokenizer(f"### ์ง๋ฌธ: {x}\n\n### ๋ต๋ณ:", return_tensors='pt', return_token_type_ids=False)
# ๋ฐ์ดํฐ๋ฅผ GPU๋ก ์ด๋(์ฌ์ฉ ๊ฐ๋ฅํ ๊ฒฝ์ฐ)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256,
early_stopping=True,
num_return_sequences=4, # 4๊ฐ์ ๋ต๋ณ์ ์์ฑํ๋๋ก ์ค์ (๋ต๋ณ ๊ฐ์ ์ค์ ๊ฐ๋ฅ)
do_sample=True,
eos_token_id=tokenizer.eos_token_id, # EOS ํ ํฐ ID ์ฌ์ฉ
temperature=0.9,
top_p=0.8,
top_k=50
)
complete_answers = []
for gen_seq in gened:
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
# "### ๋ต๋ณ:" ๋ฌธ์์ด ์ดํ์ ํ
์คํธ๋ง ์ถ์ถ
first_answer_start_idx = decoded.find("### ๋ต๋ณ:") + len("### ๋ต๋ณ:")
temp_answer = decoded[first_answer_start_idx:].strip()
# ๋ ๋ฒ์งธ "### ๋ต๋ณ:" ๋ฌธ์์ด ์ด์ ๊น์ง์ ํ
์คํธ๋ง ์ถ์ถ
second_answer_start_idx = temp_answer.find("### ๋ต๋ณ:")
if second_answer_start_idx != -1:
complete_answer = temp_answer[:second_answer_start_idx].strip()
else:
complete_answer = temp_answer # ๋ ๋ฒ์งธ "### ๋ต๋ณ:"์ด ์๋ ๊ฒฝ์ฐ ์ ์ฒด ๋ต๋ณ ๋ฐํ
complete_answers.append(complete_answer)
return complete_answers
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|