File size: 5,953 Bytes
c100893
 
0818340
 
c100893
 
 
d7dfada
0818340
c100893
 
 
1ffd489
 
 
c100893
1ffd489
 
 
 
c100893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13807a
1ffd489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c100893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
---


# Model Details
Model Developers: Sogang University SGEconFinlab

### Model Description

This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes. 
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.

- **Developed by:** [Sogang University SGEconFinlab]
- **Language(s) (NLP):** [Ko/En]
- **License:** [apache-2.0]
- **Base Model:** [yanolja/KoSOLAR-10.7B-v0.2]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]


## How to Get Started with the Model


peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()


import re
def gen(x):
    inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)
    
    # ๋ฐ์ดํ„ฐ๋ฅผ GPU๋กœ ์ด๋™(์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ)
    inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}

    gened = model.generate(
        **inputs,
        max_new_tokens=256,
        early_stopping=True,
        num_return_sequences=4,  # 4๊ฐœ์˜ ๋‹ต๋ณ€์„ ์ƒ์„ฑํ•˜๋„๋ก ์„ค์ •(๋‹ต๋ณ€ ๊ฐœ์ˆ˜ ์„ค์ • ๊ฐ€๋Šฅ)
        do_sample=True,
        eos_token_id=tokenizer.eos_token_id,  # EOS ํ† ํฐ ID ์‚ฌ์šฉ
        temperature=0.9,
        top_p=0.8,
        top_k=50
    )
    
    complete_answers = []
    for gen_seq in gened:
        decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()

        # "### ๋‹ต๋ณ€:" ๋ฌธ์ž์—ด ์ดํ›„์˜ ํ…์ŠคํŠธ๋งŒ ์ถ”์ถœ
        first_answer_start_idx = decoded.find("### ๋‹ต๋ณ€:") + len("### ๋‹ต๋ณ€:")
        temp_answer = decoded[first_answer_start_idx:].strip()

        # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:" ๋ฌธ์ž์—ด ์ด์ „๊นŒ์ง€์˜ ํ…์ŠคํŠธ๋งŒ ์ถ”์ถœ
        second_answer_start_idx = temp_answer.find("### ๋‹ต๋ณ€:")
        if second_answer_start_idx != -1:
            complete_answer = temp_answer[:second_answer_start_idx].strip()
        else:
            complete_answer = temp_answer  # ๋‘ ๋ฒˆ์งธ "### ๋‹ต๋ณ€:"์ด ์—†๋Š” ๊ฒฝ์šฐ ์ „์ฒด ๋‹ต๋ณ€ ๋ฐ˜ํ™˜
        
        complete_answers.append(complete_answer)
    
    return complete_answers

    
## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->