SGEcon commited on
Commit
758d33d
โ€ข
1 Parent(s): 0dca21d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -38
README.md CHANGED
@@ -8,27 +8,18 @@ pipeline_tag: text-generation
8
  # Model Details
9
  Model Developers: Sogang University SGEconFinlab
10
 
 
11
  ### Model Description
12
 
13
  This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
14
  The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
15
  If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
16
 
17
- - **Developed by:** Sogang University SGEconFinlab
18
  - **Language(s) (NLP):** Ko/En
19
  - **License:** apache-2.0
20
  - **Base Model:** yanolja/KoSOLAR-10.7B-v0.2
21
 
22
- ## Uses
23
-
24
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
25
-
26
- ### Direct Use
27
-
28
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
29
-
30
- [More Information Needed]
31
-
32
 
33
  ## How to Get Started with the Model
34
 
@@ -46,7 +37,7 @@ If you wish to use the original data rather than our training data, please conta
46
  tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
47
  model.eval()
48
 
49
-
50
  import re
51
  def gen(x):
52
  inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)
@@ -88,31 +79,33 @@ If you wish to use the original data rather than our training data, please conta
88
 
89
  ## Training Details
90
 
 
91
  ### Training Data
92
 
93
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
 
 
 
94
 
95
- [More Information Needed]
96
 
97
  ### Training Procedure
98
 
99
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
100
 
101
- #### Preprocessing [optional]
102
-
103
- [More Information Needed]
104
-
105
 
106
  #### Training Hyperparameters
107
 
108
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
109
-
110
- #### Speeds, Sizes, Times [optional]
111
-
112
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
113
-
114
- [More Information Needed]
115
-
116
  ## Evaluation
117
 
118
  <!-- This section describes the evaluation protocols and provides the results. -->
@@ -125,18 +118,6 @@ If you wish to use the original data rather than our training data, please conta
125
 
126
  [More Information Needed]
127
 
128
- #### Factors
129
-
130
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
131
-
132
- [More Information Needed]
133
-
134
- #### Metrics
135
-
136
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
137
-
138
- [More Information Needed]
139
-
140
  ### Results
141
 
142
  [More Information Needed]
 
8
  # Model Details
9
  Model Developers: Sogang University SGEconFinlab
10
 
11
+
12
  ### Model Description
13
 
14
  This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
15
  The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
16
  If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
17
 
18
+ - **Developed by:** Sogang University SGEconFinlab(<https://sc.sogang.ac.kr/aifinlab/>)
19
  - **Language(s) (NLP):** Ko/En
20
  - **License:** apache-2.0
21
  - **Base Model:** yanolja/KoSOLAR-10.7B-v0.2
22
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## How to Get Started with the Model
25
 
 
37
  tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
38
  model.eval()
39
 
40
+ -------
41
  import re
42
  def gen(x):
43
  inputs = tokenizer(f"### ์งˆ๋ฌธ: {x}\n\n### ๋‹ต๋ณ€:", return_tensors='pt', return_token_type_ids=False)
 
79
 
80
  ## Training Details
81
 
82
+
83
  ### Training Data
84
 
85
+ 1. ํ•œ๊ตญ์€ํ–‰: ๊ฒฝ์ œ๊ธˆ์œต์šฉ์–ด 700์„ (<https://www.bok.or.kr/portal/bbs/B0000249/view.do?nttId=235017&menuNo=200765>)
86
+ 2. ๊ธˆ์œต๊ฐ๋…์›: ๊ธˆ์œต์†Œ๋น„์ž ์ •๋ณด ํฌํ„ธ ํŒŒ์ธ ๊ธˆ์œต์šฉ์–ด์‚ฌ์ „(<https://fine.fss.or.kr/fine/fnctip/fncDicary/list.do?menuNo=900021>)
87
+ 3. KDI ๊ฒฝ์ œ์ •๋ณด์„ผํ„ฐ: ์‹œ์‚ฌ ์šฉ์–ด์‚ฌ์ „(<https://eiec.kdi.re.kr/material/wordDic.do>)
88
+ 4. ํ•œ๊ตญ๊ฒฝ์ œ์‹ ๋ฌธ/ํ•œ๊ฒฝ๋‹ท์ปด: ํ•œ๊ฒฝ๊ฒฝ์ œ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=42107&categoryId=42107>), ์˜ค๋Š˜์˜ TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=1>), ์˜ค๋Š˜์˜ ์ฃผ๋‹ˆ์–ด TESAT(<https://www.tesat.or.kr/bbs.frm.list/tesat_study?s_cateno=5>), ์ƒ๊ธ€์ƒ๊ธ€ํ•œ๊ฒฝ(<https://sgsg.hankyung.com/tesat/study>)
89
+ 5. ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€/๋Œ€ํ•œ๋ฏผ๊ตญ์ •๋ถ€: ์ค‘์†Œ๋ฒค์ฒ˜๊ธฐ์—…๋ถ€ ์ „๋ฌธ์šฉ์–ด(<https://terms.naver.com/list.naver?cid=42103&categoryId=42103>)
90
+ 6. ๊ณ ์„ฑ์‚ผ/๋ฒ•๋ฌธ์ถœํŒ์‚ฌ: ํšŒ๊ณ„ยท์„ธ๋ฌด ์šฉ์–ด์‚ฌ์ „(<https://terms.naver.com/list.naver?cid=51737&categoryId=51737>)
91
+ 7. ๋งจํ์˜ ๊ฒฝ์ œํ•™ 8ํŒ Word Index
92
 
 
93
 
94
  ### Training Procedure
95
 
96
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
 
 
 
 
 
98
 
99
  #### Training Hyperparameters
100
 
101
+ - Lora
102
+ 1. r=16,
103
+ lora_alpha=16,
104
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"], # this is different by models
105
+ lora_dropout=0.05,
106
+ bias="none",
107
+ task_type="CAUSAL_LM"
108
+
109
  ## Evaluation
110
 
111
  <!-- This section describes the evaluation protocols and provides the results. -->
 
118
 
119
  [More Information Needed]
120
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  ### Results
122
 
123
  [More Information Needed]