---
library_name: transformers
license: apache-2.0
---
# Model Details
Model Developers: Sogang University SGEconFinlab(<)
### Model Description
This model is a language model specialized in economics and finance. This was learned with various economic/finance-related data.
The data sources are listed below, and we are not releasing the data we trained on because it was used for research/policy purposes.
If you wish to use the original data rather than our training data, please contact the original author directly for permission to use it.
- **Developed by:** Sogang University SGEconFinlab()
- **License:** apache-2.0
- **Base Model:** yanolja/KoSOLAR-10.7B-v0.2()
## How to Get Started with the Model
peft_model_id = "SGEcon/KoSOLAR-10.7B-v0.2_fin_v4"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map={"":0})
model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model.eval()
-----
import re
def gen(x):
inputs = tokenizer(f"### 질문: {x}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False)
# Move data to GPU (if available)
inputs = {k: v.to(device="cuda" if torch.cuda.is_available() else "cpu") for k, v in inputs.items()}
gened = model.generate(
**inputs,
max_new_tokens=256,
early_stopping=True,
num_return_sequences=4,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
temperature=0.9,
top_p=0.8,
top_k=50
)
complete_answers = []
for gen_seq in gened:
decoded = tokenizer.decode(gen_seq, skip_special_tokens=True).strip()
# Extract only the text after the string "### 답변:"
first_answer_start_idx = decoded.find("### 답변:") + len("### 답변:")
temp_answer = decoded[first_answer_start_idx:].strip()
# Extract only text up to the second "### 답변:" string
second_answer_start_idx = temp_answer.find("### 답변:")
if second_answer_start_idx != -1:
complete_answer = temp_answer[:second_answer_start_idx].strip()
else:
complete_answer = temp_answer # 두 번째 "### 답변:"이 없는 경우 전체 답변 반환
complete_answers.append(complete_answer)
return complete_answers
## Training Details
First, we loaded the base model quantized to 4 bits. It can significantly reduce the amount of memory required to store the model's weights and intermediate computation results, which is beneficial for deploying models in environments with limited memory resources. It can also provide faster inference speeds.
Then,
### Training Data
1. 한국은행: 경제금융용어 700선()
2. 금융감독원: 금융소비자 정보 포털 파인 금융용어사전()
3. KDI 경제정보센터: 시사 용어사전()
4. 한국경제신문/한경닷컴: 한경경제용어사전(), 오늘의 TESAT(), 오늘의 주니어 TESAT(), 생글생글한경()
5. 중소벤처기업부/대한민국정부: 중소벤처기업부 전문용어()
6. 고성삼/법문출판사: 회계·세무 용어사전()
7. 맨큐의 경제학 8판 Word Index
8. yanolja/KoSOLAR-10.7B-v0.2()
### Training Procedure
#### Training Hyperparameters
|Hyperparameter|SGEcon/KoSOLAR-10.7B-v0.2_fin_v4|
|------|---|
|Lora Method|Lora|
|load in 4 bit|True|
|learning rate|1e-5|
|lr scheduler|linear|
|lora alpa|16|
|lora rank|16|
|lora dropout|0.05|
|optim|paged_adamw_32bit|
|target_modules|q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head|
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Citation [optional]