SIC98 commited on
Commit
50757cf
·
1 Parent(s): 4ffb6e4

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.93 +/- 15.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b4af94040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b4af940d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b4af94160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b4af941f0>", "_build": "<function ActorCriticPolicy._build at 0x7f0b4af94280>", "forward": "<function ActorCriticPolicy.forward at 0x7f0b4af94310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b4af943a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0b4af94430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b4af944c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b4af94550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b4af945e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0b4af904b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673185334384462354, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0/kT32AG+68h/iOt6NxDVGBO+6hoQEugAAgD8AAAAAAMKmvPZobbqCe4c18hOHMjGJMLu1H9W0AACAPwAAgD8z9pI8XGNFuoRMuruVIq88dYbNupI7lz0AAIA/AACAPwCsJrweArI9crgVPlLJh762tcA9jdFtvQAAAAAAAAAAptXgPTnBpj/9Eic/QinOvj9Fwz0+yaY+AAAAAAAAAADA86W94ViDukBTWDm3vFI0aPg8uvBDfLgAAIA/AACAP0Co4r1hzB0/GJrePYU7gL5BnhK8F3k0PAAAAAAAAAAApnLFPUg9hrogf6m7BXE0OIKBBrtFmJ42AACAPwAAgD+zvg89w/lfuiCNcTrAWlw1MrPUuqoXjrkAAIA/AACAP02FkD0RUrA+UB9+vS20Zb7zufU8tqBgvQAAAAAAAAAAjQSbPfasX7pG+t46xMXCtFV7gLntPQG6AACAPwAAAADNfAS8SLWbus5fEzZapTQxqPwRO/zkN7UAAIA/AACAP5ovcz3h4Ka6184lumBbFbWDhng633Y+OQAAgD8AAIA/ZnmNvOEKm7pO38m6UQhItj9bBDt25uc5AACAPwAAgD/NvZo8J4oTPyDmCj7V/Jm+RoyFPRtveT0AAAAAAAAAANqCjj3Uu5U9+Vauva2jK77BfsC7tjSRvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfNP02YFrY0CUhpRSlIwBbJRN6AOMAXSUR0CdcSmPo3aSdX2UKGgGaAloD0MIfVhv1IpNcUCUhpRSlGgVTZoCaBZHQJ12qv/zasZ1fZQoaAZoCWgPQwg4vCAiNQFlQJSGlFKUaBVN6ANoFkdAnYhPEOy3TnV9lChoBmgJaA9DCDF4mPbNoGBAlIaUUpRoFU3oA2gWR0CdjFYG+sYEdX2UKGgGaAloD0MIkXu6umNzZkCUhpRSlGgVTegDaBZHQJ2MnR8c+7l1fZQoaAZoCWgPQwgJpppZS01iQJSGlFKUaBVN6ANoFkdAnY13EVFhHHV9lChoBmgJaA9DCBhBYybRU2FAlIaUUpRoFU3oA2gWR0Cdjrcjqv/zdX2UKGgGaAloD0MIz/QSY5nhXkCUhpRSlGgVTegDaBZHQJ2RBfiPyTZ1fZQoaAZoCWgPQwiTOCuiJr1jQJSGlFKUaBVN6ANoFkdAnZNMd5prUXV9lChoBmgJaA9DCAMmcOtun2NAlIaUUpRoFU3oA2gWR0Cdk3C4SYgJdX2UKGgGaAloD0MI8Q9bejTCYkCUhpRSlGgVTegDaBZHQJ2VPnzQNTd1fZQoaAZoCWgPQwix4H7AAypiQJSGlFKUaBVN6ANoFkdAnZaoCp3otHV9lChoBmgJaA9DCHJPV3esGmZAlIaUUpRoFU3oA2gWR0CdlrQ6ZH/cdX2UKGgGaAloD0MIIa8HkyJAcECUhpRSlGgVTZMDaBZHQJ2XNG9YfXB1fZQoaAZoCWgPQwhTIR6JFwlkQJSGlFKUaBVN6ANoFkdAnZh16/qPfnV9lChoBmgJaA9DCDLlQ1C1x2xAlIaUUpRoFU15AWgWR0CdnN2zOX3QdX2UKGgGaAloD0MI68N6o9ZCYkCUhpRSlGgVTegDaBZHQJ2dIFLWZqp1fZQoaAZoCWgPQwghPNo4YgJfQJSGlFKUaBVN6ANoFkdAnaN+nVG0/nV9lChoBmgJaA9DCMudmWA4OmFAlIaUUpRoFU3oA2gWR0Cdu6AtWdVedX2UKGgGaAloD0MIMT83NGUFbUCUhpRSlGgVTY4BaBZHQJ279OLzf791fZQoaAZoCWgPQwhOCvMe51lvQJSGlFKUaBVNMQJoFkdAncBVt4zJp3V9lChoBmgJaA9DCKyPh757D3JAlIaUUpRoFU1IA2gWR0CdwzNIsiB5dX2UKGgGaAloD0MIWmPQCaHfcUCUhpRSlGgVTTICaBZHQJ3FBjawljV1fZQoaAZoCWgPQwjdmQmGM+dxQJSGlFKUaBVNOwNoFkdAnccMOG0u2HV9lChoBmgJaA9DCKbW+432uW5AlIaUUpRoFU0QAmgWR0CdyfC+10DEdX2UKGgGaAloD0MIlxsMddgqbECUhpRSlGgVTfoCaBZHQJ3MKkhzNll1fZQoaAZoCWgPQwjVer/RDltkQJSGlFKUaBVN6ANoFkdAnc4LFfiPyXV9lChoBmgJaA9DCA1RhT/D3WtAlIaUUpRoFU1UA2gWR0CdzhePaL4vdX2UKGgGaAloD0MIjE0rhcDZcECUhpRSlGgVTZECaBZHQJ3QEsBhhH91fZQoaAZoCWgPQwiEfxE05l9jQJSGlFKUaBVN6ANoFkdAndBAhr30w3V9lChoBmgJaA9DCKQ2cXK/+2VAlIaUUpRoFU3oA2gWR0Cd0oACW/rTdX2UKGgGaAloD0MIDLH6IwydZkCUhpRSlGgVTegDaBZHQJ3ZHRIBikR1fZQoaAZoCWgPQwgZ5C7ClGphQJSGlFKUaBVN6ANoFkdAnduSKekHlnV9lChoBmgJaA9DCKG6ufhb+G5AlIaUUpRoFU2TAmgWR0Cd3BpPRArydX2UKGgGaAloD0MI6glLPKCYb0CUhpRSlGgVTbwBaBZHQJ3fgEdNnGt1fZQoaAZoCWgPQwgdW88Qji5vQJSGlFKUaBVN1gFoFkdAnei1A7gbZXV9lChoBmgJaA9DCNqqJLIPtV5AlIaUUpRoFU3oA2gWR0Cd6Rhxo7FLdX2UKGgGaAloD0MIkxlvKz1QcECUhpRSlGgVTeACaBZHQJ3qAyP+4sp1fZQoaAZoCWgPQwhQyM7bWHtuQJSGlFKUaBVNCAJoFkdAnf2etOmBOHV9lChoBmgJaA9DCIicvp6vPW9AlIaUUpRoFU1QA2gWR0CeADETg2qDdX2UKGgGaAloD0MIrwj+t5LIYUCUhpRSlGgVTegDaBZHQJ4Ae+6Ae7t1fZQoaAZoCWgPQwiUg9kEGDZwQJSGlFKUaBVNfQJoFkdAngEsABDG+HV9lChoBmgJaA9DCOLkfocidmZAlIaUUpRoFU3oA2gWR0CeBKCT2WY4dX2UKGgGaAloD0MINpIE4Yo/cUCUhpRSlGgVTWcDaBZHQJ4E+MQ2/BZ1fZQoaAZoCWgPQwgi/mFLj0YkQJSGlFKUaBVLymgWR0CeBQL+glF+dX2UKGgGaAloD0MIn6pCA/F3cECUhpRSlGgVTaQBaBZHQJ4HQG3WnTB1fZQoaAZoCWgPQwjPEfkupVpuQJSGlFKUaBVNqQJoFkdAngeGHxjJ+3V9lChoBmgJaA9DCHFXryJjM3BAlIaUUpRoFU02AWgWR0CeCl0Qsf7rdX2UKGgGaAloD0MIr13acBiicUCUhpRSlGgVTWoDaBZHQJ4LM1KoQ4F1fZQoaAZoCWgPQwiRtvEnKk5kQJSGlFKUaBVN6ANoFkdAng6+WOZLI3V9lChoBmgJaA9DCJbpl4g3FHFAlIaUUpRoFU1gAWgWR0CeDytihFmWdX2UKGgGaAloD0MIiCr8GV7gcECUhpRSlGgVTZoBaBZHQJ4Pat+1Bt11fZQoaAZoCWgPQwjF5XgFIphuQJSGlFKUaBVN/AJoFkdAnhBEZWJaaHV9lChoBmgJaA9DCMMPzqcOoWtAlIaUUpRoFU17AWgWR0CeEIFnIyTIdX2UKGgGaAloD0MIWpwxzInLbUCUhpRSlGgVTfYBaBZHQJ4RdRgqmTF1fZQoaAZoCWgPQwiPGD230M5wQJSGlFKUaBVNtgFoFkdAnhM0sOG0u3V9lChoBmgJaA9DCBPThVj9nG1AlIaUUpRoFU19AWgWR0CeFDznzQNTdX2UKGgGaAloD0MIhbLw9XWHcECUhpRSlGgVTWQBaBZHQJ4Yoqd6LO11fZQoaAZoCWgPQwhXJZF9EA5xQJSGlFKUaBVNEwFoFkdAnhm9IbwSanV9lChoBmgJaA9DCDfDDfh8/2VAlIaUUpRoFU3oA2gWR0CeG7UvPC2udX2UKGgGaAloD0MIWdqpuVxzYECUhpRSlGgVTegDaBZHQJ4cLtJFspJ1fZQoaAZoCWgPQwiFmbZ/pTNxQJSGlFKUaBVNfQFoFkdAniBqUNayKXV9lChoBmgJaA9DCJKXNbHA0HFAlIaUUpRoFU34AWgWR0CeJR/iYLLIdX2UKGgGaAloD0MIUKc8uhHlUECUhpRSlGgVS8toFkdAniWAzYVZcXV9lChoBmgJaA9DCCNqos/HXnFAlIaUUpRoFU3+AmgWR0CeKJYaYNRWdX2UKGgGaAloD0MIgUI9fUQicECUhpRSlGgVTfIBaBZHQJ4p++UQkHF1fZQoaAZoCWgPQwhkdavnpBFsQJSGlFKUaBVNbAFoFkdAnj4dW6shgXV9lChoBmgJaA9DCI523PC7s3BAlIaUUpRoFU1LAmgWR0CePuUH6dlNdX2UKGgGaAloD0MIm1lLAeltckCUhpRSlGgVTcwDaBZHQJ5CWJhvze51fZQoaAZoCWgPQwgNiXssfbVvQJSGlFKUaBVNQgFoFkdAnkKpokAxSHV9lChoBmgJaA9DCBpuwOcH/WFAlIaUUpRoFU3oA2gWR0CeQ0J6po9LdX2UKGgGaAloD0MIR8mrc8wBc0CUhpRSlGgVTc4DaBZHQJ5EqZrpJPJ1fZQoaAZoCWgPQwiAft+/ObdwQJSGlFKUaBVNjwJoFkdAnkUE1yeZonV9lChoBmgJaA9DCOrOE8/ZC3JAlIaUUpRoFU0pAWgWR0CeRYM9r434dX2UKGgGaAloD0MIJxb4ii7dcECUhpRSlGgVTZoDaBZHQJ5Gcsz2vjh1fZQoaAZoCWgPQwhWR450BvVwQJSGlFKUaBVNFQFoFkdAnkh1JpWV/3V9lChoBmgJaA9DCLth26JMsHBAlIaUUpRoFU2sAWgWR0CeSsd/8VHndX2UKGgGaAloD0MIMe9xpskicUCUhpRSlGgVTXgBaBZHQJ5LSIrOJLx1fZQoaAZoCWgPQwjFWRE1EehxQJSGlFKUaBVNVAFoFkdAnkvgGr0aqHV9lChoBmgJaA9DCAQ91LZhBWFAlIaUUpRoFU3oA2gWR0CeTUNMoMKDdX2UKGgGaAloD0MImGw82GJCbkCUhpRSlGgVTScBaBZHQJ5N/ER8MNN1fZQoaAZoCWgPQwgdW88QDpJhQJSGlFKUaBVN6ANoFkdAnk5Lpu/DcnV9lChoBmgJaA9DCLFppRCIo3FAlIaUUpRoFU2QAWgWR0CeTsBMi8nNdX2UKGgGaAloD0MIxHsOLAdPcECUhpRSlGgVTV4DaBZHQJ5QtiuuA7R1fZQoaAZoCWgPQwgJibSNP01wQJSGlFKUaBVNTgFoFkdAnlEhBeHBUXV9lChoBmgJaA9DCAVu3c3Tu3BAlIaUUpRoFU0qAWgWR0CeU/jJ+2E1dX2UKGgGaAloD0MIuLHZkeq5bECUhpRSlGgVTaEBaBZHQJ5U933YcvN1fZQoaAZoCWgPQwi9yAT8mgBzQJSGlFKUaBVNlgFoFkdAnlUOEM9bHXV9lChoBmgJaA9DCEJ8YMe/xXBAlIaUUpRoFU2JA2gWR0CeVahLGrCFdX2UKGgGaAloD0MIS3hCr39DcECUhpRSlGgVTSsBaBZHQJ5WuJvYODt1fZQoaAZoCWgPQwiGN2vwvmpTQJSGlFKUaBVNBgFoFkdAnlgRSHdoFnV9lChoBmgJaA9DCB1YjpABBHBAlIaUUpRoFU3zAWgWR0CeWat0mtyQdX2UKGgGaAloD0MIfPFFezx7ckCUhpRSlGgVTZ0BaBZHQJ5ax2pyZKF1fZQoaAZoCWgPQwgbS1gb47htQJSGlFKUaBVNnwFoFkdAnlwPt6X0G3V9lChoBmgJaA9DCFyPwvWow29AlIaUUpRoFU2DAWgWR0CeXGxmkFfRdX2UKGgGaAloD0MIKEcBomCsb0CUhpRSlGgVTWwBaBZHQJ5dF5JK8L91fZQoaAZoCWgPQwht5/upcVByQJSGlFKUaBVN2AJoFkdAnl6jIeYD1XV9lChoBmgJaA9DCPtbAvDPOnBAlIaUUpRoFU2WAWgWR0CeYPknkT6BdX2UKGgGaAloD0MITrfsEH/BcUCUhpRSlGgVTSEBaBZHQJ5hNwJgLJF1fZQoaAZoCWgPQwj5SbVPRwpuQJSGlFKUaBVNlwFoFkdAnmYctK7I1nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:055172e8f7336f72e27091d1f0becb4dc8fc081bdf6064c6dc77b66b464f3167
3
+ size 147218
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0b4af94040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0b4af940d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0b4af94160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0b4af941f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0b4af94280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0b4af94310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0b4af943a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0b4af94430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0b4af944c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0b4af94550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0b4af945e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f0b4af904b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673185334384462354,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0/kT32AG+68h/iOt6NxDVGBO+6hoQEugAAgD8AAAAAAMKmvPZobbqCe4c18hOHMjGJMLu1H9W0AACAPwAAgD8z9pI8XGNFuoRMuruVIq88dYbNupI7lz0AAIA/AACAPwCsJrweArI9crgVPlLJh762tcA9jdFtvQAAAAAAAAAAptXgPTnBpj/9Eic/QinOvj9Fwz0+yaY+AAAAAAAAAADA86W94ViDukBTWDm3vFI0aPg8uvBDfLgAAIA/AACAP0Co4r1hzB0/GJrePYU7gL5BnhK8F3k0PAAAAAAAAAAApnLFPUg9hrogf6m7BXE0OIKBBrtFmJ42AACAPwAAgD+zvg89w/lfuiCNcTrAWlw1MrPUuqoXjrkAAIA/AACAP02FkD0RUrA+UB9+vS20Zb7zufU8tqBgvQAAAAAAAAAAjQSbPfasX7pG+t46xMXCtFV7gLntPQG6AACAPwAAAADNfAS8SLWbus5fEzZapTQxqPwRO/zkN7UAAIA/AACAP5ovcz3h4Ka6184lumBbFbWDhng633Y+OQAAgD8AAIA/ZnmNvOEKm7pO38m6UQhItj9bBDt25uc5AACAPwAAgD/NvZo8J4oTPyDmCj7V/Jm+RoyFPRtveT0AAAAAAAAAANqCjj3Uu5U9+Vauva2jK77BfsC7tjSRvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfNP02YFrY0CUhpRSlIwBbJRN6AOMAXSUR0CdcSmPo3aSdX2UKGgGaAloD0MIfVhv1IpNcUCUhpRSlGgVTZoCaBZHQJ12qv/zasZ1fZQoaAZoCWgPQwg4vCAiNQFlQJSGlFKUaBVN6ANoFkdAnYhPEOy3TnV9lChoBmgJaA9DCDF4mPbNoGBAlIaUUpRoFU3oA2gWR0CdjFYG+sYEdX2UKGgGaAloD0MIkXu6umNzZkCUhpRSlGgVTegDaBZHQJ2MnR8c+7l1fZQoaAZoCWgPQwgJpppZS01iQJSGlFKUaBVN6ANoFkdAnY13EVFhHHV9lChoBmgJaA9DCBhBYybRU2FAlIaUUpRoFU3oA2gWR0Cdjrcjqv/zdX2UKGgGaAloD0MIz/QSY5nhXkCUhpRSlGgVTegDaBZHQJ2RBfiPyTZ1fZQoaAZoCWgPQwiTOCuiJr1jQJSGlFKUaBVN6ANoFkdAnZNMd5prUXV9lChoBmgJaA9DCAMmcOtun2NAlIaUUpRoFU3oA2gWR0Cdk3C4SYgJdX2UKGgGaAloD0MI8Q9bejTCYkCUhpRSlGgVTegDaBZHQJ2VPnzQNTd1fZQoaAZoCWgPQwix4H7AAypiQJSGlFKUaBVN6ANoFkdAnZaoCp3otHV9lChoBmgJaA9DCHJPV3esGmZAlIaUUpRoFU3oA2gWR0CdlrQ6ZH/cdX2UKGgGaAloD0MIIa8HkyJAcECUhpRSlGgVTZMDaBZHQJ2XNG9YfXB1fZQoaAZoCWgPQwhTIR6JFwlkQJSGlFKUaBVN6ANoFkdAnZh16/qPfnV9lChoBmgJaA9DCDLlQ1C1x2xAlIaUUpRoFU15AWgWR0CdnN2zOX3QdX2UKGgGaAloD0MI68N6o9ZCYkCUhpRSlGgVTegDaBZHQJ2dIFLWZqp1fZQoaAZoCWgPQwghPNo4YgJfQJSGlFKUaBVN6ANoFkdAnaN+nVG0/nV9lChoBmgJaA9DCMudmWA4OmFAlIaUUpRoFU3oA2gWR0Cdu6AtWdVedX2UKGgGaAloD0MIMT83NGUFbUCUhpRSlGgVTY4BaBZHQJ279OLzf791fZQoaAZoCWgPQwhOCvMe51lvQJSGlFKUaBVNMQJoFkdAncBVt4zJp3V9lChoBmgJaA9DCKyPh757D3JAlIaUUpRoFU1IA2gWR0CdwzNIsiB5dX2UKGgGaAloD0MIWmPQCaHfcUCUhpRSlGgVTTICaBZHQJ3FBjawljV1fZQoaAZoCWgPQwjdmQmGM+dxQJSGlFKUaBVNOwNoFkdAnccMOG0u2HV9lChoBmgJaA9DCKbW+432uW5AlIaUUpRoFU0QAmgWR0CdyfC+10DEdX2UKGgGaAloD0MIlxsMddgqbECUhpRSlGgVTfoCaBZHQJ3MKkhzNll1fZQoaAZoCWgPQwjVer/RDltkQJSGlFKUaBVN6ANoFkdAnc4LFfiPyXV9lChoBmgJaA9DCA1RhT/D3WtAlIaUUpRoFU1UA2gWR0CdzhePaL4vdX2UKGgGaAloD0MIjE0rhcDZcECUhpRSlGgVTZECaBZHQJ3QEsBhhH91fZQoaAZoCWgPQwiEfxE05l9jQJSGlFKUaBVN6ANoFkdAndBAhr30w3V9lChoBmgJaA9DCKQ2cXK/+2VAlIaUUpRoFU3oA2gWR0Cd0oACW/rTdX2UKGgGaAloD0MIDLH6IwydZkCUhpRSlGgVTegDaBZHQJ3ZHRIBikR1fZQoaAZoCWgPQwgZ5C7ClGphQJSGlFKUaBVN6ANoFkdAnduSKekHlnV9lChoBmgJaA9DCKG6ufhb+G5AlIaUUpRoFU2TAmgWR0Cd3BpPRArydX2UKGgGaAloD0MI6glLPKCYb0CUhpRSlGgVTbwBaBZHQJ3fgEdNnGt1fZQoaAZoCWgPQwgdW88Qji5vQJSGlFKUaBVN1gFoFkdAnei1A7gbZXV9lChoBmgJaA9DCNqqJLIPtV5AlIaUUpRoFU3oA2gWR0Cd6Rhxo7FLdX2UKGgGaAloD0MIkxlvKz1QcECUhpRSlGgVTeACaBZHQJ3qAyP+4sp1fZQoaAZoCWgPQwhQyM7bWHtuQJSGlFKUaBVNCAJoFkdAnf2etOmBOHV9lChoBmgJaA9DCIicvp6vPW9AlIaUUpRoFU1QA2gWR0CeADETg2qDdX2UKGgGaAloD0MIrwj+t5LIYUCUhpRSlGgVTegDaBZHQJ4Ae+6Ae7t1fZQoaAZoCWgPQwiUg9kEGDZwQJSGlFKUaBVNfQJoFkdAngEsABDG+HV9lChoBmgJaA9DCOLkfocidmZAlIaUUpRoFU3oA2gWR0CeBKCT2WY4dX2UKGgGaAloD0MINpIE4Yo/cUCUhpRSlGgVTWcDaBZHQJ4E+MQ2/BZ1fZQoaAZoCWgPQwgi/mFLj0YkQJSGlFKUaBVLymgWR0CeBQL+glF+dX2UKGgGaAloD0MIn6pCA/F3cECUhpRSlGgVTaQBaBZHQJ4HQG3WnTB1fZQoaAZoCWgPQwjPEfkupVpuQJSGlFKUaBVNqQJoFkdAngeGHxjJ+3V9lChoBmgJaA9DCHFXryJjM3BAlIaUUpRoFU02AWgWR0CeCl0Qsf7rdX2UKGgGaAloD0MIr13acBiicUCUhpRSlGgVTWoDaBZHQJ4LM1KoQ4F1fZQoaAZoCWgPQwiRtvEnKk5kQJSGlFKUaBVN6ANoFkdAng6+WOZLI3V9lChoBmgJaA9DCJbpl4g3FHFAlIaUUpRoFU1gAWgWR0CeDytihFmWdX2UKGgGaAloD0MIiCr8GV7gcECUhpRSlGgVTZoBaBZHQJ4Pat+1Bt11fZQoaAZoCWgPQwjF5XgFIphuQJSGlFKUaBVN/AJoFkdAnhBEZWJaaHV9lChoBmgJaA9DCMMPzqcOoWtAlIaUUpRoFU17AWgWR0CeEIFnIyTIdX2UKGgGaAloD0MIWpwxzInLbUCUhpRSlGgVTfYBaBZHQJ4RdRgqmTF1fZQoaAZoCWgPQwiPGD230M5wQJSGlFKUaBVNtgFoFkdAnhM0sOG0u3V9lChoBmgJaA9DCBPThVj9nG1AlIaUUpRoFU19AWgWR0CeFDznzQNTdX2UKGgGaAloD0MIhbLw9XWHcECUhpRSlGgVTWQBaBZHQJ4Yoqd6LO11fZQoaAZoCWgPQwhXJZF9EA5xQJSGlFKUaBVNEwFoFkdAnhm9IbwSanV9lChoBmgJaA9DCDfDDfh8/2VAlIaUUpRoFU3oA2gWR0CeG7UvPC2udX2UKGgGaAloD0MIWdqpuVxzYECUhpRSlGgVTegDaBZHQJ4cLtJFspJ1fZQoaAZoCWgPQwiFmbZ/pTNxQJSGlFKUaBVNfQFoFkdAniBqUNayKXV9lChoBmgJaA9DCJKXNbHA0HFAlIaUUpRoFU34AWgWR0CeJR/iYLLIdX2UKGgGaAloD0MIUKc8uhHlUECUhpRSlGgVS8toFkdAniWAzYVZcXV9lChoBmgJaA9DCCNqos/HXnFAlIaUUpRoFU3+AmgWR0CeKJYaYNRWdX2UKGgGaAloD0MIgUI9fUQicECUhpRSlGgVTfIBaBZHQJ4p++UQkHF1fZQoaAZoCWgPQwhkdavnpBFsQJSGlFKUaBVNbAFoFkdAnj4dW6shgXV9lChoBmgJaA9DCI523PC7s3BAlIaUUpRoFU1LAmgWR0CePuUH6dlNdX2UKGgGaAloD0MIm1lLAeltckCUhpRSlGgVTcwDaBZHQJ5CWJhvze51fZQoaAZoCWgPQwgNiXssfbVvQJSGlFKUaBVNQgFoFkdAnkKpokAxSHV9lChoBmgJaA9DCBpuwOcH/WFAlIaUUpRoFU3oA2gWR0CeQ0J6po9LdX2UKGgGaAloD0MIR8mrc8wBc0CUhpRSlGgVTc4DaBZHQJ5EqZrpJPJ1fZQoaAZoCWgPQwiAft+/ObdwQJSGlFKUaBVNjwJoFkdAnkUE1yeZonV9lChoBmgJaA9DCOrOE8/ZC3JAlIaUUpRoFU0pAWgWR0CeRYM9r434dX2UKGgGaAloD0MIJxb4ii7dcECUhpRSlGgVTZoDaBZHQJ5Gcsz2vjh1fZQoaAZoCWgPQwhWR450BvVwQJSGlFKUaBVNFQFoFkdAnkh1JpWV/3V9lChoBmgJaA9DCLth26JMsHBAlIaUUpRoFU2sAWgWR0CeSsd/8VHndX2UKGgGaAloD0MIMe9xpskicUCUhpRSlGgVTXgBaBZHQJ5LSIrOJLx1fZQoaAZoCWgPQwjFWRE1EehxQJSGlFKUaBVNVAFoFkdAnkvgGr0aqHV9lChoBmgJaA9DCAQ91LZhBWFAlIaUUpRoFU3oA2gWR0CeTUNMoMKDdX2UKGgGaAloD0MImGw82GJCbkCUhpRSlGgVTScBaBZHQJ5N/ER8MNN1fZQoaAZoCWgPQwgdW88QDpJhQJSGlFKUaBVN6ANoFkdAnk5Lpu/DcnV9lChoBmgJaA9DCLFppRCIo3FAlIaUUpRoFU2QAWgWR0CeTsBMi8nNdX2UKGgGaAloD0MIxHsOLAdPcECUhpRSlGgVTV4DaBZHQJ5QtiuuA7R1fZQoaAZoCWgPQwgJibSNP01wQJSGlFKUaBVNTgFoFkdAnlEhBeHBUXV9lChoBmgJaA9DCAVu3c3Tu3BAlIaUUpRoFU0qAWgWR0CeU/jJ+2E1dX2UKGgGaAloD0MIuLHZkeq5bECUhpRSlGgVTaEBaBZHQJ5U933YcvN1fZQoaAZoCWgPQwi9yAT8mgBzQJSGlFKUaBVNlgFoFkdAnlUOEM9bHXV9lChoBmgJaA9DCEJ8YMe/xXBAlIaUUpRoFU2JA2gWR0CeVahLGrCFdX2UKGgGaAloD0MIS3hCr39DcECUhpRSlGgVTSsBaBZHQJ5WuJvYODt1fZQoaAZoCWgPQwiGN2vwvmpTQJSGlFKUaBVNBgFoFkdAnlgRSHdoFnV9lChoBmgJaA9DCB1YjpABBHBAlIaUUpRoFU3zAWgWR0CeWat0mtyQdX2UKGgGaAloD0MIfPFFezx7ckCUhpRSlGgVTZ0BaBZHQJ5ax2pyZKF1fZQoaAZoCWgPQwgbS1gb47htQJSGlFKUaBVNnwFoFkdAnlwPt6X0G3V9lChoBmgJaA9DCFyPwvWow29AlIaUUpRoFU2DAWgWR0CeXGxmkFfRdX2UKGgGaAloD0MIKEcBomCsb0CUhpRSlGgVTWwBaBZHQJ5dF5JK8L91fZQoaAZoCWgPQwht5/upcVByQJSGlFKUaBVN2AJoFkdAnl6jIeYD1XV9lChoBmgJaA9DCPtbAvDPOnBAlIaUUpRoFU2WAWgWR0CeYPknkT6BdX2UKGgGaAloD0MITrfsEH/BcUCUhpRSlGgVTSEBaBZHQJ5hNwJgLJF1fZQoaAZoCWgPQwj5SbVPRwpuQJSGlFKUaBVNlwFoFkdAnmYctK7I1nVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96ce09d9405a8d4a0b768405ed086842aae62cf1df50bea32062c3a44f32f3fd
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9ee473e425c8e7c96df30d5930be3e9e21d39ebf581098a97bb15ef7ed2b602
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.92565365089004, "std_reward": 15.23480222105578, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T14:17:01.388479"}