File size: 2,300 Bytes
afceb0a 449d2b2 afceb0a eaac3e8 afceb0a 418921c afceb0a d4e3c95 afceb0a 81f256c afceb0a 418921c afceb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: cc-by-4.0
library_name: f5-tts
datasets:
- SPRINGLab/IndicTTS-Hindi
- SPRINGLab/IndicVoices-R_Hindi
language:
- hi
pipeline_tag: text-to-speech
widget:
- text: "उसके दोस्त, प्रेमिकाएँ, और रिश्तेदार, उसे इसी नाम से बुलाते थे, और वो भी, अक्सर समझ जाता था, कि क्वैं उसी को संबोधित है"
output:
url: samples/output1.wav
- text: "इस बागीचे में, आप शुरू से अन्त तक घूम आइये, तो दुनिया भर की सुन्दर चीज़ों के साथ, एक अनन्यता महसूस करेंगें"
output:
url: samples/output2.wav
- text: "शिवगढ़ी गाँव, एक बड़ा गाँव था, और उसमेँ सबसे बड़ा मकान, पण्डित दुर्गाशङ्कर श्रीमुख का था"
output:
url: samples/output3.wav
---
# F5-TTS Hindi 24KHz Model
This is a Hindi Text-to-Speech model trained from scratch using the [F5 architecture](https://arxiv.org/abs/2410.06885).
# Details
- **Developed by:** SPRING Lab, Indian Institute of Technology, Madras
- **Language:** Hindi
- **License:** CC-BY-4.0
## Uses
The model was developed and is primarily intended for research purposes.
## How to Get Started with the Model
Clone the following github repo and refer to the README: https://github.com/rumourscape/F5-TTS
## Training Details
The model was trained on 8x A100 40GB GPUs for close to a week. We would like to thank [CDAC](https://cdac.in/) for providing the compute resources.
We used the "small" configuration(151M parameter) model for training according to the F5 paper.
### Training Data
We used the Hindi subsets of [IndicTTS](https://www.tsdconference.org/tsd2016/download/cbblr16-850.pdf) and [IndicVoices-R](https://arxiv.org/pdf/2409.05356) datasets for training this model.
<br>
- **IndicTTS-Hindi:** https://huggingface.co/datasets/SPRINGLab/IndicTTS-Hindi
<br>
- **IndicVoices-R_Hindi:** https://huggingface.co/datasets/SPRINGLab/IndicVoices-R_Hindi
|