metadata
library_name: peft
license: cc-by-4.0
datasets:
- SPRINGLab/shiksha
- SPRINGLab/BPCC_cleaned
language:
- bn
- gu
- hi
- mr
- ml
- kn
- ta
- te
- en
metrics:
- bleu
base_model:
- facebook/nllb-200-3.3B
pipeline_tag: translation
Shiksha MT Model Card
Model Details
1. Model Description
- Developed by: SPRING Lab
- Model type: LoRA Adaptor
- Language(s) (NLP): Bengali, Gujarati, Hindi, Marathi, Malayalam, Kannada, Tamil, Telugu
- License: CC-BY-4.0
- Finetuned from model: NLLB-200 3.3B
2. Model Sources
Uses
How to Get Started with the Model
Use the code below to get started with the model.
import torch
from peft import AutoPeftModelForSeq2SeqLM
from transformers import NllbTokenizerFast
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and tokenizer from local checkpoint
model = AutoPeftModelForSeq2SeqLM.from_pretrained("SPRINGLab/shiksha-MT-nllb-3.3B", device_map=device)
tokenizer = NllbTokenizerFast.from_pretrained("facebook/nllb-200-3.3B")
input_text = "Welcome back to the lecture series in Cell Culture."
# Lang codes: https://github.com/facebookresearch/flores/tree/main/flores200
tgt_lang = "hin_Deva"
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
output = model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=256, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
print(output_text[0])
Training Details
1. Training Data
We used the following datasets for training this adapter:
Shiksha: https://huggingface.co/datasets/SPRINGLab/shiksha
BPCC-cleaned: https://huggingface.co/datasets/SPRINGLab/BPCC_cleaned
2. Training Hyperparameters
- peft-type: LORA
- rank: 256
- lora alpha: 256
- lora dropout: 0.1
- rslora: True
- target modules: all-linear
- learning rate: 4e-5
- optimizer: adafactor
- data-type: BF-16
- epochs: 1
3. Compute Infrastructure
We used 8 x A100 40GB GPUs for training this adapter. We would like to thank CDAC for providing the compute resources.
Citation
If you use this model in your work, please cite us:
BibTeX:
@misc{joglekar2024shikshatechnicaldomainfocused,
title={Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages},
author={Advait Joglekar and Srinivasan Umesh},
year={2024},
eprint={2412.09025},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.09025},
}