Translation
PEFT
Safetensors
rumourscape commited on
Commit
e72ef39
1 Parent(s): d95606d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -157
README.md CHANGED
@@ -1,199 +1,120 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ library_name: peft
3
+ license: cc-by-4.0
4
+ datasets:
5
+ - SPRINGLab/shiksha
6
+ - SPRINGLab/BPCC_cleaned
7
+ language:
8
+ - bn
9
+ - gu
10
+ - hi
11
+ - mr
12
+ - ml
13
+ - kn
14
+ - ta
15
+ - te
16
+ - en
17
+ metrics:
18
+ - bleu
19
+ base_model:
20
+ - facebook/nllb-200-3.3B
21
+ pipeline_tag: translation
22
  ---
23
 
24
+ # Shiksha MT Model Card
 
 
 
 
25
 
26
  ## Model Details
27
 
28
+ ### 1. Model Description
 
 
29
 
30
+ - **Developed by:** [SPRING Lab](https://asr.iitm.ac.in)
31
+ - **Model type:** LoRA Adaptor
32
+ - **Language(s) (NLP):** Bengali, Gujarati, Hindi, Marathi, Malayalam, Kannada, Tamil, Telugu
33
+ - **License:** CC-BY-4.0
34
+ - **Finetuned from model:** [NLLB-200 3.3B](https://huggingface.co/facebook/nllb-200-3.3B)
35
 
36
+ ### 2. Model Sources
 
 
 
 
 
 
37
 
38
+ - **Paper:** https://arxiv.org/abs/2412.09025
39
+ - **Demo:** https://asr.iitm.ac.in/demo/ttt
 
 
 
 
 
40
 
41
  ## Uses
42
 
43
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## How to Get Started with the Model
47
 
48
  Use the code below to get started with the model.
49
 
50
+ ```python
51
+ import torch
52
+ from peft import AutoPeftModelForSeq2SeqLM
53
+ from transformers import NllbTokenizerFast
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ device = "cuda" if torch.cuda.is_available() else "cpu"
56
 
57
+ # Load model and tokenizer from local checkpoint
58
+ model = AutoPeftModelForSeq2SeqLM.from_pretrained("SPRINGLab/shiksha-MT-nllb-3.3B", device_map=device)
59
+ tokenizer = NllbTokenizerFast.from_pretrained("facebook/nllb-200-3.3B")
60
 
61
+ input_text = "Welcome back to the lecture series in Cell Culture."
62
 
63
+ # Lang codes: https://github.com/facebookresearch/flores/tree/main/flores200
64
+ tgt_lang = "hin_Deva"
65
 
66
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
67
 
68
+ output = model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=256, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang))
69
 
70
+ output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
71
 
72
+ print(output_text[0])
73
+ ```
74
 
 
75
 
76
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
+ ### 1. Training Data
79
 
80
+ We used the following datasets for training this adapter:
81
 
82
+ Shiksha: https://huggingface.co/datasets/SPRINGLab/shiksha
83
+ <br>
84
+ BPCC-cleaned: https://huggingface.co/datasets/SPRINGLab/BPCC_cleaned
85
 
 
86
 
87
+ #### 2. Training Hyperparameters
88
 
89
+ - peft-type: LORA
90
+ - rank: 256
91
+ - lora alpha: 256
92
+ - lora dropout: 0.1
93
+ - rslora: True
94
+ - target modules: all-linear
95
+ - learning rate: 4e-5
96
+ - optimizer: adafactor
97
+ - data-type: BF-16
98
+ - epochs: 1
99
 
 
100
 
101
+ ### 3. Compute Infrastructure
102
 
103
+ We used 8 x A100 40GB GPUs for training this adapter. We would like to thank [CDAC](https://cdac.in) for providing the compute resources.
104
 
105
+ ## Citation
106
 
107
+ If you use this model in your work, please cite us:
108
 
109
  **BibTeX:**
110
+ ```bibtex
111
+ @misc{joglekar2024shikshatechnicaldomainfocused,
112
+ title={Shiksha: A Technical Domain focused Translation Dataset and Model for Indian Languages},
113
+ author={Advait Joglekar and Srinivasan Umesh},
114
+ year={2024},
115
+ eprint={2412.09025},
116
+ archivePrefix={arXiv},
117
+ primaryClass={cs.CL},
118
+ url={https://arxiv.org/abs/2412.09025},
119
+ }
120
+ ```