leelandzhang commited on
Commit
26f2318
1 Parent(s): 5aa5b49

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SQAI/streetlight_sql_embedding
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:2161
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: longitude of streetlight
35
+ sentences:
36
+ - '"What is the recent status of the streetlight at the given longitude, considering
37
+ the current overload conditions?"'
38
+ - '"Has there been any recent failure in the metering components of the streetlights
39
+ affecting data reporting, and was the control mode switch identifier used for
40
+ the changes?"'
41
+ - '"Can you tell me when was the most recent instance when the current exceeded
42
+ the safe operating threshold, causing a streetlight failure?"'
43
+ - source_sentence: Ambient light level detected by the streetlight, measured in lux
44
+ sentences:
45
+ - '"What is the count of how many times the most recent streetlight failure has
46
+ been switched on before the error occurred?"'
47
+ - '"What is the recent data on maximum load current indicating potential risk and
48
+ any recent communication issues with the lux sensors?"'
49
+ - '"What is the recent dimming schedule applied, the detected ambient light level
50
+ in lux, and were there any recent issues or failures with the driver of the streetlight?"'
51
+ - source_sentence: Timestamp of the latest data recorded or action performed by the
52
+ streetlight
53
+ sentences:
54
+ - '"What is the recent failure rate of the relay responsible for operating the DALI
55
+ dimming protocol in our streetlights?"'
56
+ - '"Can you provide the recent instances where the current drawn by the streetlights
57
+ was lower than expected, sorted by the unique streetlight identifier and street
58
+ name?"'
59
+ - '"What was the most recent threshold level set to stop recording flickering events
60
+ using the SIM card code in the streetlight?"'
61
+ - source_sentence: Current exceeds the safe operating threshold for the streetlight
62
+ (failure)
63
+ sentences:
64
+ - '"What is the hardware version of the recent streetlight experiencing faults in
65
+ its lux module affecting light level sensing and control?"'
66
+ - '"Can you provide the recent instances where the current drawn by the streetlights
67
+ was lower than expected, sorted by the unique streetlight identifier and street
68
+ name?"'
69
+ - '"Can you identify the most recent instance when the power under load was higher
70
+ than normal, possibly indicating inefficiency or a fault, and concurrently, the
71
+ voltage exceeded the safe operating levels for the streetlights?"'
72
+ - source_sentence: Voltage supplied is below the safe operating level for the streetlight
73
+ (failure)
74
+ sentences:
75
+ - '"What is the recent AC voltage supply to the streetlight and the SIM card code
76
+ used for its cellular network communication?"'
77
+ - '"What was the most recent threshold level set to stop recording flickering events
78
+ using the SIM card code in the streetlight?"'
79
+ - '"What is the most recent internal temperature reading for the operating conditions
80
+ of the streetlight?"'
81
+ model-index:
82
+ - name: BGE base Financial Matryoshka
83
+ results:
84
+ - task:
85
+ type: information-retrieval
86
+ name: Information Retrieval
87
+ dataset:
88
+ name: dim 768
89
+ type: dim_768
90
+ metrics:
91
+ - type: cosine_accuracy@1
92
+ value: 0.004149377593360996
93
+ name: Cosine Accuracy@1
94
+ - type: cosine_accuracy@3
95
+ value: 0.02074688796680498
96
+ name: Cosine Accuracy@3
97
+ - type: cosine_accuracy@5
98
+ value: 0.04149377593360996
99
+ name: Cosine Accuracy@5
100
+ - type: cosine_accuracy@10
101
+ value: 0.06224066390041494
102
+ name: Cosine Accuracy@10
103
+ - type: cosine_precision@1
104
+ value: 0.004149377593360996
105
+ name: Cosine Precision@1
106
+ - type: cosine_precision@3
107
+ value: 0.006915629322268326
108
+ name: Cosine Precision@3
109
+ - type: cosine_precision@5
110
+ value: 0.008298755186721992
111
+ name: Cosine Precision@5
112
+ - type: cosine_precision@10
113
+ value: 0.006224066390041493
114
+ name: Cosine Precision@10
115
+ - type: cosine_recall@1
116
+ value: 0.004149377593360996
117
+ name: Cosine Recall@1
118
+ - type: cosine_recall@3
119
+ value: 0.02074688796680498
120
+ name: Cosine Recall@3
121
+ - type: cosine_recall@5
122
+ value: 0.04149377593360996
123
+ name: Cosine Recall@5
124
+ - type: cosine_recall@10
125
+ value: 0.06224066390041494
126
+ name: Cosine Recall@10
127
+ - type: cosine_ndcg@10
128
+ value: 0.028846821098581887
129
+ name: Cosine Ndcg@10
130
+ - type: cosine_mrr@10
131
+ value: 0.018665612856484225
132
+ name: Cosine Mrr@10
133
+ - type: cosine_map@100
134
+ value: 0.024320046307682447
135
+ name: Cosine Map@100
136
+ - task:
137
+ type: information-retrieval
138
+ name: Information Retrieval
139
+ dataset:
140
+ name: dim 512
141
+ type: dim_512
142
+ metrics:
143
+ - type: cosine_accuracy@1
144
+ value: 0.004149377593360996
145
+ name: Cosine Accuracy@1
146
+ - type: cosine_accuracy@3
147
+ value: 0.02074688796680498
148
+ name: Cosine Accuracy@3
149
+ - type: cosine_accuracy@5
150
+ value: 0.04149377593360996
151
+ name: Cosine Accuracy@5
152
+ - type: cosine_accuracy@10
153
+ value: 0.06224066390041494
154
+ name: Cosine Accuracy@10
155
+ - type: cosine_precision@1
156
+ value: 0.004149377593360996
157
+ name: Cosine Precision@1
158
+ - type: cosine_precision@3
159
+ value: 0.006915629322268326
160
+ name: Cosine Precision@3
161
+ - type: cosine_precision@5
162
+ value: 0.008298755186721992
163
+ name: Cosine Precision@5
164
+ - type: cosine_precision@10
165
+ value: 0.006224066390041493
166
+ name: Cosine Precision@10
167
+ - type: cosine_recall@1
168
+ value: 0.004149377593360996
169
+ name: Cosine Recall@1
170
+ - type: cosine_recall@3
171
+ value: 0.02074688796680498
172
+ name: Cosine Recall@3
173
+ - type: cosine_recall@5
174
+ value: 0.04149377593360996
175
+ name: Cosine Recall@5
176
+ - type: cosine_recall@10
177
+ value: 0.06224066390041494
178
+ name: Cosine Recall@10
179
+ - type: cosine_ndcg@10
180
+ value: 0.028846821098581887
181
+ name: Cosine Ndcg@10
182
+ - type: cosine_mrr@10
183
+ value: 0.018665612856484225
184
+ name: Cosine Mrr@10
185
+ - type: cosine_map@100
186
+ value: 0.024320046307682447
187
+ name: Cosine Map@100
188
+ - task:
189
+ type: information-retrieval
190
+ name: Information Retrieval
191
+ dataset:
192
+ name: dim 256
193
+ type: dim_256
194
+ metrics:
195
+ - type: cosine_accuracy@1
196
+ value: 0.008298755186721992
197
+ name: Cosine Accuracy@1
198
+ - type: cosine_accuracy@3
199
+ value: 0.02074688796680498
200
+ name: Cosine Accuracy@3
201
+ - type: cosine_accuracy@5
202
+ value: 0.04149377593360996
203
+ name: Cosine Accuracy@5
204
+ - type: cosine_accuracy@10
205
+ value: 0.058091286307053944
206
+ name: Cosine Accuracy@10
207
+ - type: cosine_precision@1
208
+ value: 0.008298755186721992
209
+ name: Cosine Precision@1
210
+ - type: cosine_precision@3
211
+ value: 0.006915629322268326
212
+ name: Cosine Precision@3
213
+ - type: cosine_precision@5
214
+ value: 0.008298755186721992
215
+ name: Cosine Precision@5
216
+ - type: cosine_precision@10
217
+ value: 0.0058091286307053935
218
+ name: Cosine Precision@10
219
+ - type: cosine_recall@1
220
+ value: 0.008298755186721992
221
+ name: Cosine Recall@1
222
+ - type: cosine_recall@3
223
+ value: 0.02074688796680498
224
+ name: Cosine Recall@3
225
+ - type: cosine_recall@5
226
+ value: 0.04149377593360996
227
+ name: Cosine Recall@5
228
+ - type: cosine_recall@10
229
+ value: 0.058091286307053944
230
+ name: Cosine Recall@10
231
+ - type: cosine_ndcg@10
232
+ value: 0.02917470145123319
233
+ name: Cosine Ndcg@10
234
+ - type: cosine_mrr@10
235
+ value: 0.020424158598432458
236
+ name: Cosine Mrr@10
237
+ - type: cosine_map@100
238
+ value: 0.02622693528356527
239
+ name: Cosine Map@100
240
+ - task:
241
+ type: information-retrieval
242
+ name: Information Retrieval
243
+ dataset:
244
+ name: dim 128
245
+ type: dim_128
246
+ metrics:
247
+ - type: cosine_accuracy@1
248
+ value: 0.008298755186721992
249
+ name: Cosine Accuracy@1
250
+ - type: cosine_accuracy@3
251
+ value: 0.02074688796680498
252
+ name: Cosine Accuracy@3
253
+ - type: cosine_accuracy@5
254
+ value: 0.03734439834024896
255
+ name: Cosine Accuracy@5
256
+ - type: cosine_accuracy@10
257
+ value: 0.05394190871369295
258
+ name: Cosine Accuracy@10
259
+ - type: cosine_precision@1
260
+ value: 0.008298755186721992
261
+ name: Cosine Precision@1
262
+ - type: cosine_precision@3
263
+ value: 0.006915629322268326
264
+ name: Cosine Precision@3
265
+ - type: cosine_precision@5
266
+ value: 0.007468879668049794
267
+ name: Cosine Precision@5
268
+ - type: cosine_precision@10
269
+ value: 0.005394190871369295
270
+ name: Cosine Precision@10
271
+ - type: cosine_recall@1
272
+ value: 0.008298755186721992
273
+ name: Cosine Recall@1
274
+ - type: cosine_recall@3
275
+ value: 0.02074688796680498
276
+ name: Cosine Recall@3
277
+ - type: cosine_recall@5
278
+ value: 0.03734439834024896
279
+ name: Cosine Recall@5
280
+ - type: cosine_recall@10
281
+ value: 0.05394190871369295
282
+ name: Cosine Recall@10
283
+ - type: cosine_ndcg@10
284
+ value: 0.027438863848135625
285
+ name: Cosine Ndcg@10
286
+ - type: cosine_mrr@10
287
+ value: 0.019311071593229267
288
+ name: Cosine Mrr@10
289
+ - type: cosine_map@100
290
+ value: 0.02603525046406888
291
+ name: Cosine Map@100
292
+ - task:
293
+ type: information-retrieval
294
+ name: Information Retrieval
295
+ dataset:
296
+ name: dim 64
297
+ type: dim_64
298
+ metrics:
299
+ - type: cosine_accuracy@1
300
+ value: 0.008298755186721992
301
+ name: Cosine Accuracy@1
302
+ - type: cosine_accuracy@3
303
+ value: 0.012448132780082987
304
+ name: Cosine Accuracy@3
305
+ - type: cosine_accuracy@5
306
+ value: 0.029045643153526972
307
+ name: Cosine Accuracy@5
308
+ - type: cosine_accuracy@10
309
+ value: 0.05394190871369295
310
+ name: Cosine Accuracy@10
311
+ - type: cosine_precision@1
312
+ value: 0.008298755186721992
313
+ name: Cosine Precision@1
314
+ - type: cosine_precision@3
315
+ value: 0.004149377593360996
316
+ name: Cosine Precision@3
317
+ - type: cosine_precision@5
318
+ value: 0.005809128630705394
319
+ name: Cosine Precision@5
320
+ - type: cosine_precision@10
321
+ value: 0.005394190871369295
322
+ name: Cosine Precision@10
323
+ - type: cosine_recall@1
324
+ value: 0.008298755186721992
325
+ name: Cosine Recall@1
326
+ - type: cosine_recall@3
327
+ value: 0.012448132780082987
328
+ name: Cosine Recall@3
329
+ - type: cosine_recall@5
330
+ value: 0.029045643153526972
331
+ name: Cosine Recall@5
332
+ - type: cosine_recall@10
333
+ value: 0.05394190871369295
334
+ name: Cosine Recall@10
335
+ - type: cosine_ndcg@10
336
+ value: 0.025512460997908278
337
+ name: Cosine Ndcg@10
338
+ - type: cosine_mrr@10
339
+ value: 0.017038793387341104
340
+ name: Cosine Mrr@10
341
+ - type: cosine_map@100
342
+ value: 0.02259750227693111
343
+ name: Cosine Map@100
344
+ ---
345
+
346
+ # BGE base Financial Matryoshka
347
+
348
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [SQAI/streetlight_sql_embedding](https://huggingface.co/SQAI/streetlight_sql_embedding). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
349
+
350
+ ## Model Details
351
+
352
+ ### Model Description
353
+ - **Model Type:** Sentence Transformer
354
+ - **Base model:** [SQAI/streetlight_sql_embedding](https://huggingface.co/SQAI/streetlight_sql_embedding) <!-- at revision de1e1a4c2afb3f9040c5f19953077d9fca76ae90 -->
355
+ - **Maximum Sequence Length:** 512 tokens
356
+ - **Output Dimensionality:** 384 tokens
357
+ - **Similarity Function:** Cosine Similarity
358
+ <!-- - **Training Dataset:** Unknown -->
359
+ - **Language:** en
360
+ - **License:** apache-2.0
361
+
362
+ ### Model Sources
363
+
364
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
365
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
366
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
367
+
368
+ ### Full Model Architecture
369
+
370
+ ```
371
+ SentenceTransformer(
372
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
373
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
374
+ (2): Normalize()
375
+ )
376
+ ```
377
+
378
+ ## Usage
379
+
380
+ ### Direct Usage (Sentence Transformers)
381
+
382
+ First install the Sentence Transformers library:
383
+
384
+ ```bash
385
+ pip install -U sentence-transformers
386
+ ```
387
+
388
+ Then you can load this model and run inference.
389
+ ```python
390
+ from sentence_transformers import SentenceTransformer
391
+
392
+ # Download from the 🤗 Hub
393
+ model = SentenceTransformer("SQAI/streetlight_sql_embedding2")
394
+ # Run inference
395
+ sentences = [
396
+ 'Voltage supplied is below the safe operating level for the streetlight (failure)',
397
+ '"What is the recent AC voltage supply to the streetlight and the SIM card code used for its cellular network communication?"',
398
+ '"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?"',
399
+ ]
400
+ embeddings = model.encode(sentences)
401
+ print(embeddings.shape)
402
+ # [3, 384]
403
+
404
+ # Get the similarity scores for the embeddings
405
+ similarities = model.similarity(embeddings, embeddings)
406
+ print(similarities.shape)
407
+ # [3, 3]
408
+ ```
409
+
410
+ <!--
411
+ ### Direct Usage (Transformers)
412
+
413
+ <details><summary>Click to see the direct usage in Transformers</summary>
414
+
415
+ </details>
416
+ -->
417
+
418
+ <!--
419
+ ### Downstream Usage (Sentence Transformers)
420
+
421
+ You can finetune this model on your own dataset.
422
+
423
+ <details><summary>Click to expand</summary>
424
+
425
+ </details>
426
+ -->
427
+
428
+ <!--
429
+ ### Out-of-Scope Use
430
+
431
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
432
+ -->
433
+
434
+ ## Evaluation
435
+
436
+ ### Metrics
437
+
438
+ #### Information Retrieval
439
+ * Dataset: `dim_768`
440
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
441
+
442
+ | Metric | Value |
443
+ |:--------------------|:-----------|
444
+ | cosine_accuracy@1 | 0.0041 |
445
+ | cosine_accuracy@3 | 0.0207 |
446
+ | cosine_accuracy@5 | 0.0415 |
447
+ | cosine_accuracy@10 | 0.0622 |
448
+ | cosine_precision@1 | 0.0041 |
449
+ | cosine_precision@3 | 0.0069 |
450
+ | cosine_precision@5 | 0.0083 |
451
+ | cosine_precision@10 | 0.0062 |
452
+ | cosine_recall@1 | 0.0041 |
453
+ | cosine_recall@3 | 0.0207 |
454
+ | cosine_recall@5 | 0.0415 |
455
+ | cosine_recall@10 | 0.0622 |
456
+ | cosine_ndcg@10 | 0.0288 |
457
+ | cosine_mrr@10 | 0.0187 |
458
+ | **cosine_map@100** | **0.0243** |
459
+
460
+ #### Information Retrieval
461
+ * Dataset: `dim_512`
462
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
463
+
464
+ | Metric | Value |
465
+ |:--------------------|:-----------|
466
+ | cosine_accuracy@1 | 0.0041 |
467
+ | cosine_accuracy@3 | 0.0207 |
468
+ | cosine_accuracy@5 | 0.0415 |
469
+ | cosine_accuracy@10 | 0.0622 |
470
+ | cosine_precision@1 | 0.0041 |
471
+ | cosine_precision@3 | 0.0069 |
472
+ | cosine_precision@5 | 0.0083 |
473
+ | cosine_precision@10 | 0.0062 |
474
+ | cosine_recall@1 | 0.0041 |
475
+ | cosine_recall@3 | 0.0207 |
476
+ | cosine_recall@5 | 0.0415 |
477
+ | cosine_recall@10 | 0.0622 |
478
+ | cosine_ndcg@10 | 0.0288 |
479
+ | cosine_mrr@10 | 0.0187 |
480
+ | **cosine_map@100** | **0.0243** |
481
+
482
+ #### Information Retrieval
483
+ * Dataset: `dim_256`
484
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
485
+
486
+ | Metric | Value |
487
+ |:--------------------|:-----------|
488
+ | cosine_accuracy@1 | 0.0083 |
489
+ | cosine_accuracy@3 | 0.0207 |
490
+ | cosine_accuracy@5 | 0.0415 |
491
+ | cosine_accuracy@10 | 0.0581 |
492
+ | cosine_precision@1 | 0.0083 |
493
+ | cosine_precision@3 | 0.0069 |
494
+ | cosine_precision@5 | 0.0083 |
495
+ | cosine_precision@10 | 0.0058 |
496
+ | cosine_recall@1 | 0.0083 |
497
+ | cosine_recall@3 | 0.0207 |
498
+ | cosine_recall@5 | 0.0415 |
499
+ | cosine_recall@10 | 0.0581 |
500
+ | cosine_ndcg@10 | 0.0292 |
501
+ | cosine_mrr@10 | 0.0204 |
502
+ | **cosine_map@100** | **0.0262** |
503
+
504
+ #### Information Retrieval
505
+ * Dataset: `dim_128`
506
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
507
+
508
+ | Metric | Value |
509
+ |:--------------------|:----------|
510
+ | cosine_accuracy@1 | 0.0083 |
511
+ | cosine_accuracy@3 | 0.0207 |
512
+ | cosine_accuracy@5 | 0.0373 |
513
+ | cosine_accuracy@10 | 0.0539 |
514
+ | cosine_precision@1 | 0.0083 |
515
+ | cosine_precision@3 | 0.0069 |
516
+ | cosine_precision@5 | 0.0075 |
517
+ | cosine_precision@10 | 0.0054 |
518
+ | cosine_recall@1 | 0.0083 |
519
+ | cosine_recall@3 | 0.0207 |
520
+ | cosine_recall@5 | 0.0373 |
521
+ | cosine_recall@10 | 0.0539 |
522
+ | cosine_ndcg@10 | 0.0274 |
523
+ | cosine_mrr@10 | 0.0193 |
524
+ | **cosine_map@100** | **0.026** |
525
+
526
+ #### Information Retrieval
527
+ * Dataset: `dim_64`
528
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
529
+
530
+ | Metric | Value |
531
+ |:--------------------|:-----------|
532
+ | cosine_accuracy@1 | 0.0083 |
533
+ | cosine_accuracy@3 | 0.0124 |
534
+ | cosine_accuracy@5 | 0.029 |
535
+ | cosine_accuracy@10 | 0.0539 |
536
+ | cosine_precision@1 | 0.0083 |
537
+ | cosine_precision@3 | 0.0041 |
538
+ | cosine_precision@5 | 0.0058 |
539
+ | cosine_precision@10 | 0.0054 |
540
+ | cosine_recall@1 | 0.0083 |
541
+ | cosine_recall@3 | 0.0124 |
542
+ | cosine_recall@5 | 0.029 |
543
+ | cosine_recall@10 | 0.0539 |
544
+ | cosine_ndcg@10 | 0.0255 |
545
+ | cosine_mrr@10 | 0.017 |
546
+ | **cosine_map@100** | **0.0226** |
547
+
548
+ <!--
549
+ ## Bias, Risks and Limitations
550
+
551
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
552
+ -->
553
+
554
+ <!--
555
+ ### Recommendations
556
+
557
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
558
+ -->
559
+
560
+ ## Training Details
561
+
562
+ ### Training Dataset
563
+
564
+ #### Unnamed Dataset
565
+
566
+
567
+ * Size: 2,161 training samples
568
+ * Columns: <code>positive</code> and <code>anchor</code>
569
+ * Approximate statistics based on the first 1000 samples:
570
+ | | positive | anchor |
571
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
572
+ | type | string | string |
573
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.3 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 32.58 tokens</li><li>max: 54 tokens</li></ul> |
574
+ * Samples:
575
+ | positive | anchor |
576
+ |:-----------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
577
+ | <code>Lower lux level below which additional lighting may be necessary</code> | <code>"What are the recent faults found in the lux module that affect light level control, in relation to the default dimming level of the streetlights and the control mode switch identifier used for changing settings?"</code> |
578
+ | <code>Current dimming level of the streetlight in operation</code> | <code>"Can the operator managing the streetlights provide the most recent update on the streetlight that is currently below the expected range and unable to connect to the network for remote management?"</code> |
579
+ | <code>Upper voltage limit considered safe and efficient for streetlight operation</code> | <code>"Can you provide any recent potential failures of a streetlight group due to unusually high voltage under load or intermittent flashing, within the southernmost geographic area?"</code> |
580
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
581
+ ```json
582
+ {
583
+ "loss": "MultipleNegativesRankingLoss",
584
+ "matryoshka_dims": [
585
+ 384,
586
+ 256,
587
+ 128,
588
+ 64
589
+ ],
590
+ "matryoshka_weights": [
591
+ 1,
592
+ 1,
593
+ 1,
594
+ 1
595
+ ],
596
+ "n_dims_per_step": -1
597
+ }
598
+ ```
599
+
600
+ ### Evaluation Dataset
601
+
602
+ #### Unnamed Dataset
603
+
604
+
605
+ * Size: 241 evaluation samples
606
+ * Columns: <code>positive</code> and <code>anchor</code>
607
+ * Approximate statistics based on the first 1000 samples:
608
+ | | positive | anchor |
609
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
610
+ | type | string | string |
611
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.31 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 31.03 tokens</li><li>max: 54 tokens</li></ul> |
612
+ * Samples:
613
+ | positive | anchor |
614
+ |:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|
615
+ | <code>Timestamp of the latest data recorded or action performed by the streetlight</code> | <code>"What was the most recent threshold level set to stop recording flickering events using the SIM card code in the streetlight?"</code> |
616
+ | <code>Maximum longitude of the geographic area covered by the group of streetlights</code> | <code>"What is the recent power usage in watts for the oldest streetlight on the street with maximum longitude?"</code> |
617
+ | <code>Current dimming level of the streetlight in operation</code> | <code>"What is the most recent dimming level of the streetlight?"</code> |
618
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
619
+ ```json
620
+ {
621
+ "loss": "MultipleNegativesRankingLoss",
622
+ "matryoshka_dims": [
623
+ 384,
624
+ 256,
625
+ 128,
626
+ 64
627
+ ],
628
+ "matryoshka_weights": [
629
+ 1,
630
+ 1,
631
+ 1,
632
+ 1
633
+ ],
634
+ "n_dims_per_step": -1
635
+ }
636
+ ```
637
+
638
+ ### Training Hyperparameters
639
+ #### Non-Default Hyperparameters
640
+
641
+ - `eval_strategy`: epoch
642
+ - `per_device_train_batch_size`: 32
643
+ - `per_device_eval_batch_size`: 16
644
+ - `gradient_accumulation_steps`: 16
645
+ - `learning_rate`: 1e-05
646
+ - `weight_decay`: 0.03
647
+ - `num_train_epochs`: 75
648
+ - `lr_scheduler_type`: cosine
649
+ - `warmup_ratio`: 0.2
650
+ - `bf16`: True
651
+ - `tf32`: True
652
+ - `load_best_model_at_end`: True
653
+ - `optim`: adamw_torch_fused
654
+ - `batch_sampler`: no_duplicates
655
+
656
+ #### All Hyperparameters
657
+ <details><summary>Click to expand</summary>
658
+
659
+ - `overwrite_output_dir`: False
660
+ - `do_predict`: False
661
+ - `eval_strategy`: epoch
662
+ - `prediction_loss_only`: True
663
+ - `per_device_train_batch_size`: 32
664
+ - `per_device_eval_batch_size`: 16
665
+ - `per_gpu_train_batch_size`: None
666
+ - `per_gpu_eval_batch_size`: None
667
+ - `gradient_accumulation_steps`: 16
668
+ - `eval_accumulation_steps`: None
669
+ - `learning_rate`: 1e-05
670
+ - `weight_decay`: 0.03
671
+ - `adam_beta1`: 0.9
672
+ - `adam_beta2`: 0.999
673
+ - `adam_epsilon`: 1e-08
674
+ - `max_grad_norm`: 1.0
675
+ - `num_train_epochs`: 75
676
+ - `max_steps`: -1
677
+ - `lr_scheduler_type`: cosine
678
+ - `lr_scheduler_kwargs`: {}
679
+ - `warmup_ratio`: 0.2
680
+ - `warmup_steps`: 0
681
+ - `log_level`: passive
682
+ - `log_level_replica`: warning
683
+ - `log_on_each_node`: True
684
+ - `logging_nan_inf_filter`: True
685
+ - `save_safetensors`: True
686
+ - `save_on_each_node`: False
687
+ - `save_only_model`: False
688
+ - `restore_callback_states_from_checkpoint`: False
689
+ - `no_cuda`: False
690
+ - `use_cpu`: False
691
+ - `use_mps_device`: False
692
+ - `seed`: 42
693
+ - `data_seed`: None
694
+ - `jit_mode_eval`: False
695
+ - `use_ipex`: False
696
+ - `bf16`: True
697
+ - `fp16`: False
698
+ - `fp16_opt_level`: O1
699
+ - `half_precision_backend`: auto
700
+ - `bf16_full_eval`: False
701
+ - `fp16_full_eval`: False
702
+ - `tf32`: True
703
+ - `local_rank`: 0
704
+ - `ddp_backend`: None
705
+ - `tpu_num_cores`: None
706
+ - `tpu_metrics_debug`: False
707
+ - `debug`: []
708
+ - `dataloader_drop_last`: False
709
+ - `dataloader_num_workers`: 0
710
+ - `dataloader_prefetch_factor`: None
711
+ - `past_index`: -1
712
+ - `disable_tqdm`: False
713
+ - `remove_unused_columns`: True
714
+ - `label_names`: None
715
+ - `load_best_model_at_end`: True
716
+ - `ignore_data_skip`: False
717
+ - `fsdp`: []
718
+ - `fsdp_min_num_params`: 0
719
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
720
+ - `fsdp_transformer_layer_cls_to_wrap`: None
721
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
722
+ - `deepspeed`: None
723
+ - `label_smoothing_factor`: 0.0
724
+ - `optim`: adamw_torch_fused
725
+ - `optim_args`: None
726
+ - `adafactor`: False
727
+ - `group_by_length`: False
728
+ - `length_column_name`: length
729
+ - `ddp_find_unused_parameters`: None
730
+ - `ddp_bucket_cap_mb`: None
731
+ - `ddp_broadcast_buffers`: False
732
+ - `dataloader_pin_memory`: True
733
+ - `dataloader_persistent_workers`: False
734
+ - `skip_memory_metrics`: True
735
+ - `use_legacy_prediction_loop`: False
736
+ - `push_to_hub`: False
737
+ - `resume_from_checkpoint`: None
738
+ - `hub_model_id`: None
739
+ - `hub_strategy`: every_save
740
+ - `hub_private_repo`: False
741
+ - `hub_always_push`: False
742
+ - `gradient_checkpointing`: False
743
+ - `gradient_checkpointing_kwargs`: None
744
+ - `include_inputs_for_metrics`: False
745
+ - `eval_do_concat_batches`: True
746
+ - `fp16_backend`: auto
747
+ - `push_to_hub_model_id`: None
748
+ - `push_to_hub_organization`: None
749
+ - `mp_parameters`:
750
+ - `auto_find_batch_size`: False
751
+ - `full_determinism`: False
752
+ - `torchdynamo`: None
753
+ - `ray_scope`: last
754
+ - `ddp_timeout`: 1800
755
+ - `torch_compile`: False
756
+ - `torch_compile_backend`: None
757
+ - `torch_compile_mode`: None
758
+ - `dispatch_batches`: None
759
+ - `split_batches`: None
760
+ - `include_tokens_per_second`: False
761
+ - `include_num_input_tokens_seen`: False
762
+ - `neftune_noise_alpha`: None
763
+ - `optim_target_modules`: None
764
+ - `batch_eval_metrics`: False
765
+ - `batch_sampler`: no_duplicates
766
+ - `multi_dataset_batch_sampler`: proportional
767
+
768
+ </details>
769
+
770
+ ### Training Logs
771
+ <details><summary>Click to expand</summary>
772
+
773
+ | Epoch | Step | Training Loss | loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
774
+ |:-----------:|:-------:|:-------------:|:----------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
775
+ | 0.2353 | 1 | 11.247 | - | - | - | - | - | - |
776
+ | 0.4706 | 2 | 11.4455 | - | - | - | - | - | - |
777
+ | 0.7059 | 3 | 11.5154 | - | - | - | - | - | - |
778
+ | 0.9412 | 4 | 10.4079 | - | - | - | - | - | - |
779
+ | 1.1765 | 5 | 3.3256 | - | - | - | - | - | - |
780
+ | 1.4118 | 6 | 3.812 | - | - | - | - | - | - |
781
+ | 1.6471 | 7 | 4.0302 | - | - | - | - | - | - |
782
+ | 1.8824 | 8 | 3.5832 | - | - | - | - | - | - |
783
+ | 2.1176 | 9 | 3.9586 | - | - | - | - | - | - |
784
+ | 2.3529 | 10 | 4.2835 | - | - | - | - | - | - |
785
+ | 2.5882 | 11 | 1.6391 | 6.0237 | 0.0254 | 0.0354 | 0.0318 | 0.0230 | 0.0318 |
786
+ | 1.0294 | 12 | 1.3873 | - | - | - | - | - | - |
787
+ | 1.2647 | 13 | 11.1729 | - | - | - | - | - | - |
788
+ | 1.5 | 14 | 11.1729 | - | - | - | - | - | - |
789
+ | 1.7353 | 15 | 11.3334 | - | - | - | - | - | - |
790
+ | 1.9706 | 16 | 9.1337 | - | - | - | - | - | - |
791
+ | 2.2059 | 17 | 2.8674 | - | - | - | - | - | - |
792
+ | 2.4412 | 18 | 3.9162 | - | - | - | - | - | - |
793
+ | 2.6765 | 19 | 3.3378 | - | - | - | - | - | - |
794
+ | 2.9118 | 20 | 3.5152 | - | - | - | - | - | - |
795
+ | 3.1471 | 21 | 3.1655 | - | - | - | - | - | - |
796
+ | 3.3824 | 22 | 3.5905 | - | - | - | - | - | - |
797
+ | 3.6176 | 23 | 1.2027 | 5.5383 | 0.0265 | 0.0304 | 0.0291 | 0.0235 | 0.0291 |
798
+ | 2.0588 | 24 | 2.5902 | - | - | - | - | - | - |
799
+ | 2.2941 | 25 | 10.8776 | - | - | - | - | - | - |
800
+ | 2.5294 | 26 | 10.7109 | - | - | - | - | - | - |
801
+ | 2.7647 | 27 | 10.9662 | - | - | - | - | - | - |
802
+ | 3.0 | 28 | 7.5032 | - | - | - | - | - | - |
803
+ | 3.2353 | 29 | 1.9266 | - | - | - | - | - | - |
804
+ | 3.4706 | 30 | 2.5007 | - | - | - | - | - | - |
805
+ | 3.7059 | 31 | 2.2972 | - | - | - | - | - | - |
806
+ | 3.9412 | 32 | 2.3428 | - | - | - | - | - | - |
807
+ | 4.1765 | 33 | 2.4842 | - | - | - | - | - | - |
808
+ | 4.4118 | 34 | 2.371 | - | - | - | - | - | - |
809
+ | 4.6471 | 35 | 0.8811 | 5.0896 | 0.0261 | 0.0356 | 0.0324 | 0.0263 | 0.0324 |
810
+ | 3.0882 | 36 | 3.8163 | - | - | - | - | - | - |
811
+ | 3.3235 | 37 | 10.3601 | - | - | - | - | - | - |
812
+ | 3.5588 | 38 | 9.8085 | - | - | - | - | - | - |
813
+ | 3.7941 | 39 | 10.3201 | - | - | - | - | - | - |
814
+ | 4.0294 | 40 | 5.7213 | - | - | - | - | - | - |
815
+ | 4.2647 | 41 | 1.0641 | - | - | - | - | - | - |
816
+ | 4.5 | 42 | 1.7557 | - | - | - | - | - | - |
817
+ | 4.7353 | 43 | 1.534 | - | - | - | - | - | - |
818
+ | 4.9706 | 44 | 1.2931 | - | - | - | - | - | - |
819
+ | 5.2059 | 45 | 2.0569 | - | - | - | - | - | - |
820
+ | 5.4412 | 46 | 1.6945 | - | - | - | - | - | - |
821
+ | 5.6765 | 47 | 0.6985 | 4.8110 | 0.0267 | 0.0230 | 0.0343 | 0.0180 | 0.0343 |
822
+ | 4.1176 | 48 | 4.8862 | - | - | - | - | - | - |
823
+ | 4.3529 | 49 | 9.9427 | - | - | - | - | - | - |
824
+ | 4.5882 | 50 | 9.7492 | - | - | - | - | - | - |
825
+ | 4.8235 | 51 | 10.1616 | - | - | - | - | - | - |
826
+ | 5.0588 | 52 | 4.3073 | - | - | - | - | - | - |
827
+ | 5.2941 | 53 | 0.9089 | - | - | - | - | - | - |
828
+ | 5.5294 | 54 | 1.2689 | - | - | - | - | - | - |
829
+ | 5.7647 | 55 | 1.2875 | - | - | - | - | - | - |
830
+ | 6.0 | 56 | 1.2756 | - | - | - | - | - | - |
831
+ | 6.2353 | 57 | 1.6222 | - | - | - | - | - | - |
832
+ | 6.4706 | 58 | 1.3049 | - | - | - | - | - | - |
833
+ | 6.7059 | 59 | 0.3305 | 4.6562 | 0.0184 | 0.0327 | 0.0288 | 0.0190 | 0.0288 |
834
+ | 5.1471 | 60 | 5.7286 | - | - | - | - | - | - |
835
+ | 5.3824 | 61 | 9.7399 | - | - | - | - | - | - |
836
+ | 5.6176 | 62 | 9.3036 | - | - | - | - | - | - |
837
+ | 5.8529 | 63 | 9.6674 | - | - | - | - | - | - |
838
+ | 6.0882 | 64 | 2.7979 | - | - | - | - | - | - |
839
+ | 6.3235 | 65 | 0.4978 | - | - | - | - | - | - |
840
+ | 6.5588 | 66 | 1.8006 | - | - | - | - | - | - |
841
+ | 6.7941 | 67 | 1.098 | - | - | - | - | - | - |
842
+ | 7.0294 | 68 | 1.3678 | - | - | - | - | - | - |
843
+ | 7.2647 | 69 | 1.4648 | - | - | - | - | - | - |
844
+ | 7.5 | 70 | 1.1826 | - | - | - | - | - | - |
845
+ | 7.7353 | 71 | 0.0624 | 4.5802 | 0.0200 | 0.0208 | 0.0216 | 0.0231 | 0.0216 |
846
+ | 6.1765 | 72 | 6.8322 | - | - | - | - | - | - |
847
+ | 6.4118 | 73 | 9.3021 | - | - | - | - | - | - |
848
+ | 6.6471 | 74 | 9.1494 | - | - | - | - | - | - |
849
+ | 6.8824 | 75 | 9.631 | - | - | - | - | - | - |
850
+ | 7.1176 | 76 | 1.661 | - | - | - | - | - | - |
851
+ | 7.3529 | 77 | 0.2353 | - | - | - | - | - | - |
852
+ | 7.5882 | 78 | 1.0663 | - | - | - | - | - | - |
853
+ | 7.8235 | 79 | 0.6836 | - | - | - | - | - | - |
854
+ | 8.0588 | 80 | 0.9921 | - | - | - | - | - | - |
855
+ | 8.2941 | 81 | 1.6479 | - | - | - | - | - | - |
856
+ | 8.5294 | 82 | 0.6713 | - | - | - | - | - | - |
857
+ | 8.7647 | 83 | 0.0 | 4.5499 | 0.0209 | 0.0233 | 0.0249 | 0.0226 | 0.0249 |
858
+ | 7.2059 | 84 | 7.775 | - | - | - | - | - | - |
859
+ | 7.4412 | 85 | 9.0508 | - | - | - | - | - | - |
860
+ | 7.6765 | 86 | 9.1417 | - | - | - | - | - | - |
861
+ | 7.9118 | 87 | 8.9087 | - | - | - | - | - | - |
862
+ | 8.1471 | 88 | 0.9757 | - | - | - | - | - | - |
863
+ | 8.3824 | 89 | 0.7521 | - | - | - | - | - | - |
864
+ | 8.6176 | 90 | 0.7292 | - | - | - | - | - | - |
865
+ | 8.8529 | 91 | 0.6088 | - | - | - | - | - | - |
866
+ | 9.0882 | 92 | 0.9514 | - | - | - | - | - | - |
867
+ | 9.3235 | 93 | 1.435 | - | - | - | - | - | - |
868
+ | 9.5588 | 94 | 0.3655 | - | - | - | - | - | - |
869
+ | 9.7941 | 95 | 0.0 | 4.5162 | 0.0245 | 0.0268 | 0.0224 | 0.0238 | 0.0224 |
870
+ | 8.2353 | 96 | 8.7854 | - | - | - | - | - | - |
871
+ | 8.4706 | 97 | 9.0167 | - | - | - | - | - | - |
872
+ | 8.7059 | 98 | 9.0405 | - | - | - | - | - | - |
873
+ | 8.9412 | 99 | 7.7069 | - | - | - | - | - | - |
874
+ | 9.1765 | 100 | 0.6267 | - | - | - | - | - | - |
875
+ | 9.4118 | 101 | 0.4043 | - | - | - | - | - | - |
876
+ | 9.6471 | 102 | 0.7028 | - | - | - | - | - | - |
877
+ | 9.8824 | 103 | 0.751 | - | - | - | - | - | - |
878
+ | 10.1176 | 104 | 0.5994 | - | - | - | - | - | - |
879
+ | 10.3529 | 105 | 1.0402 | - | - | - | - | - | - |
880
+ | 10.5882 | 106 | 0.3983 | 4.4860 | 0.0259 | 0.0301 | 0.0252 | 0.0265 | 0.0252 |
881
+ | 9.0294 | 107 | 1.1037 | - | - | - | - | - | - |
882
+ | 9.2647 | 108 | 8.6263 | - | - | - | - | - | - |
883
+ | 9.5 | 109 | 8.9359 | - | - | - | - | - | - |
884
+ | 9.7353 | 110 | 8.9879 | - | - | - | - | - | - |
885
+ | 9.9706 | 111 | 6.4932 | - | - | - | - | - | - |
886
+ | 10.2059 | 112 | 0.3904 | - | - | - | - | - | - |
887
+ | 10.4412 | 113 | 0.3544 | - | - | - | - | - | - |
888
+ | 10.6765 | 114 | 0.5658 | - | - | - | - | - | - |
889
+ | 10.9118 | 115 | 0.5884 | - | - | - | - | - | - |
890
+ | 11.1471 | 116 | 0.4828 | - | - | - | - | - | - |
891
+ | 11.3824 | 117 | 0.8872 | - | - | - | - | - | - |
892
+ | 11.6176 | 118 | 0.2906 | 4.4899 | 0.0237 | 0.0267 | 0.0264 | 0.0242 | 0.0264 |
893
+ | 10.0588 | 119 | 2.1398 | - | - | - | - | - | - |
894
+ | 10.2941 | 120 | 8.6036 | - | - | - | - | - | - |
895
+ | 10.5294 | 121 | 8.7739 | - | - | - | - | - | - |
896
+ | 10.7647 | 122 | 9.1481 | - | - | - | - | - | - |
897
+ | 11.0 | 123 | 5.2436 | - | - | - | - | - | - |
898
+ | 11.2353 | 124 | 0.2435 | - | - | - | - | - | - |
899
+ | 11.4706 | 125 | 0.4451 | - | - | - | - | - | - |
900
+ | 11.7059 | 126 | 0.4338 | - | - | - | - | - | - |
901
+ | 11.9412 | 127 | 0.5156 | - | - | - | - | - | - |
902
+ | 12.1765 | 128 | 0.7081 | - | - | - | - | - | - |
903
+ | 12.4118 | 129 | 0.375 | - | - | - | - | - | - |
904
+ | **12.6471** | **130** | **0.1906** | **4.5243** | **0.0305** | **0.0253** | **0.0217** | **0.0214** | **0.0217** |
905
+ | 11.0882 | 131 | 3.115 | - | - | - | - | - | - |
906
+ | 11.3235 | 132 | 8.702 | - | - | - | - | - | - |
907
+ | 11.5588 | 133 | 8.4872 | - | - | - | - | - | - |
908
+ | 11.7941 | 134 | 9.0143 | - | - | - | - | - | - |
909
+ | 12.0294 | 135 | 4.2374 | - | - | - | - | - | - |
910
+ | 12.2647 | 136 | 0.1979 | - | - | - | - | - | - |
911
+ | 12.5 | 137 | 0.6371 | - | - | - | - | - | - |
912
+ | 12.7353 | 138 | 0.5763 | - | - | - | - | - | - |
913
+ | 12.9706 | 139 | 0.5716 | - | - | - | - | - | - |
914
+ | 13.2059 | 140 | 0.9894 | - | - | - | - | - | - |
915
+ | 13.4412 | 141 | 0.3963 | - | - | - | - | - | - |
916
+ | 13.6765 | 142 | 0.084 | 4.5514 | 0.0224 | 0.0253 | 0.0209 | 0.0250 | 0.0209 |
917
+ | 12.1176 | 143 | 4.1455 | - | - | - | - | - | - |
918
+ | 12.3529 | 144 | 8.6664 | - | - | - | - | - | - |
919
+ | 12.5882 | 145 | 8.5896 | - | - | - | - | - | - |
920
+ | 12.8235 | 146 | 8.9639 | - | - | - | - | - | - |
921
+ | 13.0588 | 147 | 3.2692 | - | - | - | - | - | - |
922
+ | 13.2941 | 148 | 0.2518 | - | - | - | - | - | - |
923
+ | 13.5294 | 149 | 0.8313 | - | - | - | - | - | - |
924
+ | 13.7647 | 150 | 0.5592 | - | - | - | - | - | - |
925
+ | 14.0 | 151 | 0.3966 | - | - | - | - | - | - |
926
+ | 14.2353 | 152 | 0.829 | - | - | - | - | - | - |
927
+ | 14.4706 | 153 | 0.2369 | - | - | - | - | - | - |
928
+ | 14.7059 | 154 | 0.0629 | 4.5549 | 0.0294 | 0.0312 | 0.0258 | 0.0315 | 0.0258 |
929
+ | 13.1471 | 155 | 5.1674 | - | - | - | - | - | - |
930
+ | 13.3824 | 156 | 8.5543 | - | - | - | - | - | - |
931
+ | 13.6176 | 157 | 8.4481 | - | - | - | - | - | - |
932
+ | 13.8529 | 158 | 8.7815 | - | - | - | - | - | - |
933
+ | 14.0882 | 159 | 1.9305 | - | - | - | - | - | - |
934
+ | 14.3235 | 160 | 0.0925 | - | - | - | - | - | - |
935
+ | 14.5588 | 161 | 0.6568 | - | - | - | - | - | - |
936
+ | 14.7941 | 162 | 0.2796 | - | - | - | - | - | - |
937
+ | 15.0294 | 163 | 0.5503 | - | - | - | - | - | - |
938
+ | 15.2647 | 164 | 0.6386 | - | - | - | - | - | - |
939
+ | 15.5 | 165 | 0.1957 | - | - | - | - | - | - |
940
+ | 15.7353 | 166 | 0.0137 | 4.5688 | 0.0210 | 0.0251 | 0.0251 | 0.0223 | 0.0251 |
941
+ | 14.1765 | 167 | 6.2283 | - | - | - | - | - | - |
942
+ | 14.4118 | 168 | 8.5378 | - | - | - | - | - | - |
943
+ | 14.6471 | 169 | 8.5173 | - | - | - | - | - | - |
944
+ | 14.8824 | 170 | 8.9953 | - | - | - | - | - | - |
945
+ | 15.1176 | 171 | 0.983 | - | - | - | - | - | - |
946
+ | 15.3529 | 172 | 0.1503 | - | - | - | - | - | - |
947
+ | 15.5882 | 173 | 0.9004 | - | - | - | - | - | - |
948
+ | 15.8235 | 174 | 0.3962 | - | - | - | - | - | - |
949
+ | 16.0588 | 175 | 0.4047 | - | - | - | - | - | - |
950
+ | 16.2941 | 176 | 0.8265 | - | - | - | - | - | - |
951
+ | 16.5294 | 177 | 0.3069 | - | - | - | - | - | - |
952
+ | 16.7647 | 178 | 0.0 | 4.5819 | 0.0219 | 0.0271 | 0.0240 | 0.0253 | 0.0240 |
953
+ | 15.2059 | 179 | 7.3186 | - | - | - | - | - | - |
954
+ | 15.4412 | 180 | 8.5984 | - | - | - | - | - | - |
955
+ | 15.6765 | 181 | 8.5362 | - | - | - | - | - | - |
956
+ | 15.9118 | 182 | 8.2934 | - | - | - | - | - | - |
957
+ | 16.1471 | 183 | 0.437 | - | - | - | - | - | - |
958
+ | 16.3824 | 184 | 0.1864 | - | - | - | - | - | - |
959
+ | 16.6176 | 185 | 0.2657 | - | - | - | - | - | - |
960
+ | 16.8529 | 186 | 0.4242 | - | - | - | - | - | - |
961
+ | 17.0882 | 187 | 0.4815 | - | - | - | - | - | - |
962
+ | 17.3235 | 188 | 0.5206 | - | - | - | - | - | - |
963
+ | 17.5588 | 189 | 0.1981 | - | - | - | - | - | - |
964
+ | 17.7941 | 190 | 0.0 | 4.5795 | 0.0249 | 0.0319 | 0.0287 | 0.0227 | 0.0287 |
965
+ | 16.2353 | 191 | 8.2837 | - | - | - | - | - | - |
966
+ | 16.4706 | 192 | 8.5457 | - | - | - | - | - | - |
967
+ | 16.7059 | 193 | 8.6284 | - | - | - | - | - | - |
968
+ | 16.9412 | 194 | 7.1806 | - | - | - | - | - | - |
969
+ | 17.1765 | 195 | 0.2714 | - | - | - | - | - | - |
970
+ | 17.4118 | 196 | 0.65 | - | - | - | - | - | - |
971
+ | 17.6471 | 197 | 0.3627 | - | - | - | - | - | - |
972
+ | 17.8824 | 198 | 0.2502 | - | - | - | - | - | - |
973
+ | 18.1176 | 199 | 0.4651 | - | - | - | - | - | - |
974
+ | 18.3529 | 200 | 0.3878 | - | - | - | - | - | - |
975
+ | 18.5882 | 201 | 0.1728 | 4.5870 | 0.0258 | 0.0321 | 0.0293 | 0.0290 | 0.0293 |
976
+ | 17.0294 | 202 | 1.0158 | - | - | - | - | - | - |
977
+ | 17.2647 | 203 | 8.1391 | - | - | - | - | - | - |
978
+ | 17.5 | 204 | 8.5323 | - | - | - | - | - | - |
979
+ | 17.7353 | 205 | 8.6644 | - | - | - | - | - | - |
980
+ | 17.9706 | 206 | 6.1161 | - | - | - | - | - | - |
981
+ | 18.2059 | 207 | 0.4636 | - | - | - | - | - | - |
982
+ | 18.4412 | 208 | 0.8765 | - | - | - | - | - | - |
983
+ | 18.6765 | 209 | 0.4075 | - | - | - | - | - | - |
984
+ | 18.9118 | 210 | 0.3211 | - | - | - | - | - | - |
985
+ | 19.1471 | 211 | 0.65 | - | - | - | - | - | - |
986
+ | 19.3824 | 212 | 0.4802 | - | - | - | - | - | - |
987
+ | 19.6176 | 213 | 0.0777 | 4.5921 | 0.0211 | 0.0268 | 0.0238 | 0.0260 | 0.0238 |
988
+ | 18.0588 | 214 | 1.9364 | - | - | - | - | - | - |
989
+ | 18.2941 | 215 | 8.3079 | - | - | - | - | - | - |
990
+ | 18.5294 | 216 | 8.4468 | - | - | - | - | - | - |
991
+ | 18.7647 | 217 | 8.8501 | - | - | - | - | - | - |
992
+ | 19.0 | 218 | 5.0076 | - | - | - | - | - | - |
993
+ | 19.2353 | 219 | 0.1596 | - | - | - | - | - | - |
994
+ | 19.4706 | 220 | 0.6482 | - | - | - | - | - | - |
995
+ | 19.7059 | 221 | 0.5019 | - | - | - | - | - | - |
996
+ | 19.9412 | 222 | 0.2596 | - | - | - | - | - | - |
997
+ | 20.1765 | 223 | 0.5857 | - | - | - | - | - | - |
998
+ | 20.4118 | 224 | 0.3469 | - | - | - | - | - | - |
999
+ | 20.6471 | 225 | 0.082 | 4.5951 | 0.0251 | 0.0293 | 0.0239 | 0.0259 | 0.0239 |
1000
+ | 19.0882 | 226 | 3.0141 | - | - | - | - | - | - |
1001
+ | 19.3235 | 227 | 8.3977 | - | - | - | - | - | - |
1002
+ | 19.5588 | 228 | 8.2687 | - | - | - | - | - | - |
1003
+ | 19.7941 | 229 | 8.8415 | - | - | - | - | - | - |
1004
+ | 20.0294 | 230 | 3.9692 | - | - | - | - | - | - |
1005
+ | 20.2647 | 231 | 0.2079 | - | - | - | - | - | - |
1006
+ | 20.5 | 232 | 0.6167 | - | - | - | - | - | - |
1007
+ | 20.7353 | 233 | 0.255 | - | - | - | - | - | - |
1008
+ | 20.9706 | 234 | 0.2403 | - | - | - | - | - | - |
1009
+ | 21.2059 | 235 | 0.5944 | - | - | - | - | - | - |
1010
+ | 21.4412 | 236 | 0.4212 | - | - | - | - | - | - |
1011
+ | 21.6765 | 237 | 0.1031 | 4.5929 | 0.0248 | 0.0301 | 0.0297 | 0.0268 | 0.0297 |
1012
+ | 20.1176 | 238 | 4.0698 | - | - | - | - | - | - |
1013
+ | 20.3529 | 239 | 8.3696 | - | - | - | - | - | - |
1014
+ | 20.5882 | 240 | 8.2668 | - | - | - | - | - | - |
1015
+ | 20.8235 | 241 | 8.8194 | - | - | - | - | - | - |
1016
+ | 21.0588 | 242 | 2.9283 | - | - | - | - | - | - |
1017
+ | 21.2941 | 243 | 0.0974 | - | - | - | - | - | - |
1018
+ | 21.5294 | 244 | 0.5172 | - | - | - | - | - | - |
1019
+ | 21.7647 | 245 | 0.2451 | - | - | - | - | - | - |
1020
+ | 22.0 | 246 | 0.4693 | - | - | - | - | - | - |
1021
+ | 22.2353 | 247 | 0.7352 | - | - | - | - | - | - |
1022
+ | 22.4706 | 248 | 0.1933 | - | - | - | - | - | - |
1023
+ | 22.7059 | 249 | 0.0552 | 4.5945 | 0.0261 | 0.0275 | 0.0279 | 0.0204 | 0.0279 |
1024
+ | 21.1471 | 250 | 5.1237 | - | - | - | - | - | - |
1025
+ | 21.3824 | 251 | 8.5068 | - | - | - | - | - | - |
1026
+ | 21.6176 | 252 | 8.2828 | - | - | - | - | - | - |
1027
+ | 21.8529 | 253 | 8.7851 | - | - | - | - | - | - |
1028
+ | 22.0882 | 254 | 2.0883 | - | - | - | - | - | - |
1029
+ | 22.3235 | 255 | 0.1147 | - | - | - | - | - | - |
1030
+ | 22.5588 | 256 | 0.5259 | - | - | - | - | - | - |
1031
+ | 22.7941 | 257 | 0.2915 | - | - | - | - | - | - |
1032
+ | 23.0294 | 258 | 0.2495 | - | - | - | - | - | - |
1033
+ | 23.2647 | 259 | 0.7518 | - | - | - | - | - | - |
1034
+ | 23.5 | 260 | 0.1767 | - | - | - | - | - | - |
1035
+ | 23.7353 | 261 | 0.0244 | 4.5944 | 0.0213 | 0.0267 | 0.0265 | 0.0220 | 0.0265 |
1036
+ | 22.1765 | 262 | 6.1144 | - | - | - | - | - | - |
1037
+ | 22.4118 | 263 | 8.3334 | - | - | - | - | - | - |
1038
+ | 22.6471 | 264 | 8.4377 | - | - | - | - | - | - |
1039
+ | 22.8824 | 265 | 8.8182 | - | - | - | - | - | - |
1040
+ | 23.1176 | 266 | 0.8795 | - | - | - | - | - | - |
1041
+ | 23.3529 | 267 | 0.0637 | - | - | - | - | - | - |
1042
+ | 23.5882 | 268 | 0.3658 | - | - | - | - | - | - |
1043
+ | 23.8235 | 269 | 0.3599 | - | - | - | - | - | - |
1044
+ | 24.0588 | 270 | 0.283 | - | - | - | - | - | - |
1045
+ | 24.2941 | 271 | 0.731 | - | - | - | - | - | - |
1046
+ | 24.5294 | 272 | 0.1758 | - | - | - | - | - | - |
1047
+ | 24.7647 | 273 | 0.0 | 4.5963 | 0.0259 | 0.0295 | 0.0247 | 0.0229 | 0.0247 |
1048
+ | 23.2059 | 274 | 7.1188 | - | - | - | - | - | - |
1049
+ | 23.4412 | 275 | 8.354 | - | - | - | - | - | - |
1050
+ | 23.6765 | 276 | 8.5186 | - | - | - | - | - | - |
1051
+ | 23.9118 | 277 | 8.1633 | - | - | - | - | - | - |
1052
+ | 24.1471 | 278 | 0.3481 | - | - | - | - | - | - |
1053
+ | 24.3824 | 279 | 0.574 | - | - | - | - | - | - |
1054
+ | 24.6176 | 280 | 0.2784 | - | - | - | - | - | - |
1055
+ | 24.8529 | 281 | 0.251 | - | - | - | - | - | - |
1056
+ | 25.0882 | 282 | 0.4093 | - | - | - | - | - | - |
1057
+ | 25.3235 | 283 | 0.5414 | - | - | - | - | - | - |
1058
+ | 25.5588 | 284 | 0.149 | - | - | - | - | - | - |
1059
+ | 25.7941 | 285 | 0.0 | 4.5965 | 0.0223 | 0.0251 | 0.0240 | 0.0204 | 0.0240 |
1060
+ | 24.2353 | 286 | 8.2498 | - | - | - | - | - | - |
1061
+ | 24.4706 | 287 | 8.4555 | - | - | - | - | - | - |
1062
+ | 24.7059 | 288 | 8.5368 | - | - | - | - | - | - |
1063
+ | 24.9412 | 289 | 7.1779 | - | - | - | - | - | - |
1064
+ | 25.1765 | 290 | 0.1486 | - | - | - | - | - | - |
1065
+ | 25.4118 | 291 | 0.9156 | - | - | - | - | - | - |
1066
+ | 25.6471 | 292 | 0.2757 | - | - | - | - | - | - |
1067
+ | 25.8824 | 293 | 0.237 | - | - | - | - | - | - |
1068
+ | 26.1176 | 294 | 0.2979 | - | - | - | - | - | - |
1069
+ | 26.3529 | 295 | 0.5296 | - | - | - | - | - | - |
1070
+ | 26.5882 | 296 | 0.2062 | 4.5949 | 0.0259 | 0.0327 | 0.0308 | 0.0247 | 0.0308 |
1071
+ | 25.0294 | 297 | 1.0355 | - | - | - | - | - | - |
1072
+ | 25.2647 | 298 | 8.1721 | - | - | - | - | - | - |
1073
+ | 25.5 | 299 | 8.4028 | - | - | - | - | - | - |
1074
+ | 25.7353 | 300 | 8.5989 | 4.5941 | 0.0260 | 0.0262 | 0.0243 | 0.0226 | 0.0243 |
1075
+
1076
+ * The bold row denotes the saved checkpoint.
1077
+ </details>
1078
+
1079
+ ### Framework Versions
1080
+ - Python: 3.10.12
1081
+ - Sentence Transformers: 3.0.1
1082
+ - Transformers: 4.41.2
1083
+ - PyTorch: 2.1.2+cu121
1084
+ - Accelerate: 0.32.0
1085
+ - Datasets: 2.19.1
1086
+ - Tokenizers: 0.19.1
1087
+
1088
+ ## Citation
1089
+
1090
+ ### BibTeX
1091
+
1092
+ #### Sentence Transformers
1093
+ ```bibtex
1094
+ @inproceedings{reimers-2019-sentence-bert,
1095
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1096
+ author = "Reimers, Nils and Gurevych, Iryna",
1097
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1098
+ month = "11",
1099
+ year = "2019",
1100
+ publisher = "Association for Computational Linguistics",
1101
+ url = "https://arxiv.org/abs/1908.10084",
1102
+ }
1103
+ ```
1104
+
1105
+ #### MatryoshkaLoss
1106
+ ```bibtex
1107
+ @misc{kusupati2024matryoshka,
1108
+ title={Matryoshka Representation Learning},
1109
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1110
+ year={2024},
1111
+ eprint={2205.13147},
1112
+ archivePrefix={arXiv},
1113
+ primaryClass={cs.LG}
1114
+ }
1115
+ ```
1116
+
1117
+ #### MultipleNegativesRankingLoss
1118
+ ```bibtex
1119
+ @misc{henderson2017efficient,
1120
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1121
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1122
+ year={2017},
1123
+ eprint={1705.00652},
1124
+ archivePrefix={arXiv},
1125
+ primaryClass={cs.CL}
1126
+ }
1127
+ ```
1128
+
1129
+ <!--
1130
+ ## Glossary
1131
+
1132
+ *Clearly define terms in order to be accessible across audiences.*
1133
+ -->
1134
+
1135
+ <!--
1136
+ ## Model Card Authors
1137
+
1138
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1139
+ -->
1140
+
1141
+ <!--
1142
+ ## Model Card Contact
1143
+
1144
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1145
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "SQAI/streetlight_sql_embedding",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.41.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:375e48034291bdc2482ef71a351f6733576f236f302709329fd0a4b1965ebab3
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff