Create app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
+
import torch
|
3 |
+
from typing import Dict, List
|
4 |
+
import os
|
5 |
+
|
6 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
7 |
+
|
8 |
+
# Initialize model and tokenizer with GPU settings
|
9 |
+
def load_model():
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
model_id,
|
13 |
+
device_map="auto",
|
14 |
+
torch_dtype=torch.bfloat16,
|
15 |
+
trust_remote_code=True
|
16 |
+
)
|
17 |
+
model.eval()
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
# Load model and tokenizer globally
|
21 |
+
model, tokenizer = load_model()
|
22 |
+
|
23 |
+
def generate(prompt: str,
|
24 |
+
max_new_tokens: int = 500,
|
25 |
+
temperature: float = 0.7,
|
26 |
+
top_p: float = 0.95,
|
27 |
+
top_k: int = 50) -> Dict:
|
28 |
+
|
29 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
30 |
+
|
31 |
+
# Move inputs to GPU
|
32 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
33 |
+
|
34 |
+
outputs = model.generate(
|
35 |
+
**inputs,
|
36 |
+
max_new_tokens=max_new_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
top_p=top_p,
|
39 |
+
top_k=top_k,
|
40 |
+
pad_token_id=tokenizer.pad_token_id,
|
41 |
+
eos_token_id=tokenizer.eos_token_id,
|
42 |
+
)
|
43 |
+
|
44 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
return {"generated_text": response}
|
46 |
+
|
47 |
+
def inference(inputs: Dict) -> Dict:
|
48 |
+
prompt = inputs.get("inputs", "")
|
49 |
+
params = inputs.get("parameters", {})
|
50 |
+
|
51 |
+
max_new_tokens = params.get("max_new_tokens", 500)
|
52 |
+
temperature = params.get("temperature", 0.7)
|
53 |
+
top_p = params.get("top_p", 0.95)
|
54 |
+
top_k = params.get("top_k", 50)
|
55 |
+
|
56 |
+
return generate(
|
57 |
+
prompt,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
temperature=temperature,
|
60 |
+
top_p=top_p,
|
61 |
+
top_k=top_k
|
62 |
+
)
|