update handler.py as part of debug
Browse filesResolving generate() error about duplicate pad_token_id suggests we're passing it twice - once in default_params and once explicitly.
- handler.py +13 -18
handler.py
CHANGED
@@ -25,12 +25,6 @@ class EndpointHandler:
|
|
25 |
}
|
26 |
|
27 |
def __call__(self, data: Dict):
|
28 |
-
"""
|
29 |
-
Args:
|
30 |
-
data: Dictionary with either string input or structured messages
|
31 |
-
Returns:
|
32 |
-
Generated text
|
33 |
-
"""
|
34 |
try:
|
35 |
# Handle input
|
36 |
if isinstance(data.get("inputs"), str):
|
@@ -41,19 +35,23 @@ class EndpointHandler:
|
|
41 |
if not messages:
|
42 |
return {"error": "No messages provided"}
|
43 |
|
44 |
-
# Format input text
|
45 |
-
|
46 |
for msg in messages:
|
47 |
role = msg.get("role", "")
|
48 |
content = msg.get("content", "")
|
49 |
-
|
|
|
50 |
|
51 |
# Get generation parameters
|
52 |
params = {**self.default_params}
|
53 |
if "parameters" in data:
|
54 |
params.update(data["parameters"])
|
|
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
tokenizer_output = self.tokenizer(
|
58 |
input_text,
|
59 |
return_tensors="pt",
|
@@ -63,22 +61,19 @@ class EndpointHandler:
|
|
63 |
return_attention_mask=True
|
64 |
)
|
65 |
|
66 |
-
# Move tensors to the same device as the model
|
67 |
-
input_ids = tokenizer_output["input_ids"]
|
68 |
-
attention_mask = tokenizer_output["attention_mask"]
|
69 |
-
|
70 |
# Generate response
|
71 |
with torch.no_grad():
|
72 |
outputs = self.model.generate(
|
73 |
-
input_ids,
|
74 |
-
attention_mask=attention_mask,
|
75 |
-
pad_token_id=self.tokenizer.pad_token_id,
|
76 |
**params
|
77 |
)
|
78 |
|
79 |
-
# Decode response
|
80 |
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
|
|
|
82 |
return [{"generated_text": generated_text}]
|
83 |
|
84 |
except Exception as e:
|
|
|
25 |
}
|
26 |
|
27 |
def __call__(self, data: Dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
29 |
# Handle input
|
30 |
if isinstance(data.get("inputs"), str):
|
|
|
35 |
if not messages:
|
36 |
return {"error": "No messages provided"}
|
37 |
|
38 |
+
# Format input text as array
|
39 |
+
inputs = []
|
40 |
for msg in messages:
|
41 |
role = msg.get("role", "")
|
42 |
content = msg.get("content", "")
|
43 |
+
inputs.append(f"{role}: {content}")
|
44 |
+
input_text = "\n".join(inputs)
|
45 |
|
46 |
# Get generation parameters
|
47 |
params = {**self.default_params}
|
48 |
if "parameters" in data:
|
49 |
params.update(data["parameters"])
|
50 |
+
|
51 |
+
# Remove pad_token_id from params if it's going to be set explicitly
|
52 |
+
params.pop('pad_token_id', None)
|
53 |
|
54 |
+
# Tokenize input
|
55 |
tokenizer_output = self.tokenizer(
|
56 |
input_text,
|
57 |
return_tensors="pt",
|
|
|
61 |
return_attention_mask=True
|
62 |
)
|
63 |
|
|
|
|
|
|
|
|
|
64 |
# Generate response
|
65 |
with torch.no_grad():
|
66 |
outputs = self.model.generate(
|
67 |
+
tokenizer_output["input_ids"],
|
68 |
+
attention_mask=tokenizer_output["attention_mask"],
|
69 |
+
pad_token_id=self.tokenizer.pad_token_id, # Set it only here
|
70 |
**params
|
71 |
)
|
72 |
|
73 |
+
# Decode response and ensure array output
|
74 |
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
|
76 |
+
# Always return an array as required by the endpoint
|
77 |
return [{"generated_text": generated_text}]
|
78 |
|
79 |
except Exception as e:
|