--- base_model: - mistralai/Mistral-7B-Instruct-v0.2 pipeline_tag: text-generation --- #Introduction # SRED Analysis Model This model is fine-tuned for analyzing SRED (Scientific Research and Experimental Development) content, specifically for Box 242 analysis. ## Usage Example input format: ```json { "inputs": { "messages": [ { "role": "system", "content": "You are an expert SRED technical writer analyzing Box 242 content." }, { "role": "user", "content": "Analyze the following technological uncertainties..." } ] }, "parameters": { "temperature": 0.7, "max_length": 1000 } } #Getting Started ##Activate Virtual Environment python3 -m venv .venv source .venv/bin/activate pip install --upgrade pip # Ensure virtual environment is activated for pip install upgrade, otherwise there may be conflicts with your global environment #For M2 Silicon Apple Chip ##install in this exact order: pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu pip install transformers==4.34.0 pip install datasets==2.14.0 pip install accelerate==0.24.0 pip install bitsandbytes==0.41.1 pip install wandb==0.15.12 pip install sentencepiece==0.1.99 ##Finally install: pip install peft==0.4.0 #For non-MX chips ##install in this order: pip install transformers pip install datasets pip install accelerate pip install bitsandbytes pip install peft pip install wandb pip install torch pip install sentencepiece #For all users pip install scipy pip install easygui pip install numpy==1.24.3 pip install python-dotenv #Training setup To create and upload required files to Hugging Face, run: python setup_files.py To test your setup: run python test_setup.py You will need to connect to WandB via WanB CLI Update the .env file with your Hugging Face token, Hugging Face model name, and WandB token The file should automatically push to Hugging Face #Pushing just the model (no training) If you need to just push the model, you can use: python push_model.py