from typing import List, Dict from transformers import AutoModelForCausalLM, AutoTokenizer import torch class EndpointHandler: def __init__(self, path: str): # Load model and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.float32, # Use float32 for CPU device_map="auto" ) # Set up generation parameters self.default_params = { "max_length": 1000, "temperature": 0.7, "top_p": 0.7, "top_k": 50, "repetition_penalty": 1.0, "do_sample": True, "pad_token_id": self.tokenizer.pad_token_id, "eos_token_id": self.tokenizer.eos_token_id } def __call__(self, data: Dict): try: # Handle input if isinstance(data.get("inputs"), str): input_text = data["inputs"] else: input_text = data.get("inputs")[0] if isinstance(data.get("inputs"), list) else str(data.get("inputs")) # Print debug information print(f"Input text: {input_text}") # Tokenize with fixed dimensions tokenizer_output = self.tokenizer( input_text, padding='max_length', # Changed to max_length truncation=True, max_length=512, # Fixed length return_tensors="pt", return_attention_mask=True ) # Print tensor shapes for debugging print(f"Input ids shape: {tokenizer_output['input_ids'].shape}") print(f"Attention mask shape: {tokenizer_output['attention_mask'].shape}") # Generate response with torch.no_grad(): outputs = self.model.generate( tokenizer_output["input_ids"], attention_mask=tokenizer_output["attention_mask"], max_new_tokens=1024, pad_token_id=self.tokenizer.pad_token_id, do_sample=True, temperature=0.7, top_p=0.7, top_k=50 ) # Decode response generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": generated_text}] except Exception as e: print(f"Error in generation: {str(e)}") print(f"Model config: {self.model.config}") return {"error": str(e)} def preprocess(self, request): """ Prepare request for inference """ if request.content_type != "application/json": raise ValueError("Content type must be application/json") data = request.json return data def postprocess(self, data): """ Post-process model output """ return data