File size: 1,471 Bytes
1c2e8fa
 
 
 
4f62174
 
 
 
 
 
3b790ed
 
 
80d01d4
 
 
2536e0a
80d01d4
 
2536e0a
80d01d4
 
 
 
 
 
 
 
cd0f87b
80d01d4
 
 
 
 
2536e0a
80d01d4
2536e0a
 
 
80d01d4
 
351c0b8
80d01d4
2536e0a
80d01d4
 
 
 
cd0f87b
 
 
 
351c0b8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: other
license_name: stem.ai.mtl
license_link: LICENSE
language:
- en
tags:
- phi-2
- electrical engineering
- Microsoft
datasets:
- STEM-AI-mtl/Electrical-engineering
- garage-bAInd/Open-Platypus
---
# Model Card for Model ID

This is the adapters from the LoRa fine-tuning of the phi-2 model from Microsoft. It was trained on the Electrical-engineering dataset combined with garage-bAInd/Open-Platypus.

- **Developed by:** STEM.AI
- **Model type:** Q&A and code generation
- **Language(s) (NLP):** English
- **Finetuned from model [optional]:** microsoft/phi-2


### Direct Use

Q&A related to electrical engineering, and Kicad software. Creation of Python code in general, and for Kicad's scripting console.

Refer to microsoft/phi-2 model card for recommended prompt format.

## Training Details

### Training Data

Dataset related to electrical engineering: STEM-AI-mtl/Electrical-engineering

Combined with

Dataset related to STEM and NLP: garage-bAInd/Open-Platypus

### Training Procedure 
LoRa script:  https://github.com/STEM-ai/Phi-2/raw/4eaa6aaa2679427a810ace5a061b9c951942d66a/LoRa.py

A LoRa PEFT was performed on a 48 Gb A40 Nvidia GPU.

## Model Card Authors [optional]

STEM.AI: stem.ai.mtl@gmail.com
William Harbec

### Inference example

Standard: https://github.com/STEM-ai/Phi-2/raw/4eaa6aaa2679427a810ace5a061b9c951942d66a/chat.py

GPTQ format: https://github.com/STEM-ai/Phi-2/raw/ab1ced8d7922765344d824acf1924df99606b4fc/chat-GPTQ.py