File size: 4,454 Bytes
af5b802
6595fe5
af5b802
 
 
6595fe5
 
 
af5b802
 
 
 
 
 
7283cbe
 
af5b802
 
546d418
 
af5b802
 
 
 
 
546d418
af5b802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4820284
 
 
af5b802
 
 
 
 
 
 
0002cc1
 
 
 
 
2314f4e
af5b802
0002cc1
af5b802
 
 
 
 
 
6595fe5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
license: cc-by-nc-4.0
tags:
- vision
- video-classification
language:
- en
pipeline_tag: video-classification
---

# FAL - Framework For Automated Labeling Of Videos (FALVideoClassifier)

FAL (Framework for Automated Labeling Of Videos) is a custom video classification model developed by **SVECTOR** and fine-tuned on the **FAL-500** dataset. This model is designed for efficient video understanding and classification, leveraging state-of-the-art video processing techniques.

<img src="https://cdn-uploads.huggingface.co/production/uploads/6631e2b06d207536a4651738/Sf9tEMK8989JpQorvokT_.png" alt="Demo" width="560">

## Model Overview

This model, referred to as `FALVideoClassifier`, fine-tuned on **FAL-500** Dataset, and optimized for automated video labeling tasks. It is capable of classifying a video into one of the 5
00 possible labels from the FAL-500 dataset.

This model was developed by **SVECTOR** as part of our initiative to advance automated video understanding and classification technologies. 

## Intended Uses & Limitations

This model is designed for video classification tasks, and you can use it to classify videos into one of the 500 classes from the FAL-500 dataset. Please note that the model was trained on **FAL-500** and may not perform as well on datasets that significantly differ from this.

### Intended Use:
- Automated video labeling
- Video content classification
- Research in video understanding and machine learning

### Limitations:
- Only trained on FAL-500
- May not generalize well to out-of-domain videos without further fine-tuning
- Requires videos to be pre-processed (such as resizing frames, normalization, etc.)

## How to Use

To use this model for video classification, follow these steps:

### Installation:

Ensure you have the necessary dependencies installed:

```bash
pip install torch torchvision transformers
```

### Code Example:

Here is an example Python code snippet for using the FAL model to classify a video:

```python
from transformers import AutoImageProcessor, FALVideoClassifierForVideoClassification
import numpy as np
import torch

# Simulating a sample video (8 frames of size 224x224 with 3 color channels)
video = list(np.random.randn(8, 3, 224, 224))  # 8 frames, each of size 224x224 with RGB channels

# Load the image processor and model
processor = AutoImageProcessor.from_pretrained("SVECTOR-CORPORATION/FAL")
model = FALVideoClassifierForVideoClassification.from_pretrained("SVECTOR-CORPORATION/FAL")

# Pre-process the video input
inputs = processor(video, return_tensors="pt")

# Run inference with no gradient calculation (evaluation mode)
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits

# Find the predicted class (highest logit)
predicted_class_idx = logits.argmax(-1).item()

# Output the predicted label
print("Predicted class:", model.config.id2label[predicted_class_idx])
```

### Model Details:

- **Model Name**: `FALVideoClassifier`
- **Dataset Used**: FAL-S500
- **Input Size**: 8 frames of size 224x224 with 3 color channels (RGB)

### Configuration:

The `FALVideoClassifier` uses the following hyperparameters:

- `num_frames`: Number of frames in the video (e.g., 8)
- `num_labels`: The number of possible video classes (500 for FAL-500)
- `hidden_size`: Hidden size for transformer layers (768)
- `attention_probs_dropout_prob`: Dropout probability for attention layers (0.0)
- `hidden_dropout_prob`: Dropout probability for the hidden layers (0.0)
- `drop_path_rate`: Dropout rate for stochastic depth (0.0)

### Preprocessing:

Before feeding videos into the model, ensure the frames are properly pre-processed:

- Resize frames to `224x224`
- Normalize pixel values (use the processor from the model, as shown in the code)

## License

This project is licensed under the **SVECTOR Proprietary License**. Refer to the `LICENSE` file for more details.
--

This model is licensed under the **CC-BY-NC-4.0** license, which means it can be used for non-commercial purposes with proper attribution.

## Citation

If you use this model in your research or projects, please cite the following:

```bibtex
@misc{svector2024fal,
  title={FAL - Framework For Automated Labeling Of Videos (FALVideoClassifier)},
  author={SVECTOR},
  year={2024},
  url={https://www.svector.co.in},

}

```

## Contact

For any inquiries regarding this model or its implementation, you can contact the SVECTOR team at ai@svector.com.

---