davide221 commited on
Commit
97fb390
β€’
1 Parent(s): b2312cb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -9
README.md CHANGED
@@ -6,13 +6,13 @@ pipeline_tag: text-generation
6
 
7
  πŸ“ [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
8
 
9
- <center><img src="https://media.discordapp.net/attachments/1071900237414801528/1165927645469478942/mrciffa_A_cartoon_samurai_wearing_a_black_jacket_as_a_chemistry_d4c17e16-567a-41da-9e0e-2902e93def2c.png?ex=6548a1bc&is=65362cbc&hm=5721b5c15d8f97374212970a7d01f17923ef5015d385230b8ae5542fd2d0df21&=&width=1224&height=1224" width="300"></center>
10
 
11
- This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/Evol-Instruct-Python-1k`](https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-1k).
12
 
13
  ## πŸ”§ Training
14
 
15
- It was trained on an in 1h 11m 44s with the following configuration file:
16
 
17
  ```yaml
18
  base_model: codellama/CodeLlama-34b-hf
@@ -86,11 +86,15 @@ special_tokens:
86
  unk_token: "<unk>"
87
  ```
88
 
89
- Here are the loss curves:
90
 
91
- ![](https://i.imgur.com/zrBq01N.png)
92
 
93
- It is mainly designed for experimental purposes, not for inference.
 
 
 
 
94
 
95
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
96
 
@@ -103,8 +107,8 @@ from transformers import AutoTokenizer
103
  import transformers
104
  import torch
105
 
106
- model = "mlabonne/EvolCodeLlama-7b"
107
- prompt = "Your csharp request"
108
 
109
  tokenizer = AutoTokenizer.from_pretrained(model)
110
  pipeline = transformers.pipeline(
@@ -120,7 +124,7 @@ sequences = pipeline(
120
  top_k=10,
121
  num_return_sequences=1,
122
  eos_token_id=tokenizer.eos_token_id,
123
- max_length=1000,
124
  )
125
  for seq in sequences:
126
  print(f"Result: {seq['generated_text']}")
 
6
 
7
  πŸ“ [Article](https://www.safurai.com/blog/introducing-safurai-csharp)
8
 
9
+ <center><img src="https://i.imgur.com/REPqbYM.png" width="300"></center>
10
 
11
+ This is a [`codellama/CodeLlama-7b-hf`](https://huggingface.co/codellama/CodeLlama-7b-hf) model fine-tuned using QLoRA (4-bit precision)
12
 
13
  ## πŸ”§ Training
14
 
15
+ It was trained on 2 x NVIDIA A100 PCIe 80GB in 7h 40m with the following configuration file:
16
 
17
  ```yaml
18
  base_model: codellama/CodeLlama-34b-hf
 
86
  unk_token: "<unk>"
87
  ```
88
 
89
+ Training loss curve:
90
 
91
+ ![](https://i.imgur.com/rp1htuf.png)
92
 
93
+ Dataset composition:
94
+
95
+ ![](https://i.imgur.com/kTNXgGX.png)
96
+
97
+ It is mainly designed for experimental purposes.
98
 
99
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
100
 
 
107
  import transformers
108
  import torch
109
 
110
+ model = "Safurai/Evol-csharp-full"
111
+ prompt = "User: \n {your question} \n Assistant: "
112
 
113
  tokenizer = AutoTokenizer.from_pretrained(model)
114
  pipeline = transformers.pipeline(
 
124
  top_k=10,
125
  num_return_sequences=1,
126
  eos_token_id=tokenizer.eos_token_id,
127
+ max_length=1024,
128
  )
129
  for seq in sequences:
130
  print(f"Result: {seq['generated_text']}")