--- library_name: transformers language: - sr license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - espnet/yodas metrics: - wer model-index: - name: Whisper Large v3 Turbo Sr Test results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yodas type: espnet/yodas config: sr split: None args: sr metrics: - name: Wer type: wer value: 0.1377668019050979 --- # Whisper Large v3 Turbo Sr Test ### This model is in test phase DO NOT USE IT ... YET This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Yodas dataset. It achieves the following results on the evaluation set: - Loss: 0.1195 - Wer: 0.1378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.6455 | 0.2439 | 500 | 0.1869 | 0.1928 | | 0.5858 | 0.4878 | 1000 | 0.1694 | 0.1870 | | 0.5608 | 0.7317 | 1500 | 0.1507 | 0.1641 | | 0.4547 | 0.9756 | 2000 | 0.1388 | 0.1542 | | 0.3905 | 1.2195 | 2500 | 0.1341 | 0.1461 | | 0.3857 | 1.4634 | 3000 | 0.1291 | 0.1450 | | 0.3656 | 1.7073 | 3500 | 0.1243 | 0.1415 | | 0.3369 | 1.9512 | 4000 | 0.1195 | 0.1378 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.20.3