--- language: - sr license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 - google/fleurs metrics: - wer model-index: - name: Whisper Medium cmb results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.0658123370981755 --- # Update Use an updated fine tunned version [Sagicc/whisper-medium-sr-v2](https://huggingface.co/Sagicc/whisper-medium-sr-v2) with new 10+ hours of dataset. # Whisper Medium cmb This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1374 - Wer Ortho: 0.1589 - Wer: 0.0658 ## Model description This is a fine tunned on merged datasets Common Voice 13 + Fleurs + [Juzne vesti (South news)](http://hdl.handle.net/11356/1679) Rupnik, Peter and Ljubešić, Nikola, 2022,\ ASR training dataset for Serbian JuzneVesti-SR v1.0, Slovenian language resource repository CLARIN.SI, ISSN 2820-4042,\ http://hdl.handle.net/11356/1679. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.342 | 0.48 | 500 | 0.1604 | 0.1863 | 0.0862 | | 0.3454 | 0.95 | 1000 | 0.1388 | 0.1589 | 0.0667 | | 0.2247 | 1.43 | 1500 | 0.1374 | 0.1589 | 0.0658 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1