root
commited on
Commit
•
f7400ff
1
Parent(s):
ad4369b
added NER
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +813 -0
- weights.txt +0 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:275ec01b9b537e09b63e7772738dc771b0547883a2bcda0424d4098cf7eb8720
|
3 |
+
size 2256883501
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 00:30:30 4 0.0000 0.7202729176824617 0.20562097430229187 0.05 0.0014 0.0027 0.0014
|
3 |
+
2 00:32:15 4 0.0000 0.3212406154600784 0.15934991836547852 0.1765 0.0042 0.0082 0.0041
|
4 |
+
3 00:34:01 4 0.0000 0.2923256346762247 0.14386053383350372 0.2154 0.0393 0.0664 0.0344
|
5 |
+
4 00:35:45 4 0.0000 0.2778034171537818 0.13249367475509644 0.2737 0.0687 0.1099 0.0582
|
6 |
+
5 00:37:30 4 0.0000 0.26510193813684124 0.1335981786251068 0.2814 0.1038 0.1516 0.0824
|
7 |
+
6 00:39:15 4 0.0000 0.25729809377259627 0.12874221801757812 0.3404 0.1571 0.215 0.121
|
8 |
+
7 00:40:59 4 0.0000 0.25640539444537386 0.12849482893943787 0.372 0.1935 0.2546 0.1462
|
9 |
+
8 00:42:45 4 0.0000 0.2515904317709163 0.13098381459712982 0.3446 0.2006 0.2535 0.1453
|
10 |
+
9 00:44:30 4 0.0000 0.25032100312074507 0.1269032210111618 0.3832 0.1795 0.2445 0.1397
|
11 |
+
10 00:46:15 4 0.0000 0.24774755008128432 0.12706945836544037 0.3887 0.1837 0.2495 0.143
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-25 00:28:46,333 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-04-25 00:28:46,337 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): RobertaOutput(
|
33 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): RobertaLayer(
|
39 |
+
(attention): RobertaAttention(
|
40 |
+
(self): RobertaSelfAttention(
|
41 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): RobertaSelfOutput(
|
47 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): RobertaIntermediate(
|
53 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): RobertaOutput(
|
57 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): RobertaLayer(
|
63 |
+
(attention): RobertaAttention(
|
64 |
+
(self): RobertaSelfAttention(
|
65 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
67 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): RobertaSelfOutput(
|
71 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): RobertaIntermediate(
|
77 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): RobertaOutput(
|
81 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): RobertaLayer(
|
87 |
+
(attention): RobertaAttention(
|
88 |
+
(self): RobertaSelfAttention(
|
89 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
90 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
91 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): RobertaSelfOutput(
|
95 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): RobertaIntermediate(
|
101 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): RobertaOutput(
|
105 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): RobertaLayer(
|
111 |
+
(attention): RobertaAttention(
|
112 |
+
(self): RobertaSelfAttention(
|
113 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
114 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
115 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): RobertaSelfOutput(
|
119 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): RobertaIntermediate(
|
125 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): RobertaOutput(
|
129 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): RobertaLayer(
|
135 |
+
(attention): RobertaAttention(
|
136 |
+
(self): RobertaSelfAttention(
|
137 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
138 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): RobertaSelfOutput(
|
143 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): RobertaIntermediate(
|
149 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): RobertaOutput(
|
153 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): RobertaLayer(
|
159 |
+
(attention): RobertaAttention(
|
160 |
+
(self): RobertaSelfAttention(
|
161 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
163 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): RobertaSelfOutput(
|
167 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): RobertaIntermediate(
|
173 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): RobertaOutput(
|
177 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): RobertaLayer(
|
183 |
+
(attention): RobertaAttention(
|
184 |
+
(self): RobertaSelfAttention(
|
185 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
186 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
187 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): RobertaSelfOutput(
|
191 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): RobertaIntermediate(
|
197 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): RobertaOutput(
|
201 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): RobertaLayer(
|
207 |
+
(attention): RobertaAttention(
|
208 |
+
(self): RobertaSelfAttention(
|
209 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
210 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
211 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): RobertaSelfOutput(
|
215 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): RobertaIntermediate(
|
221 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): RobertaOutput(
|
225 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): RobertaLayer(
|
231 |
+
(attention): RobertaAttention(
|
232 |
+
(self): RobertaSelfAttention(
|
233 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
234 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
235 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): RobertaSelfOutput(
|
239 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): RobertaIntermediate(
|
245 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): RobertaOutput(
|
249 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): RobertaLayer(
|
255 |
+
(attention): RobertaAttention(
|
256 |
+
(self): RobertaSelfAttention(
|
257 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
258 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
259 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): RobertaSelfOutput(
|
263 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): RobertaIntermediate(
|
269 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): RobertaOutput(
|
273 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): RobertaLayer(
|
279 |
+
(attention): RobertaAttention(
|
280 |
+
(self): RobertaSelfAttention(
|
281 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
282 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
283 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): RobertaSelfOutput(
|
287 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): RobertaIntermediate(
|
293 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): RobertaOutput(
|
297 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(12): RobertaLayer(
|
303 |
+
(attention): RobertaAttention(
|
304 |
+
(self): RobertaSelfAttention(
|
305 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
306 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
307 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
308 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
309 |
+
)
|
310 |
+
(output): RobertaSelfOutput(
|
311 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
312 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
313 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
314 |
+
)
|
315 |
+
)
|
316 |
+
(intermediate): RobertaIntermediate(
|
317 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
318 |
+
(intermediate_act_fn): GELUActivation()
|
319 |
+
)
|
320 |
+
(output): RobertaOutput(
|
321 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
322 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
323 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
324 |
+
)
|
325 |
+
)
|
326 |
+
(13): RobertaLayer(
|
327 |
+
(attention): RobertaAttention(
|
328 |
+
(self): RobertaSelfAttention(
|
329 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
330 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
331 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
332 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
333 |
+
)
|
334 |
+
(output): RobertaSelfOutput(
|
335 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
336 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
337 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
338 |
+
)
|
339 |
+
)
|
340 |
+
(intermediate): RobertaIntermediate(
|
341 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
342 |
+
(intermediate_act_fn): GELUActivation()
|
343 |
+
)
|
344 |
+
(output): RobertaOutput(
|
345 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(14): RobertaLayer(
|
351 |
+
(attention): RobertaAttention(
|
352 |
+
(self): RobertaSelfAttention(
|
353 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
354 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
355 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
(output): RobertaSelfOutput(
|
359 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
360 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
361 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
362 |
+
)
|
363 |
+
)
|
364 |
+
(intermediate): RobertaIntermediate(
|
365 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
366 |
+
(intermediate_act_fn): GELUActivation()
|
367 |
+
)
|
368 |
+
(output): RobertaOutput(
|
369 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
370 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
371 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
372 |
+
)
|
373 |
+
)
|
374 |
+
(15): RobertaLayer(
|
375 |
+
(attention): RobertaAttention(
|
376 |
+
(self): RobertaSelfAttention(
|
377 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
378 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
379 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
380 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
381 |
+
)
|
382 |
+
(output): RobertaSelfOutput(
|
383 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
384 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
385 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
386 |
+
)
|
387 |
+
)
|
388 |
+
(intermediate): RobertaIntermediate(
|
389 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
390 |
+
(intermediate_act_fn): GELUActivation()
|
391 |
+
)
|
392 |
+
(output): RobertaOutput(
|
393 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
394 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
396 |
+
)
|
397 |
+
)
|
398 |
+
(16): RobertaLayer(
|
399 |
+
(attention): RobertaAttention(
|
400 |
+
(self): RobertaSelfAttention(
|
401 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
402 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
403 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
404 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
405 |
+
)
|
406 |
+
(output): RobertaSelfOutput(
|
407 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
408 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
409 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(intermediate): RobertaIntermediate(
|
413 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
414 |
+
(intermediate_act_fn): GELUActivation()
|
415 |
+
)
|
416 |
+
(output): RobertaOutput(
|
417 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
418 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
419 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
420 |
+
)
|
421 |
+
)
|
422 |
+
(17): RobertaLayer(
|
423 |
+
(attention): RobertaAttention(
|
424 |
+
(self): RobertaSelfAttention(
|
425 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
426 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
427 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
428 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
429 |
+
)
|
430 |
+
(output): RobertaSelfOutput(
|
431 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
433 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
434 |
+
)
|
435 |
+
)
|
436 |
+
(intermediate): RobertaIntermediate(
|
437 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
438 |
+
(intermediate_act_fn): GELUActivation()
|
439 |
+
)
|
440 |
+
(output): RobertaOutput(
|
441 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
442 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
443 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
444 |
+
)
|
445 |
+
)
|
446 |
+
(18): RobertaLayer(
|
447 |
+
(attention): RobertaAttention(
|
448 |
+
(self): RobertaSelfAttention(
|
449 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
450 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
451 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
452 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
453 |
+
)
|
454 |
+
(output): RobertaSelfOutput(
|
455 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
)
|
460 |
+
(intermediate): RobertaIntermediate(
|
461 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
462 |
+
(intermediate_act_fn): GELUActivation()
|
463 |
+
)
|
464 |
+
(output): RobertaOutput(
|
465 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
466 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
467 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
468 |
+
)
|
469 |
+
)
|
470 |
+
(19): RobertaLayer(
|
471 |
+
(attention): RobertaAttention(
|
472 |
+
(self): RobertaSelfAttention(
|
473 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
474 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
475 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
476 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
477 |
+
)
|
478 |
+
(output): RobertaSelfOutput(
|
479 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
481 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(intermediate): RobertaIntermediate(
|
485 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
486 |
+
(intermediate_act_fn): GELUActivation()
|
487 |
+
)
|
488 |
+
(output): RobertaOutput(
|
489 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
490 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
491 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
492 |
+
)
|
493 |
+
)
|
494 |
+
(20): RobertaLayer(
|
495 |
+
(attention): RobertaAttention(
|
496 |
+
(self): RobertaSelfAttention(
|
497 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
498 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
499 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
500 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
501 |
+
)
|
502 |
+
(output): RobertaSelfOutput(
|
503 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
504 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
505 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
506 |
+
)
|
507 |
+
)
|
508 |
+
(intermediate): RobertaIntermediate(
|
509 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
510 |
+
(intermediate_act_fn): GELUActivation()
|
511 |
+
)
|
512 |
+
(output): RobertaOutput(
|
513 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
514 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
515 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
516 |
+
)
|
517 |
+
)
|
518 |
+
(21): RobertaLayer(
|
519 |
+
(attention): RobertaAttention(
|
520 |
+
(self): RobertaSelfAttention(
|
521 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
522 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
523 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
525 |
+
)
|
526 |
+
(output): RobertaSelfOutput(
|
527 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
528 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
529 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
530 |
+
)
|
531 |
+
)
|
532 |
+
(intermediate): RobertaIntermediate(
|
533 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
534 |
+
(intermediate_act_fn): GELUActivation()
|
535 |
+
)
|
536 |
+
(output): RobertaOutput(
|
537 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
538 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
539 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(22): RobertaLayer(
|
543 |
+
(attention): RobertaAttention(
|
544 |
+
(self): RobertaSelfAttention(
|
545 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
546 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
549 |
+
)
|
550 |
+
(output): RobertaSelfOutput(
|
551 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
552 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
553 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
554 |
+
)
|
555 |
+
)
|
556 |
+
(intermediate): RobertaIntermediate(
|
557 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
558 |
+
(intermediate_act_fn): GELUActivation()
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
(23): RobertaLayer(
|
567 |
+
(attention): RobertaAttention(
|
568 |
+
(self): RobertaSelfAttention(
|
569 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
571 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
572 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
573 |
+
)
|
574 |
+
(output): RobertaSelfOutput(
|
575 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
576 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
577 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
578 |
+
)
|
579 |
+
)
|
580 |
+
(intermediate): RobertaIntermediate(
|
581 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
582 |
+
(intermediate_act_fn): GELUActivation()
|
583 |
+
)
|
584 |
+
(output): RobertaOutput(
|
585 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
586 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
587 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
588 |
+
)
|
589 |
+
)
|
590 |
+
)
|
591 |
+
)
|
592 |
+
(pooler): RobertaPooler(
|
593 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
594 |
+
(activation): Tanh()
|
595 |
+
)
|
596 |
+
)
|
597 |
+
)
|
598 |
+
(word_dropout): WordDropout(p=0.05)
|
599 |
+
(locked_dropout): LockedDropout(p=0.5)
|
600 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
601 |
+
(loss_function): CrossEntropyLoss()
|
602 |
+
)"
|
603 |
+
2022-04-25 00:28:46,337 ----------------------------------------------------------------------------------------------------
|
604 |
+
2022-04-25 00:28:46,338 Corpus: "Corpus: 352 train + 50 dev + 67 test sentences"
|
605 |
+
2022-04-25 00:28:46,338 ----------------------------------------------------------------------------------------------------
|
606 |
+
2022-04-25 00:28:46,339 Parameters:
|
607 |
+
2022-04-25 00:28:46,339 - learning_rate: "0.000005"
|
608 |
+
2022-04-25 00:28:46,340 - mini_batch_size: "4"
|
609 |
+
2022-04-25 00:28:46,340 - patience: "3"
|
610 |
+
2022-04-25 00:28:46,340 - anneal_factor: "0.5"
|
611 |
+
2022-04-25 00:28:46,341 - max_epochs: "10"
|
612 |
+
2022-04-25 00:28:46,341 - shuffle: "True"
|
613 |
+
2022-04-25 00:28:46,342 - train_with_dev: "False"
|
614 |
+
2022-04-25 00:28:46,342 - batch_growth_annealing: "False"
|
615 |
+
2022-04-25 00:28:46,343 ----------------------------------------------------------------------------------------------------
|
616 |
+
2022-04-25 00:28:46,343 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1"
|
617 |
+
2022-04-25 00:28:46,344 ----------------------------------------------------------------------------------------------------
|
618 |
+
2022-04-25 00:28:46,345 Device: cuda:0
|
619 |
+
2022-04-25 00:28:46,345 ----------------------------------------------------------------------------------------------------
|
620 |
+
2022-04-25 00:28:46,346 Embeddings storage mode: none
|
621 |
+
2022-04-25 00:28:46,346 ----------------------------------------------------------------------------------------------------
|
622 |
+
2022-04-25 00:28:55,605 epoch 1 - iter 8/88 - loss 1.25822871 - samples/sec: 3.46 - lr: 0.000000
|
623 |
+
2022-04-25 00:29:03,857 epoch 1 - iter 16/88 - loss 1.22365524 - samples/sec: 3.88 - lr: 0.000001
|
624 |
+
2022-04-25 00:29:13,839 epoch 1 - iter 24/88 - loss 1.18822646 - samples/sec: 3.21 - lr: 0.000001
|
625 |
+
2022-04-25 00:29:23,244 epoch 1 - iter 32/88 - loss 1.12798044 - samples/sec: 3.40 - lr: 0.000002
|
626 |
+
2022-04-25 00:29:31,472 epoch 1 - iter 40/88 - loss 1.05740151 - samples/sec: 3.89 - lr: 0.000002
|
627 |
+
2022-04-25 00:29:38,751 epoch 1 - iter 48/88 - loss 0.99049744 - samples/sec: 4.40 - lr: 0.000003
|
628 |
+
2022-04-25 00:29:46,982 epoch 1 - iter 56/88 - loss 0.92466364 - samples/sec: 3.89 - lr: 0.000003
|
629 |
+
2022-04-25 00:29:54,849 epoch 1 - iter 64/88 - loss 0.87012404 - samples/sec: 4.07 - lr: 0.000004
|
630 |
+
2022-04-25 00:30:04,123 epoch 1 - iter 72/88 - loss 0.80738819 - samples/sec: 3.45 - lr: 0.000004
|
631 |
+
2022-04-25 00:30:13,985 epoch 1 - iter 80/88 - loss 0.76049921 - samples/sec: 3.25 - lr: 0.000005
|
632 |
+
2022-04-25 00:30:23,710 epoch 1 - iter 88/88 - loss 0.72027292 - samples/sec: 3.29 - lr: 0.000005
|
633 |
+
2022-04-25 00:30:23,712 ----------------------------------------------------------------------------------------------------
|
634 |
+
2022-04-25 00:30:23,713 EPOCH 1 done: loss 0.7203 - lr 0.000005
|
635 |
+
2022-04-25 00:30:30,732 Evaluating as a multi-label problem: False
|
636 |
+
2022-04-25 00:30:30,742 DEV : loss 0.20562097430229187 - f1-score (micro avg) 0.0027
|
637 |
+
2022-04-25 00:30:30,751 BAD EPOCHS (no improvement): 4
|
638 |
+
2022-04-25 00:30:30,753 ----------------------------------------------------------------------------------------------------
|
639 |
+
2022-04-25 00:30:39,284 epoch 2 - iter 8/88 - loss 0.32586993 - samples/sec: 3.75 - lr: 0.000005
|
640 |
+
2022-04-25 00:30:47,933 epoch 2 - iter 16/88 - loss 0.33892041 - samples/sec: 3.70 - lr: 0.000005
|
641 |
+
2022-04-25 00:30:56,990 epoch 2 - iter 24/88 - loss 0.33672071 - samples/sec: 3.53 - lr: 0.000005
|
642 |
+
2022-04-25 00:31:05,736 epoch 2 - iter 32/88 - loss 0.33060665 - samples/sec: 3.66 - lr: 0.000005
|
643 |
+
2022-04-25 00:31:13,937 epoch 2 - iter 40/88 - loss 0.33045049 - samples/sec: 3.90 - lr: 0.000005
|
644 |
+
2022-04-25 00:31:23,091 epoch 2 - iter 48/88 - loss 0.32851558 - samples/sec: 3.50 - lr: 0.000005
|
645 |
+
2022-04-25 00:31:31,313 epoch 2 - iter 56/88 - loss 0.32679558 - samples/sec: 3.89 - lr: 0.000005
|
646 |
+
2022-04-25 00:31:41,184 epoch 2 - iter 64/88 - loss 0.32379177 - samples/sec: 3.24 - lr: 0.000005
|
647 |
+
2022-04-25 00:31:49,757 epoch 2 - iter 72/88 - loss 0.32124627 - samples/sec: 3.73 - lr: 0.000005
|
648 |
+
2022-04-25 00:31:57,768 epoch 2 - iter 80/88 - loss 0.32825760 - samples/sec: 4.00 - lr: 0.000004
|
649 |
+
2022-04-25 00:32:08,014 epoch 2 - iter 88/88 - loss 0.32124062 - samples/sec: 3.12 - lr: 0.000004
|
650 |
+
2022-04-25 00:32:08,017 ----------------------------------------------------------------------------------------------------
|
651 |
+
2022-04-25 00:32:08,018 EPOCH 2 done: loss 0.3212 - lr 0.000004
|
652 |
+
2022-04-25 00:32:15,400 Evaluating as a multi-label problem: False
|
653 |
+
2022-04-25 00:32:15,415 DEV : loss 0.15934991836547852 - f1-score (micro avg) 0.0082
|
654 |
+
2022-04-25 00:32:15,428 BAD EPOCHS (no improvement): 4
|
655 |
+
2022-04-25 00:32:15,431 ----------------------------------------------------------------------------------------------------
|
656 |
+
2022-04-25 00:32:25,133 epoch 3 - iter 8/88 - loss 0.26548392 - samples/sec: 3.30 - lr: 0.000004
|
657 |
+
2022-04-25 00:32:33,272 epoch 3 - iter 16/88 - loss 0.28651787 - samples/sec: 3.93 - lr: 0.000004
|
658 |
+
2022-04-25 00:32:41,433 epoch 3 - iter 24/88 - loss 0.29010948 - samples/sec: 3.92 - lr: 0.000004
|
659 |
+
2022-04-25 00:32:50,243 epoch 3 - iter 32/88 - loss 0.29681501 - samples/sec: 3.63 - lr: 0.000004
|
660 |
+
2022-04-25 00:32:59,007 epoch 3 - iter 40/88 - loss 0.29554105 - samples/sec: 3.65 - lr: 0.000004
|
661 |
+
2022-04-25 00:33:07,692 epoch 3 - iter 48/88 - loss 0.29343573 - samples/sec: 3.69 - lr: 0.000004
|
662 |
+
2022-04-25 00:33:16,189 epoch 3 - iter 56/88 - loss 0.29547981 - samples/sec: 3.77 - lr: 0.000004
|
663 |
+
2022-04-25 00:33:25,763 epoch 3 - iter 64/88 - loss 0.28997972 - samples/sec: 3.34 - lr: 0.000004
|
664 |
+
2022-04-25 00:33:36,471 epoch 3 - iter 72/88 - loss 0.29000464 - samples/sec: 2.99 - lr: 0.000004
|
665 |
+
2022-04-25 00:33:45,481 epoch 3 - iter 80/88 - loss 0.29344732 - samples/sec: 3.55 - lr: 0.000004
|
666 |
+
2022-04-25 00:33:53,793 epoch 3 - iter 88/88 - loss 0.29232563 - samples/sec: 3.85 - lr: 0.000004
|
667 |
+
2022-04-25 00:33:53,797 ----------------------------------------------------------------------------------------------------
|
668 |
+
2022-04-25 00:33:53,798 EPOCH 3 done: loss 0.2923 - lr 0.000004
|
669 |
+
2022-04-25 00:34:00,978 Evaluating as a multi-label problem: False
|
670 |
+
2022-04-25 00:34:00,991 DEV : loss 0.14386053383350372 - f1-score (micro avg) 0.0664
|
671 |
+
2022-04-25 00:34:00,999 BAD EPOCHS (no improvement): 4
|
672 |
+
2022-04-25 00:34:01,000 ----------------------------------------------------------------------------------------------------
|
673 |
+
2022-04-25 00:34:09,617 epoch 4 - iter 8/88 - loss 0.32142401 - samples/sec: 3.72 - lr: 0.000004
|
674 |
+
2022-04-25 00:34:17,886 epoch 4 - iter 16/88 - loss 0.30301646 - samples/sec: 3.87 - lr: 0.000004
|
675 |
+
2022-04-25 00:34:27,850 epoch 4 - iter 24/88 - loss 0.28913590 - samples/sec: 3.21 - lr: 0.000004
|
676 |
+
2022-04-25 00:34:35,703 epoch 4 - iter 32/88 - loss 0.29200045 - samples/sec: 4.08 - lr: 0.000004
|
677 |
+
2022-04-25 00:34:44,383 epoch 4 - iter 40/88 - loss 0.28601870 - samples/sec: 3.69 - lr: 0.000004
|
678 |
+
2022-04-25 00:34:53,597 epoch 4 - iter 48/88 - loss 0.28333016 - samples/sec: 3.47 - lr: 0.000004
|
679 |
+
2022-04-25 00:35:02,237 epoch 4 - iter 56/88 - loss 0.28101070 - samples/sec: 3.70 - lr: 0.000004
|
680 |
+
2022-04-25 00:35:11,887 epoch 4 - iter 64/88 - loss 0.27725419 - samples/sec: 3.32 - lr: 0.000003
|
681 |
+
2022-04-25 00:35:20,971 epoch 4 - iter 72/88 - loss 0.27522330 - samples/sec: 3.52 - lr: 0.000003
|
682 |
+
2022-04-25 00:35:29,993 epoch 4 - iter 80/88 - loss 0.27767522 - samples/sec: 3.55 - lr: 0.000003
|
683 |
+
2022-04-25 00:35:38,121 epoch 4 - iter 88/88 - loss 0.27780342 - samples/sec: 3.94 - lr: 0.000003
|
684 |
+
2022-04-25 00:35:38,125 ----------------------------------------------------------------------------------------------------
|
685 |
+
2022-04-25 00:35:38,126 EPOCH 4 done: loss 0.2778 - lr 0.000003
|
686 |
+
2022-04-25 00:35:45,523 Evaluating as a multi-label problem: False
|
687 |
+
2022-04-25 00:35:45,536 DEV : loss 0.13249367475509644 - f1-score (micro avg) 0.1099
|
688 |
+
2022-04-25 00:35:45,545 BAD EPOCHS (no improvement): 4
|
689 |
+
2022-04-25 00:35:45,547 ----------------------------------------------------------------------------------------------------
|
690 |
+
2022-04-25 00:35:55,215 epoch 5 - iter 8/88 - loss 0.26147172 - samples/sec: 3.31 - lr: 0.000003
|
691 |
+
2022-04-25 00:36:05,160 epoch 5 - iter 16/88 - loss 0.26559845 - samples/sec: 3.22 - lr: 0.000003
|
692 |
+
2022-04-25 00:36:13,857 epoch 5 - iter 24/88 - loss 0.26674131 - samples/sec: 3.68 - lr: 0.000003
|
693 |
+
2022-04-25 00:36:22,022 epoch 5 - iter 32/88 - loss 0.26445641 - samples/sec: 3.92 - lr: 0.000003
|
694 |
+
2022-04-25 00:36:29,834 epoch 5 - iter 40/88 - loss 0.26849622 - samples/sec: 4.10 - lr: 0.000003
|
695 |
+
2022-04-25 00:36:38,499 epoch 5 - iter 48/88 - loss 0.26495720 - samples/sec: 3.69 - lr: 0.000003
|
696 |
+
2022-04-25 00:36:46,651 epoch 5 - iter 56/88 - loss 0.26747065 - samples/sec: 3.93 - lr: 0.000003
|
697 |
+
2022-04-25 00:36:56,479 epoch 5 - iter 64/88 - loss 0.26716735 - samples/sec: 3.26 - lr: 0.000003
|
698 |
+
2022-04-25 00:37:05,247 epoch 5 - iter 72/88 - loss 0.26323866 - samples/sec: 3.65 - lr: 0.000003
|
699 |
+
2022-04-25 00:37:14,099 epoch 5 - iter 80/88 - loss 0.26763434 - samples/sec: 3.62 - lr: 0.000003
|
700 |
+
2022-04-25 00:37:23,612 epoch 5 - iter 88/88 - loss 0.26510194 - samples/sec: 3.36 - lr: 0.000003
|
701 |
+
2022-04-25 00:37:23,615 ----------------------------------------------------------------------------------------------------
|
702 |
+
2022-04-25 00:37:23,615 EPOCH 5 done: loss 0.2651 - lr 0.000003
|
703 |
+
2022-04-25 00:37:30,711 Evaluating as a multi-label problem: False
|
704 |
+
2022-04-25 00:37:30,723 DEV : loss 0.1335981786251068 - f1-score (micro avg) 0.1516
|
705 |
+
2022-04-25 00:37:30,734 BAD EPOCHS (no improvement): 4
|
706 |
+
2022-04-25 00:37:30,735 ----------------------------------------------------------------------------------------------------
|
707 |
+
2022-04-25 00:37:39,100 epoch 6 - iter 8/88 - loss 0.25254979 - samples/sec: 3.83 - lr: 0.000003
|
708 |
+
2022-04-25 00:37:48,489 epoch 6 - iter 16/88 - loss 0.24629379 - samples/sec: 3.41 - lr: 0.000003
|
709 |
+
2022-04-25 00:37:56,856 epoch 6 - iter 24/88 - loss 0.25016090 - samples/sec: 3.83 - lr: 0.000003
|
710 |
+
2022-04-25 00:38:06,647 epoch 6 - iter 32/88 - loss 0.25646469 - samples/sec: 3.27 - lr: 0.000003
|
711 |
+
2022-04-25 00:38:14,700 epoch 6 - iter 40/88 - loss 0.25909943 - samples/sec: 3.97 - lr: 0.000003
|
712 |
+
2022-04-25 00:38:23,772 epoch 6 - iter 48/88 - loss 0.25850607 - samples/sec: 3.53 - lr: 0.000002
|
713 |
+
2022-04-25 00:38:32,983 epoch 6 - iter 56/88 - loss 0.25417190 - samples/sec: 3.48 - lr: 0.000002
|
714 |
+
2022-04-25 00:38:42,014 epoch 6 - iter 64/88 - loss 0.25534730 - samples/sec: 3.54 - lr: 0.000002
|
715 |
+
2022-04-25 00:38:49,968 epoch 6 - iter 72/88 - loss 0.25617877 - samples/sec: 4.02 - lr: 0.000002
|
716 |
+
2022-04-25 00:38:58,183 epoch 6 - iter 80/88 - loss 0.25537613 - samples/sec: 3.90 - lr: 0.000002
|
717 |
+
2022-04-25 00:39:07,930 epoch 6 - iter 88/88 - loss 0.25729809 - samples/sec: 3.28 - lr: 0.000002
|
718 |
+
2022-04-25 00:39:07,933 ----------------------------------------------------------------------------------------------------
|
719 |
+
2022-04-25 00:39:07,934 EPOCH 6 done: loss 0.2573 - lr 0.000002
|
720 |
+
2022-04-25 00:39:15,220 Evaluating as a multi-label problem: False
|
721 |
+
2022-04-25 00:39:15,238 DEV : loss 0.12874221801757812 - f1-score (micro avg) 0.215
|
722 |
+
2022-04-25 00:39:15,250 BAD EPOCHS (no improvement): 4
|
723 |
+
2022-04-25 00:39:15,252 ----------------------------------------------------------------------------------------------------
|
724 |
+
2022-04-25 00:39:23,920 epoch 7 - iter 8/88 - loss 0.25032306 - samples/sec: 3.69 - lr: 0.000002
|
725 |
+
2022-04-25 00:39:32,341 epoch 7 - iter 16/88 - loss 0.24173648 - samples/sec: 3.80 - lr: 0.000002
|
726 |
+
2022-04-25 00:39:42,283 epoch 7 - iter 24/88 - loss 0.25674155 - samples/sec: 3.22 - lr: 0.000002
|
727 |
+
2022-04-25 00:39:50,287 epoch 7 - iter 32/88 - loss 0.25221355 - samples/sec: 4.00 - lr: 0.000002
|
728 |
+
2022-04-25 00:39:58,742 epoch 7 - iter 40/88 - loss 0.25534056 - samples/sec: 3.79 - lr: 0.000002
|
729 |
+
2022-04-25 00:40:07,531 epoch 7 - iter 48/88 - loss 0.25396630 - samples/sec: 3.64 - lr: 0.000002
|
730 |
+
2022-04-25 00:40:16,857 epoch 7 - iter 56/88 - loss 0.25506091 - samples/sec: 3.43 - lr: 0.000002
|
731 |
+
2022-04-25 00:40:26,056 epoch 7 - iter 64/88 - loss 0.25606985 - samples/sec: 3.48 - lr: 0.000002
|
732 |
+
2022-04-25 00:40:34,742 epoch 7 - iter 72/88 - loss 0.25690660 - samples/sec: 3.68 - lr: 0.000002
|
733 |
+
2022-04-25 00:40:43,201 epoch 7 - iter 80/88 - loss 0.25644415 - samples/sec: 3.78 - lr: 0.000002
|
734 |
+
2022-04-25 00:40:53,512 epoch 7 - iter 88/88 - loss 0.25640539 - samples/sec: 3.10 - lr: 0.000002
|
735 |
+
2022-04-25 00:40:53,515 ----------------------------------------------------------------------------------------------------
|
736 |
+
2022-04-25 00:40:53,516 EPOCH 7 done: loss 0.2564 - lr 0.000002
|
737 |
+
2022-04-25 00:40:59,919 Evaluating as a multi-label problem: False
|
738 |
+
2022-04-25 00:40:59,934 DEV : loss 0.12849482893943787 - f1-score (micro avg) 0.2546
|
739 |
+
2022-04-25 00:40:59,943 BAD EPOCHS (no improvement): 4
|
740 |
+
2022-04-25 00:40:59,944 ----------------------------------------------------------------------------------------------------
|
741 |
+
2022-04-25 00:41:09,917 epoch 8 - iter 8/88 - loss 0.26072190 - samples/sec: 3.21 - lr: 0.000002
|
742 |
+
2022-04-25 00:41:18,102 epoch 8 - iter 16/88 - loss 0.27005318 - samples/sec: 3.91 - lr: 0.000002
|
743 |
+
2022-04-25 00:41:26,730 epoch 8 - iter 24/88 - loss 0.26735720 - samples/sec: 3.71 - lr: 0.000002
|
744 |
+
2022-04-25 00:41:35,802 epoch 8 - iter 32/88 - loss 0.25981810 - samples/sec: 3.53 - lr: 0.000001
|
745 |
+
2022-04-25 00:41:45,065 epoch 8 - iter 40/88 - loss 0.25497924 - samples/sec: 3.46 - lr: 0.000001
|
746 |
+
2022-04-25 00:41:53,266 epoch 8 - iter 48/88 - loss 0.25297761 - samples/sec: 3.90 - lr: 0.000001
|
747 |
+
2022-04-25 00:42:01,654 epoch 8 - iter 56/88 - loss 0.25588829 - samples/sec: 3.82 - lr: 0.000001
|
748 |
+
2022-04-25 00:42:10,833 epoch 8 - iter 64/88 - loss 0.25234574 - samples/sec: 3.49 - lr: 0.000001
|
749 |
+
2022-04-25 00:42:20,767 epoch 8 - iter 72/88 - loss 0.25437752 - samples/sec: 3.22 - lr: 0.000001
|
750 |
+
2022-04-25 00:42:29,555 epoch 8 - iter 80/88 - loss 0.25358380 - samples/sec: 3.64 - lr: 0.000001
|
751 |
+
2022-04-25 00:42:38,444 epoch 8 - iter 88/88 - loss 0.25159043 - samples/sec: 3.60 - lr: 0.000001
|
752 |
+
2022-04-25 00:42:38,447 ----------------------------------------------------------------------------------------------------
|
753 |
+
2022-04-25 00:42:38,447 EPOCH 8 done: loss 0.2516 - lr 0.000001
|
754 |
+
2022-04-25 00:42:45,466 Evaluating as a multi-label problem: False
|
755 |
+
2022-04-25 00:42:45,478 DEV : loss 0.13098381459712982 - f1-score (micro avg) 0.2535
|
756 |
+
2022-04-25 00:42:45,486 BAD EPOCHS (no improvement): 4
|
757 |
+
2022-04-25 00:42:45,488 ----------------------------------------------------------------------------------------------------
|
758 |
+
2022-04-25 00:42:55,033 epoch 9 - iter 8/88 - loss 0.22931718 - samples/sec: 3.35 - lr: 0.000001
|
759 |
+
2022-04-25 00:43:03,513 epoch 9 - iter 16/88 - loss 0.25355650 - samples/sec: 3.77 - lr: 0.000001
|
760 |
+
2022-04-25 00:43:13,870 epoch 9 - iter 24/88 - loss 0.25289254 - samples/sec: 3.09 - lr: 0.000001
|
761 |
+
2022-04-25 00:43:22,935 epoch 9 - iter 32/88 - loss 0.24994442 - samples/sec: 3.53 - lr: 0.000001
|
762 |
+
2022-04-25 00:43:30,905 epoch 9 - iter 40/88 - loss 0.24795011 - samples/sec: 4.02 - lr: 0.000001
|
763 |
+
2022-04-25 00:43:39,312 epoch 9 - iter 48/88 - loss 0.24733180 - samples/sec: 3.81 - lr: 0.000001
|
764 |
+
2022-04-25 00:43:47,522 epoch 9 - iter 56/88 - loss 0.24885510 - samples/sec: 3.90 - lr: 0.000001
|
765 |
+
2022-04-25 00:43:55,856 epoch 9 - iter 64/88 - loss 0.25085127 - samples/sec: 3.84 - lr: 0.000001
|
766 |
+
2022-04-25 00:44:04,511 epoch 9 - iter 72/88 - loss 0.25141658 - samples/sec: 3.70 - lr: 0.000001
|
767 |
+
2022-04-25 00:44:13,473 epoch 9 - iter 80/88 - loss 0.25114253 - samples/sec: 3.57 - lr: 0.000001
|
768 |
+
2022-04-25 00:44:23,065 epoch 9 - iter 88/88 - loss 0.25032100 - samples/sec: 3.34 - lr: 0.000001
|
769 |
+
2022-04-25 00:44:23,068 ----------------------------------------------------------------------------------------------------
|
770 |
+
2022-04-25 00:44:23,069 EPOCH 9 done: loss 0.2503 - lr 0.000001
|
771 |
+
2022-04-25 00:44:30,828 Evaluating as a multi-label problem: False
|
772 |
+
2022-04-25 00:44:30,844 DEV : loss 0.1269032210111618 - f1-score (micro avg) 0.2445
|
773 |
+
2022-04-25 00:44:30,854 BAD EPOCHS (no improvement): 4
|
774 |
+
2022-04-25 00:44:30,855 ----------------------------------------------------------------------------------------------------
|
775 |
+
2022-04-25 00:44:38,190 epoch 10 - iter 8/88 - loss 0.25877504 - samples/sec: 4.36 - lr: 0.000001
|
776 |
+
2022-04-25 00:44:47,141 epoch 10 - iter 16/88 - loss 0.26538309 - samples/sec: 3.58 - lr: 0.000000
|
777 |
+
2022-04-25 00:44:56,357 epoch 10 - iter 24/88 - loss 0.25992814 - samples/sec: 3.47 - lr: 0.000000
|
778 |
+
2022-04-25 00:45:04,805 epoch 10 - iter 32/88 - loss 0.25024608 - samples/sec: 3.79 - lr: 0.000000
|
779 |
+
2022-04-25 00:45:12,966 epoch 10 - iter 40/88 - loss 0.25450198 - samples/sec: 3.92 - lr: 0.000000
|
780 |
+
2022-04-25 00:45:23,081 epoch 10 - iter 48/88 - loss 0.25508489 - samples/sec: 3.16 - lr: 0.000000
|
781 |
+
2022-04-25 00:45:32,191 epoch 10 - iter 56/88 - loss 0.25273411 - samples/sec: 3.51 - lr: 0.000000
|
782 |
+
2022-04-25 00:45:40,798 epoch 10 - iter 64/88 - loss 0.25090079 - samples/sec: 3.72 - lr: 0.000000
|
783 |
+
2022-04-25 00:45:49,572 epoch 10 - iter 72/88 - loss 0.24954558 - samples/sec: 3.65 - lr: 0.000000
|
784 |
+
2022-04-25 00:45:59,254 epoch 10 - iter 80/88 - loss 0.24933938 - samples/sec: 3.31 - lr: 0.000000
|
785 |
+
2022-04-25 00:46:08,852 epoch 10 - iter 88/88 - loss 0.24774755 - samples/sec: 3.33 - lr: 0.000000
|
786 |
+
2022-04-25 00:46:08,856 ----------------------------------------------------------------------------------------------------
|
787 |
+
2022-04-25 00:46:08,857 EPOCH 10 done: loss 0.2477 - lr 0.000000
|
788 |
+
2022-04-25 00:46:15,919 Evaluating as a multi-label problem: False
|
789 |
+
2022-04-25 00:46:15,935 DEV : loss 0.12706945836544037 - f1-score (micro avg) 0.2495
|
790 |
+
2022-04-25 00:46:15,947 BAD EPOCHS (no improvement): 4
|
791 |
+
2022-04-25 00:46:19,590 ----------------------------------------------------------------------------------------------------
|
792 |
+
2022-04-25 00:46:19,592 Testing using last state of model ...
|
793 |
+
2022-04-25 00:46:29,219 Evaluating as a multi-label problem: False
|
794 |
+
2022-04-25 00:46:29,232 0.4412 0.2257 0.2986 0.1758
|
795 |
+
2022-04-25 00:46:29,232
|
796 |
+
Results:
|
797 |
+
- F-score (micro) 0.2986
|
798 |
+
- F-score (macro) 0.147
|
799 |
+
- Accuracy 0.1758
|
800 |
+
|
801 |
+
By class:
|
802 |
+
precision recall f1-score support
|
803 |
+
|
804 |
+
ORG 0.4718 0.2314 0.3105 687
|
805 |
+
LOC 0.3837 0.2171 0.2773 304
|
806 |
+
PENT 0.0000 0.0000 0.0000 6
|
807 |
+
MISC 0.0000 0.0000 0.0000 0
|
808 |
+
|
809 |
+
micro avg 0.4412 0.2257 0.2986 997
|
810 |
+
macro avg 0.2139 0.1121 0.1470 997
|
811 |
+
weighted avg 0.4421 0.2257 0.2985 997
|
812 |
+
|
813 |
+
2022-04-25 00:46:29,233 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|