Merge branch 'main' of https://huggingface.co/Saisam/Inquirer_ner_loc into main
Browse files
README.md
CHANGED
@@ -1,3 +1,41 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
language: en
|
6 |
+
datasets:
|
7 |
+
- conll2003
|
8 |
+
widget:
|
9 |
+
- text: "George Washington went to Washington"
|
10 |
---
|
11 |
+
|
12 |
+
# Flair NER fine-tuned on Private Dataset
|
13 |
+
|
14 |
+
```python
|
15 |
+
from flair.data import Sentence
|
16 |
+
from flair.models import SequenceTagger
|
17 |
+
# load tagger
|
18 |
+
tagger = SequenceTagger.load("Saisam/Inquirer_ner_loc")
|
19 |
+
# make example sentence
|
20 |
+
sentence = Sentence("George Washington went to Washington")
|
21 |
+
# predict NER tags
|
22 |
+
tagger.predict(sentence)
|
23 |
+
# print sentence
|
24 |
+
print(sentence)
|
25 |
+
# print predicted NER spans
|
26 |
+
print('The following NER tags are found:')
|
27 |
+
# iterate over entities and print
|
28 |
+
for entity in sentence.get_spans('ner'):
|
29 |
+
print(entity)
|
30 |
+
```
|
31 |
+
|
32 |
+
|
33 |
+
```
|
34 |
+
@inproceedings{akbik2018coling,
|
35 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
36 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
37 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
38 |
+
pages = {1638--1649},
|
39 |
+
year = {2018}
|
40 |
+
}
|
41 |
+
```
|