root
commited on
Commit
•
8f0563d
1
Parent(s):
a848c07
added the model files
Browse files- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +803 -0
- weights.txt +0 -0
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e91fc16458f5843cd3a21aa03e1947a19dcbea5d3e82f32e209791e60fb6f93
|
3 |
+
size 2256883501
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 01:43:03 4 0.0000 0.7577931622146611 0.3607260286808014 0.0 0.0 0.0 0.0
|
3 |
+
2 01:46:23 4 0.0000 0.3273878849018949 0.44372475147247314 0.0 0.0 0.0 0.0
|
4 |
+
3 01:49:46 4 0.0000 0.3004312500567572 0.4250624477863312 0.0 0.0 0.0 0.0
|
5 |
+
4 01:53:06 4 0.0000 0.28442059537854003 0.4436105787754059 0.0 0.0 0.0 0.0
|
6 |
+
5 01:56:28 4 0.0000 0.27345010702887845 0.46451953053474426 0.0 0.0 0.0 0.0
|
7 |
+
6 01:59:50 4 0.0000 0.258577936120499 0.5034258961677551 0.0 0.0 0.0 0.0
|
8 |
+
7 02:03:11 4 0.0000 0.249647237000558 0.5326654314994812 0.0 0.0 0.0 0.0
|
9 |
+
8 02:06:33 4 0.0000 0.2402628662797549 0.5238903760910034 0.0 0.0 0.0 0.0
|
10 |
+
9 02:09:53 4 0.0000 0.23584941995850597 0.5382402539253235 0.0 0.0 0.0 0.0
|
11 |
+
10 02:13:16 4 0.0000 0.2320775723195998 0.5321827530860901 0.0 0.0 0.0 0.0
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-25 01:39:43,366 ----------------------------------------------------------------------------------------------------
|
2 |
+
2022-04-25 01:39:43,370 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): RobertaOutput(
|
33 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): RobertaLayer(
|
39 |
+
(attention): RobertaAttention(
|
40 |
+
(self): RobertaSelfAttention(
|
41 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): RobertaSelfOutput(
|
47 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): RobertaIntermediate(
|
53 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): RobertaOutput(
|
57 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): RobertaLayer(
|
63 |
+
(attention): RobertaAttention(
|
64 |
+
(self): RobertaSelfAttention(
|
65 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
67 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): RobertaSelfOutput(
|
71 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): RobertaIntermediate(
|
77 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): RobertaOutput(
|
81 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): RobertaLayer(
|
87 |
+
(attention): RobertaAttention(
|
88 |
+
(self): RobertaSelfAttention(
|
89 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
90 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
91 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): RobertaSelfOutput(
|
95 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): RobertaIntermediate(
|
101 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): RobertaOutput(
|
105 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): RobertaLayer(
|
111 |
+
(attention): RobertaAttention(
|
112 |
+
(self): RobertaSelfAttention(
|
113 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
114 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
115 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): RobertaSelfOutput(
|
119 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): RobertaIntermediate(
|
125 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): RobertaOutput(
|
129 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): RobertaLayer(
|
135 |
+
(attention): RobertaAttention(
|
136 |
+
(self): RobertaSelfAttention(
|
137 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
138 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): RobertaSelfOutput(
|
143 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): RobertaIntermediate(
|
149 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): RobertaOutput(
|
153 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): RobertaLayer(
|
159 |
+
(attention): RobertaAttention(
|
160 |
+
(self): RobertaSelfAttention(
|
161 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
163 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): RobertaSelfOutput(
|
167 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): RobertaIntermediate(
|
173 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): RobertaOutput(
|
177 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): RobertaLayer(
|
183 |
+
(attention): RobertaAttention(
|
184 |
+
(self): RobertaSelfAttention(
|
185 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
186 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
187 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): RobertaSelfOutput(
|
191 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): RobertaIntermediate(
|
197 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): RobertaOutput(
|
201 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): RobertaLayer(
|
207 |
+
(attention): RobertaAttention(
|
208 |
+
(self): RobertaSelfAttention(
|
209 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
210 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
211 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): RobertaSelfOutput(
|
215 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): RobertaIntermediate(
|
221 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): RobertaOutput(
|
225 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): RobertaLayer(
|
231 |
+
(attention): RobertaAttention(
|
232 |
+
(self): RobertaSelfAttention(
|
233 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
234 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
235 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): RobertaSelfOutput(
|
239 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): RobertaIntermediate(
|
245 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): RobertaOutput(
|
249 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): RobertaLayer(
|
255 |
+
(attention): RobertaAttention(
|
256 |
+
(self): RobertaSelfAttention(
|
257 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
258 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
259 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): RobertaSelfOutput(
|
263 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): RobertaIntermediate(
|
269 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): RobertaOutput(
|
273 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): RobertaLayer(
|
279 |
+
(attention): RobertaAttention(
|
280 |
+
(self): RobertaSelfAttention(
|
281 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
282 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
283 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): RobertaSelfOutput(
|
287 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): RobertaIntermediate(
|
293 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): RobertaOutput(
|
297 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(12): RobertaLayer(
|
303 |
+
(attention): RobertaAttention(
|
304 |
+
(self): RobertaSelfAttention(
|
305 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
306 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
307 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
308 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
309 |
+
)
|
310 |
+
(output): RobertaSelfOutput(
|
311 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
312 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
313 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
314 |
+
)
|
315 |
+
)
|
316 |
+
(intermediate): RobertaIntermediate(
|
317 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
318 |
+
(intermediate_act_fn): GELUActivation()
|
319 |
+
)
|
320 |
+
(output): RobertaOutput(
|
321 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
322 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
323 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
324 |
+
)
|
325 |
+
)
|
326 |
+
(13): RobertaLayer(
|
327 |
+
(attention): RobertaAttention(
|
328 |
+
(self): RobertaSelfAttention(
|
329 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
330 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
331 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
332 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
333 |
+
)
|
334 |
+
(output): RobertaSelfOutput(
|
335 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
336 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
337 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
338 |
+
)
|
339 |
+
)
|
340 |
+
(intermediate): RobertaIntermediate(
|
341 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
342 |
+
(intermediate_act_fn): GELUActivation()
|
343 |
+
)
|
344 |
+
(output): RobertaOutput(
|
345 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(14): RobertaLayer(
|
351 |
+
(attention): RobertaAttention(
|
352 |
+
(self): RobertaSelfAttention(
|
353 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
354 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
355 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
(output): RobertaSelfOutput(
|
359 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
360 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
361 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
362 |
+
)
|
363 |
+
)
|
364 |
+
(intermediate): RobertaIntermediate(
|
365 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
366 |
+
(intermediate_act_fn): GELUActivation()
|
367 |
+
)
|
368 |
+
(output): RobertaOutput(
|
369 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
370 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
371 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
372 |
+
)
|
373 |
+
)
|
374 |
+
(15): RobertaLayer(
|
375 |
+
(attention): RobertaAttention(
|
376 |
+
(self): RobertaSelfAttention(
|
377 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
378 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
379 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
380 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
381 |
+
)
|
382 |
+
(output): RobertaSelfOutput(
|
383 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
384 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
385 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
386 |
+
)
|
387 |
+
)
|
388 |
+
(intermediate): RobertaIntermediate(
|
389 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
390 |
+
(intermediate_act_fn): GELUActivation()
|
391 |
+
)
|
392 |
+
(output): RobertaOutput(
|
393 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
394 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
395 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
396 |
+
)
|
397 |
+
)
|
398 |
+
(16): RobertaLayer(
|
399 |
+
(attention): RobertaAttention(
|
400 |
+
(self): RobertaSelfAttention(
|
401 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
402 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
403 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
404 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
405 |
+
)
|
406 |
+
(output): RobertaSelfOutput(
|
407 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
408 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
409 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(intermediate): RobertaIntermediate(
|
413 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
414 |
+
(intermediate_act_fn): GELUActivation()
|
415 |
+
)
|
416 |
+
(output): RobertaOutput(
|
417 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
418 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
419 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
420 |
+
)
|
421 |
+
)
|
422 |
+
(17): RobertaLayer(
|
423 |
+
(attention): RobertaAttention(
|
424 |
+
(self): RobertaSelfAttention(
|
425 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
426 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
427 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
428 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
429 |
+
)
|
430 |
+
(output): RobertaSelfOutput(
|
431 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
433 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
434 |
+
)
|
435 |
+
)
|
436 |
+
(intermediate): RobertaIntermediate(
|
437 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
438 |
+
(intermediate_act_fn): GELUActivation()
|
439 |
+
)
|
440 |
+
(output): RobertaOutput(
|
441 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
442 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
443 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
444 |
+
)
|
445 |
+
)
|
446 |
+
(18): RobertaLayer(
|
447 |
+
(attention): RobertaAttention(
|
448 |
+
(self): RobertaSelfAttention(
|
449 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
450 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
451 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
452 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
453 |
+
)
|
454 |
+
(output): RobertaSelfOutput(
|
455 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
)
|
460 |
+
(intermediate): RobertaIntermediate(
|
461 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
462 |
+
(intermediate_act_fn): GELUActivation()
|
463 |
+
)
|
464 |
+
(output): RobertaOutput(
|
465 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
466 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
467 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
468 |
+
)
|
469 |
+
)
|
470 |
+
(19): RobertaLayer(
|
471 |
+
(attention): RobertaAttention(
|
472 |
+
(self): RobertaSelfAttention(
|
473 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
474 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
475 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
476 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
477 |
+
)
|
478 |
+
(output): RobertaSelfOutput(
|
479 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
481 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(intermediate): RobertaIntermediate(
|
485 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
486 |
+
(intermediate_act_fn): GELUActivation()
|
487 |
+
)
|
488 |
+
(output): RobertaOutput(
|
489 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
490 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
491 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
492 |
+
)
|
493 |
+
)
|
494 |
+
(20): RobertaLayer(
|
495 |
+
(attention): RobertaAttention(
|
496 |
+
(self): RobertaSelfAttention(
|
497 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
498 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
499 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
500 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
501 |
+
)
|
502 |
+
(output): RobertaSelfOutput(
|
503 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
504 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
505 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
506 |
+
)
|
507 |
+
)
|
508 |
+
(intermediate): RobertaIntermediate(
|
509 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
510 |
+
(intermediate_act_fn): GELUActivation()
|
511 |
+
)
|
512 |
+
(output): RobertaOutput(
|
513 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
514 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
515 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
516 |
+
)
|
517 |
+
)
|
518 |
+
(21): RobertaLayer(
|
519 |
+
(attention): RobertaAttention(
|
520 |
+
(self): RobertaSelfAttention(
|
521 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
522 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
523 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
525 |
+
)
|
526 |
+
(output): RobertaSelfOutput(
|
527 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
528 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
529 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
530 |
+
)
|
531 |
+
)
|
532 |
+
(intermediate): RobertaIntermediate(
|
533 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
534 |
+
(intermediate_act_fn): GELUActivation()
|
535 |
+
)
|
536 |
+
(output): RobertaOutput(
|
537 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
538 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
539 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(22): RobertaLayer(
|
543 |
+
(attention): RobertaAttention(
|
544 |
+
(self): RobertaSelfAttention(
|
545 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
546 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
549 |
+
)
|
550 |
+
(output): RobertaSelfOutput(
|
551 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
552 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
553 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
554 |
+
)
|
555 |
+
)
|
556 |
+
(intermediate): RobertaIntermediate(
|
557 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
558 |
+
(intermediate_act_fn): GELUActivation()
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
(23): RobertaLayer(
|
567 |
+
(attention): RobertaAttention(
|
568 |
+
(self): RobertaSelfAttention(
|
569 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
571 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
572 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
573 |
+
)
|
574 |
+
(output): RobertaSelfOutput(
|
575 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
576 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
577 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
578 |
+
)
|
579 |
+
)
|
580 |
+
(intermediate): RobertaIntermediate(
|
581 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
582 |
+
(intermediate_act_fn): GELUActivation()
|
583 |
+
)
|
584 |
+
(output): RobertaOutput(
|
585 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
586 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
587 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
588 |
+
)
|
589 |
+
)
|
590 |
+
)
|
591 |
+
)
|
592 |
+
(pooler): RobertaPooler(
|
593 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
594 |
+
(activation): Tanh()
|
595 |
+
)
|
596 |
+
)
|
597 |
+
)
|
598 |
+
(word_dropout): WordDropout(p=0.05)
|
599 |
+
(locked_dropout): LockedDropout(p=0.5)
|
600 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
601 |
+
(loss_function): CrossEntropyLoss()
|
602 |
+
)"
|
603 |
+
2022-04-25 01:39:43,372 ----------------------------------------------------------------------------------------------------
|
604 |
+
2022-04-25 01:39:43,372 Corpus: "Corpus: 1820 train + 50 dev + 67 test sentences"
|
605 |
+
2022-04-25 01:39:43,373 ----------------------------------------------------------------------------------------------------
|
606 |
+
2022-04-25 01:39:43,374 Parameters:
|
607 |
+
2022-04-25 01:39:43,374 - learning_rate: "0.000005"
|
608 |
+
2022-04-25 01:39:43,375 - mini_batch_size: "4"
|
609 |
+
2022-04-25 01:39:43,375 - patience: "3"
|
610 |
+
2022-04-25 01:39:43,376 - anneal_factor: "0.5"
|
611 |
+
2022-04-25 01:39:43,377 - max_epochs: "10"
|
612 |
+
2022-04-25 01:39:43,378 - shuffle: "True"
|
613 |
+
2022-04-25 01:39:43,378 - train_with_dev: "False"
|
614 |
+
2022-04-25 01:39:43,379 - batch_growth_annealing: "False"
|
615 |
+
2022-04-25 01:39:43,379 ----------------------------------------------------------------------------------------------------
|
616 |
+
2022-04-25 01:39:43,380 Model training base path: "resources/taggers/ner_xlm_finedtuned_ck1_ft"
|
617 |
+
2022-04-25 01:39:43,381 ----------------------------------------------------------------------------------------------------
|
618 |
+
2022-04-25 01:39:43,381 Device: cuda:0
|
619 |
+
2022-04-25 01:39:43,382 ----------------------------------------------------------------------------------------------------
|
620 |
+
2022-04-25 01:39:43,382 Embeddings storage mode: none
|
621 |
+
2022-04-25 01:39:43,383 ----------------------------------------------------------------------------------------------------
|
622 |
+
2022-04-25 01:40:01,316 epoch 1 - iter 45/455 - loss 2.02383973 - samples/sec: 10.04 - lr: 0.000000
|
623 |
+
2022-04-25 01:40:19,778 epoch 1 - iter 90/455 - loss 1.77018784 - samples/sec: 9.75 - lr: 0.000001
|
624 |
+
2022-04-25 01:40:38,303 epoch 1 - iter 135/455 - loss 1.55487540 - samples/sec: 9.72 - lr: 0.000001
|
625 |
+
2022-04-25 01:40:57,281 epoch 1 - iter 180/455 - loss 1.34519623 - samples/sec: 9.49 - lr: 0.000002
|
626 |
+
2022-04-25 01:41:18,145 epoch 1 - iter 225/455 - loss 1.15539089 - samples/sec: 8.63 - lr: 0.000002
|
627 |
+
2022-04-25 01:41:36,602 epoch 1 - iter 270/455 - loss 1.02895662 - samples/sec: 9.76 - lr: 0.000003
|
628 |
+
2022-04-25 01:41:55,400 epoch 1 - iter 315/455 - loss 0.93416075 - samples/sec: 9.58 - lr: 0.000003
|
629 |
+
2022-04-25 01:42:14,308 epoch 1 - iter 360/455 - loss 0.86211554 - samples/sec: 9.52 - lr: 0.000004
|
630 |
+
2022-04-25 01:42:33,218 epoch 1 - iter 405/455 - loss 0.80736508 - samples/sec: 9.52 - lr: 0.000004
|
631 |
+
2022-04-25 01:42:52,404 epoch 1 - iter 450/455 - loss 0.76251684 - samples/sec: 9.38 - lr: 0.000005
|
632 |
+
2022-04-25 01:42:54,450 ----------------------------------------------------------------------------------------------------
|
633 |
+
2022-04-25 01:42:54,452 EPOCH 1 done: loss 0.7578 - lr 0.000005
|
634 |
+
2022-04-25 01:43:03,256 Evaluating as a multi-label problem: False
|
635 |
+
2022-04-25 01:43:03,269 DEV : loss 0.3607260286808014 - f1-score (micro avg) 0.0
|
636 |
+
2022-04-25 01:43:03,277 BAD EPOCHS (no improvement): 4
|
637 |
+
2022-04-25 01:43:03,278 ----------------------------------------------------------------------------------------------------
|
638 |
+
2022-04-25 01:43:22,465 epoch 2 - iter 45/455 - loss 0.35669344 - samples/sec: 9.38 - lr: 0.000005
|
639 |
+
2022-04-25 01:43:41,226 epoch 2 - iter 90/455 - loss 0.33744187 - samples/sec: 9.60 - lr: 0.000005
|
640 |
+
2022-04-25 01:44:00,335 epoch 2 - iter 135/455 - loss 0.33264492 - samples/sec: 9.42 - lr: 0.000005
|
641 |
+
2022-04-25 01:44:19,259 epoch 2 - iter 180/455 - loss 0.33442139 - samples/sec: 9.51 - lr: 0.000005
|
642 |
+
2022-04-25 01:44:37,971 epoch 2 - iter 225/455 - loss 0.33062050 - samples/sec: 9.62 - lr: 0.000005
|
643 |
+
2022-04-25 01:44:56,896 epoch 2 - iter 270/455 - loss 0.32856691 - samples/sec: 9.51 - lr: 0.000005
|
644 |
+
2022-04-25 01:45:17,782 epoch 2 - iter 315/455 - loss 0.32794608 - samples/sec: 8.62 - lr: 0.000005
|
645 |
+
2022-04-25 01:45:36,760 epoch 2 - iter 360/455 - loss 0.32718419 - samples/sec: 9.49 - lr: 0.000005
|
646 |
+
2022-04-25 01:45:55,772 epoch 2 - iter 405/455 - loss 0.32696006 - samples/sec: 9.47 - lr: 0.000005
|
647 |
+
2022-04-25 01:46:15,075 epoch 2 - iter 450/455 - loss 0.32726336 - samples/sec: 9.33 - lr: 0.000004
|
648 |
+
2022-04-25 01:46:17,246 ----------------------------------------------------------------------------------------------------
|
649 |
+
2022-04-25 01:46:17,247 EPOCH 2 done: loss 0.3274 - lr 0.000004
|
650 |
+
2022-04-25 01:46:23,646 Evaluating as a multi-label problem: False
|
651 |
+
2022-04-25 01:46:23,664 DEV : loss 0.44372475147247314 - f1-score (micro avg) 0.0
|
652 |
+
2022-04-25 01:46:23,675 BAD EPOCHS (no improvement): 4
|
653 |
+
2022-04-25 01:46:23,676 ----------------------------------------------------------------------------------------------------
|
654 |
+
2022-04-25 01:46:42,384 epoch 3 - iter 45/455 - loss 0.31045361 - samples/sec: 9.63 - lr: 0.000004
|
655 |
+
2022-04-25 01:47:03,681 epoch 3 - iter 90/455 - loss 0.30688918 - samples/sec: 8.45 - lr: 0.000004
|
656 |
+
2022-04-25 01:47:22,548 epoch 3 - iter 135/455 - loss 0.30176367 - samples/sec: 9.54 - lr: 0.000004
|
657 |
+
2022-04-25 01:47:41,337 epoch 3 - iter 180/455 - loss 0.29894450 - samples/sec: 9.58 - lr: 0.000004
|
658 |
+
2022-04-25 01:48:00,045 epoch 3 - iter 225/455 - loss 0.29867330 - samples/sec: 9.62 - lr: 0.000004
|
659 |
+
2022-04-25 01:48:18,928 epoch 3 - iter 270/455 - loss 0.29997778 - samples/sec: 9.54 - lr: 0.000004
|
660 |
+
2022-04-25 01:48:37,737 epoch 3 - iter 315/455 - loss 0.30151499 - samples/sec: 9.57 - lr: 0.000004
|
661 |
+
2022-04-25 01:48:56,808 epoch 3 - iter 360/455 - loss 0.30030851 - samples/sec: 9.44 - lr: 0.000004
|
662 |
+
2022-04-25 01:49:15,866 epoch 3 - iter 405/455 - loss 0.29995926 - samples/sec: 9.45 - lr: 0.000004
|
663 |
+
2022-04-25 01:49:37,329 epoch 3 - iter 450/455 - loss 0.30000599 - samples/sec: 8.39 - lr: 0.000004
|
664 |
+
2022-04-25 01:49:39,502 ----------------------------------------------------------------------------------------------------
|
665 |
+
2022-04-25 01:49:39,503 EPOCH 3 done: loss 0.3004 - lr 0.000004
|
666 |
+
2022-04-25 01:49:46,186 Evaluating as a multi-label problem: False
|
667 |
+
2022-04-25 01:49:46,198 DEV : loss 0.4250624477863312 - f1-score (micro avg) 0.0
|
668 |
+
2022-04-25 01:49:46,207 BAD EPOCHS (no improvement): 4
|
669 |
+
2022-04-25 01:49:46,208 ----------------------------------------------------------------------------------------------------
|
670 |
+
2022-04-25 01:50:04,886 epoch 4 - iter 45/455 - loss 0.27018579 - samples/sec: 9.64 - lr: 0.000004
|
671 |
+
2022-04-25 01:50:23,747 epoch 4 - iter 90/455 - loss 0.28505798 - samples/sec: 9.55 - lr: 0.000004
|
672 |
+
2022-04-25 01:50:42,591 epoch 4 - iter 135/455 - loss 0.28106699 - samples/sec: 9.55 - lr: 0.000004
|
673 |
+
2022-04-25 01:51:01,834 epoch 4 - iter 180/455 - loss 0.28213592 - samples/sec: 9.36 - lr: 0.000004
|
674 |
+
2022-04-25 01:51:22,523 epoch 4 - iter 225/455 - loss 0.28339344 - samples/sec: 8.70 - lr: 0.000004
|
675 |
+
2022-04-25 01:51:41,984 epoch 4 - iter 270/455 - loss 0.28600075 - samples/sec: 9.25 - lr: 0.000004
|
676 |
+
2022-04-25 01:52:01,001 epoch 4 - iter 315/455 - loss 0.28507349 - samples/sec: 9.47 - lr: 0.000004
|
677 |
+
2022-04-25 01:52:19,572 epoch 4 - iter 360/455 - loss 0.28385244 - samples/sec: 9.70 - lr: 0.000003
|
678 |
+
2022-04-25 01:52:38,471 epoch 4 - iter 405/455 - loss 0.28397099 - samples/sec: 9.53 - lr: 0.000003
|
679 |
+
2022-04-25 01:52:57,371 epoch 4 - iter 450/455 - loss 0.28432390 - samples/sec: 9.53 - lr: 0.000003
|
680 |
+
2022-04-25 01:52:59,489 ----------------------------------------------------------------------------------------------------
|
681 |
+
2022-04-25 01:52:59,490 EPOCH 4 done: loss 0.2844 - lr 0.000003
|
682 |
+
2022-04-25 01:53:06,144 Evaluating as a multi-label problem: False
|
683 |
+
2022-04-25 01:53:06,157 DEV : loss 0.4436105787754059 - f1-score (micro avg) 0.0
|
684 |
+
2022-04-25 01:53:06,166 BAD EPOCHS (no improvement): 4
|
685 |
+
2022-04-25 01:53:06,168 ----------------------------------------------------------------------------------------------------
|
686 |
+
2022-04-25 01:53:27,165 epoch 5 - iter 45/455 - loss 0.26753679 - samples/sec: 8.58 - lr: 0.000003
|
687 |
+
2022-04-25 01:53:46,071 epoch 5 - iter 90/455 - loss 0.27230605 - samples/sec: 9.52 - lr: 0.000003
|
688 |
+
2022-04-25 01:54:04,859 epoch 5 - iter 135/455 - loss 0.27246786 - samples/sec: 9.58 - lr: 0.000003
|
689 |
+
2022-04-25 01:54:23,704 epoch 5 - iter 180/455 - loss 0.27259198 - samples/sec: 9.55 - lr: 0.000003
|
690 |
+
2022-04-25 01:54:42,577 epoch 5 - iter 225/455 - loss 0.27431760 - samples/sec: 9.54 - lr: 0.000003
|
691 |
+
2022-04-25 01:55:01,271 epoch 5 - iter 270/455 - loss 0.27392484 - samples/sec: 9.63 - lr: 0.000003
|
692 |
+
2022-04-25 01:55:20,066 epoch 5 - iter 315/455 - loss 0.27357625 - samples/sec: 9.58 - lr: 0.000003
|
693 |
+
2022-04-25 01:55:39,125 epoch 5 - iter 360/455 - loss 0.27202662 - samples/sec: 9.45 - lr: 0.000003
|
694 |
+
2022-04-25 01:55:57,915 epoch 5 - iter 405/455 - loss 0.27381644 - samples/sec: 9.58 - lr: 0.000003
|
695 |
+
2022-04-25 01:56:19,310 epoch 5 - iter 450/455 - loss 0.27384803 - samples/sec: 8.42 - lr: 0.000003
|
696 |
+
2022-04-25 01:56:21,405 ----------------------------------------------------------------------------------------------------
|
697 |
+
2022-04-25 01:56:21,405 EPOCH 5 done: loss 0.2735 - lr 0.000003
|
698 |
+
2022-04-25 01:56:27,996 Evaluating as a multi-label problem: False
|
699 |
+
2022-04-25 01:56:28,008 DEV : loss 0.46451953053474426 - f1-score (micro avg) 0.0
|
700 |
+
2022-04-25 01:56:28,017 BAD EPOCHS (no improvement): 4
|
701 |
+
2022-04-25 01:56:28,018 ----------------------------------------------------------------------------------------------------
|
702 |
+
2022-04-25 01:56:46,994 epoch 6 - iter 45/455 - loss 0.26238774 - samples/sec: 9.49 - lr: 0.000003
|
703 |
+
2022-04-25 01:57:06,067 epoch 6 - iter 90/455 - loss 0.26228525 - samples/sec: 9.44 - lr: 0.000003
|
704 |
+
2022-04-25 01:57:25,103 epoch 6 - iter 135/455 - loss 0.26298919 - samples/sec: 9.46 - lr: 0.000003
|
705 |
+
2022-04-25 01:57:45,904 epoch 6 - iter 180/455 - loss 0.26033810 - samples/sec: 8.66 - lr: 0.000003
|
706 |
+
2022-04-25 01:58:04,752 epoch 6 - iter 225/455 - loss 0.25980613 - samples/sec: 9.55 - lr: 0.000003
|
707 |
+
2022-04-25 01:58:23,635 epoch 6 - iter 270/455 - loss 0.25741937 - samples/sec: 9.53 - lr: 0.000002
|
708 |
+
2022-04-25 01:58:42,770 epoch 6 - iter 315/455 - loss 0.25761401 - samples/sec: 9.41 - lr: 0.000002
|
709 |
+
2022-04-25 01:59:01,669 epoch 6 - iter 360/455 - loss 0.25802951 - samples/sec: 9.53 - lr: 0.000002
|
710 |
+
2022-04-25 01:59:20,507 epoch 6 - iter 405/455 - loss 0.25786031 - samples/sec: 9.56 - lr: 0.000002
|
711 |
+
2022-04-25 01:59:39,104 epoch 6 - iter 450/455 - loss 0.25875289 - samples/sec: 9.68 - lr: 0.000002
|
712 |
+
2022-04-25 01:59:41,245 ----------------------------------------------------------------------------------------------------
|
713 |
+
2022-04-25 01:59:41,247 EPOCH 6 done: loss 0.2586 - lr 0.000002
|
714 |
+
2022-04-25 01:59:50,159 Evaluating as a multi-label problem: False
|
715 |
+
2022-04-25 01:59:50,176 DEV : loss 0.5034258961677551 - f1-score (micro avg) 0.0
|
716 |
+
2022-04-25 01:59:50,186 BAD EPOCHS (no improvement): 4
|
717 |
+
2022-04-25 01:59:50,188 ----------------------------------------------------------------------------------------------------
|
718 |
+
2022-04-25 02:00:09,428 epoch 7 - iter 45/455 - loss 0.25272579 - samples/sec: 9.36 - lr: 0.000002
|
719 |
+
2022-04-25 02:00:28,674 epoch 7 - iter 90/455 - loss 0.24877335 - samples/sec: 9.35 - lr: 0.000002
|
720 |
+
2022-04-25 02:00:47,419 epoch 7 - iter 135/455 - loss 0.25029754 - samples/sec: 9.61 - lr: 0.000002
|
721 |
+
2022-04-25 02:01:06,330 epoch 7 - iter 180/455 - loss 0.24783496 - samples/sec: 9.52 - lr: 0.000002
|
722 |
+
2022-04-25 02:01:25,050 epoch 7 - iter 225/455 - loss 0.24702442 - samples/sec: 9.62 - lr: 0.000002
|
723 |
+
2022-04-25 02:01:43,981 epoch 7 - iter 270/455 - loss 0.24574698 - samples/sec: 9.51 - lr: 0.000002
|
724 |
+
2022-04-25 02:02:02,729 epoch 7 - iter 315/455 - loss 0.24814380 - samples/sec: 9.60 - lr: 0.000002
|
725 |
+
2022-04-25 02:02:24,035 epoch 7 - iter 360/455 - loss 0.24891601 - samples/sec: 8.45 - lr: 0.000002
|
726 |
+
2022-04-25 02:02:43,529 epoch 7 - iter 405/455 - loss 0.24938588 - samples/sec: 9.24 - lr: 0.000002
|
727 |
+
2022-04-25 02:03:02,611 epoch 7 - iter 450/455 - loss 0.24975402 - samples/sec: 9.44 - lr: 0.000002
|
728 |
+
2022-04-25 02:03:04,674 ----------------------------------------------------------------------------------------------------
|
729 |
+
2022-04-25 02:03:04,675 EPOCH 7 done: loss 0.2496 - lr 0.000002
|
730 |
+
2022-04-25 02:03:11,014 Evaluating as a multi-label problem: False
|
731 |
+
2022-04-25 02:03:11,028 DEV : loss 0.5326654314994812 - f1-score (micro avg) 0.0
|
732 |
+
2022-04-25 02:03:11,037 BAD EPOCHS (no improvement): 4
|
733 |
+
2022-04-25 02:03:11,039 ----------------------------------------------------------------------------------------------------
|
734 |
+
2022-04-25 02:03:29,928 epoch 8 - iter 45/455 - loss 0.23902515 - samples/sec: 9.53 - lr: 0.000002
|
735 |
+
2022-04-25 02:03:48,547 epoch 8 - iter 90/455 - loss 0.24182299 - samples/sec: 9.67 - lr: 0.000002
|
736 |
+
2022-04-25 02:04:09,761 epoch 8 - iter 135/455 - loss 0.23794694 - samples/sec: 8.49 - lr: 0.000002
|
737 |
+
2022-04-25 02:04:28,820 epoch 8 - iter 180/455 - loss 0.23901632 - samples/sec: 9.45 - lr: 0.000001
|
738 |
+
2022-04-25 02:04:47,476 epoch 8 - iter 225/455 - loss 0.24089284 - samples/sec: 9.65 - lr: 0.000001
|
739 |
+
2022-04-25 02:05:06,576 epoch 8 - iter 270/455 - loss 0.24050137 - samples/sec: 9.43 - lr: 0.000001
|
740 |
+
2022-04-25 02:05:25,230 epoch 8 - iter 315/455 - loss 0.24061046 - samples/sec: 9.65 - lr: 0.000001
|
741 |
+
2022-04-25 02:05:43,780 epoch 8 - iter 360/455 - loss 0.24122314 - samples/sec: 9.71 - lr: 0.000001
|
742 |
+
2022-04-25 02:06:03,140 epoch 8 - iter 405/455 - loss 0.24068138 - samples/sec: 9.30 - lr: 0.000001
|
743 |
+
2022-04-25 02:06:22,289 epoch 8 - iter 450/455 - loss 0.24028428 - samples/sec: 9.40 - lr: 0.000001
|
744 |
+
2022-04-25 02:06:24,348 ----------------------------------------------------------------------------------------------------
|
745 |
+
2022-04-25 02:06:24,350 EPOCH 8 done: loss 0.2403 - lr 0.000001
|
746 |
+
2022-04-25 02:06:33,470 Evaluating as a multi-label problem: False
|
747 |
+
2022-04-25 02:06:33,485 DEV : loss 0.5238903760910034 - f1-score (micro avg) 0.0
|
748 |
+
2022-04-25 02:06:33,495 BAD EPOCHS (no improvement): 4
|
749 |
+
2022-04-25 02:06:33,497 ----------------------------------------------------------------------------------------------------
|
750 |
+
2022-04-25 02:06:52,645 epoch 9 - iter 45/455 - loss 0.22659045 - samples/sec: 9.40 - lr: 0.000001
|
751 |
+
2022-04-25 02:07:11,647 epoch 9 - iter 90/455 - loss 0.23007686 - samples/sec: 9.48 - lr: 0.000001
|
752 |
+
2022-04-25 02:07:30,432 epoch 9 - iter 135/455 - loss 0.23182102 - samples/sec: 9.59 - lr: 0.000001
|
753 |
+
2022-04-25 02:07:49,161 epoch 9 - iter 180/455 - loss 0.23484638 - samples/sec: 9.61 - lr: 0.000001
|
754 |
+
2022-04-25 02:08:08,185 epoch 9 - iter 225/455 - loss 0.23575341 - samples/sec: 9.46 - lr: 0.000001
|
755 |
+
2022-04-25 02:08:29,084 epoch 9 - iter 270/455 - loss 0.23430629 - samples/sec: 8.62 - lr: 0.000001
|
756 |
+
2022-04-25 02:08:48,058 epoch 9 - iter 315/455 - loss 0.23511980 - samples/sec: 9.49 - lr: 0.000001
|
757 |
+
2022-04-25 02:09:07,055 epoch 9 - iter 360/455 - loss 0.23591144 - samples/sec: 9.48 - lr: 0.000001
|
758 |
+
2022-04-25 02:09:25,960 epoch 9 - iter 405/455 - loss 0.23587694 - samples/sec: 9.52 - lr: 0.000001
|
759 |
+
2022-04-25 02:09:45,046 epoch 9 - iter 450/455 - loss 0.23596768 - samples/sec: 9.43 - lr: 0.000001
|
760 |
+
2022-04-25 02:09:47,133 ----------------------------------------------------------------------------------------------------
|
761 |
+
2022-04-25 02:09:47,134 EPOCH 9 done: loss 0.2358 - lr 0.000001
|
762 |
+
2022-04-25 02:09:53,727 Evaluating as a multi-label problem: False
|
763 |
+
2022-04-25 02:09:53,740 DEV : loss 0.5382402539253235 - f1-score (micro avg) 0.0
|
764 |
+
2022-04-25 02:09:53,749 BAD EPOCHS (no improvement): 4
|
765 |
+
2022-04-25 02:09:53,750 ----------------------------------------------------------------------------------------------------
|
766 |
+
2022-04-25 02:10:14,720 epoch 10 - iter 45/455 - loss 0.22667111 - samples/sec: 8.59 - lr: 0.000001
|
767 |
+
2022-04-25 02:10:34,134 epoch 10 - iter 90/455 - loss 0.22673460 - samples/sec: 9.27 - lr: 0.000000
|
768 |
+
2022-04-25 02:10:53,154 epoch 10 - iter 135/455 - loss 0.22714280 - samples/sec: 9.47 - lr: 0.000000
|
769 |
+
2022-04-25 02:11:12,101 epoch 10 - iter 180/455 - loss 0.22947185 - samples/sec: 9.50 - lr: 0.000000
|
770 |
+
2022-04-25 02:11:30,855 epoch 10 - iter 225/455 - loss 0.23026782 - samples/sec: 9.60 - lr: 0.000000
|
771 |
+
2022-04-25 02:11:49,560 epoch 10 - iter 270/455 - loss 0.23211704 - samples/sec: 9.63 - lr: 0.000000
|
772 |
+
2022-04-25 02:12:08,468 epoch 10 - iter 315/455 - loss 0.23132383 - samples/sec: 9.52 - lr: 0.000000
|
773 |
+
2022-04-25 02:12:27,224 epoch 10 - iter 360/455 - loss 0.23094819 - samples/sec: 9.60 - lr: 0.000000
|
774 |
+
2022-04-25 02:12:46,168 epoch 10 - iter 405/455 - loss 0.23152902 - samples/sec: 9.50 - lr: 0.000000
|
775 |
+
2022-04-25 02:13:07,714 epoch 10 - iter 450/455 - loss 0.23243307 - samples/sec: 8.36 - lr: 0.000000
|
776 |
+
2022-04-25 02:13:09,804 ----------------------------------------------------------------------------------------------------
|
777 |
+
2022-04-25 02:13:09,806 EPOCH 10 done: loss 0.2321 - lr 0.000000
|
778 |
+
2022-04-25 02:13:16,510 Evaluating as a multi-label problem: False
|
779 |
+
2022-04-25 02:13:16,522 DEV : loss 0.5321827530860901 - f1-score (micro avg) 0.0
|
780 |
+
2022-04-25 02:13:16,531 BAD EPOCHS (no improvement): 4
|
781 |
+
2022-04-25 02:13:19,604 ----------------------------------------------------------------------------------------------------
|
782 |
+
2022-04-25 02:13:19,607 Testing using last state of model ...
|
783 |
+
2022-04-25 02:13:30,230 Evaluating as a multi-label problem: False
|
784 |
+
2022-04-25 02:13:30,247 0.0 0.0 0.0 0.0
|
785 |
+
2022-04-25 02:13:30,248
|
786 |
+
Results:
|
787 |
+
- F-score (micro) 0.0
|
788 |
+
- F-score (macro) 0.0
|
789 |
+
- Accuracy 0.0
|
790 |
+
|
791 |
+
By class:
|
792 |
+
precision recall f1-score support
|
793 |
+
|
794 |
+
nk> 0.0000 0.0000 0.0000 0.0
|
795 |
+
ORG 0.0000 0.0000 0.0000 687.0
|
796 |
+
LOC 0.0000 0.0000 0.0000 304.0
|
797 |
+
PENT 0.0000 0.0000 0.0000 6.0
|
798 |
+
|
799 |
+
micro avg 0.0000 0.0000 0.0000 997.0
|
800 |
+
macro avg 0.0000 0.0000 0.0000 997.0
|
801 |
+
weighted avg 0.0000 0.0000 0.0000 997.0
|
802 |
+
|
803 |
+
2022-04-25 02:13:30,248 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|