File size: 6,629 Bytes
206f83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gc
import os
from typing import Dict, List, Tuple, Union

from PIL import Image, ImageFilter
from controlnet_aux import LineartDetector
from diffusers import (
    ControlNetModel,
    StableDiffusionXLControlNetPipeline,
    UNet2DConditionModel,
)
from huggingface_hub import hf_hub_download
import safetensors
import torch
from tqdm import tqdm
from transformers import AutoTokenizer, CLIPTextModelWithProjection


# Base models
SDXL_REPO = "stabilityai/stable-diffusion-xl-base-1.0"
DPO_REPO = "mhdang/dpo-sdxl-text2image-v1"
JN_REPO = "RunDiffusion/Juggernaut-XL-v9"
JSDXL_REPO = "stabilityai/japanese-stable-diffusion-xl"

# Evo-Ukiyoe
UKIYOE_REPO = "SakanaAI/Evo-Ukiyoe-v1"

# Evo-Nishikie
NISHIKIE_REPO = "SakanaAI/Evo-Nishikie-v1"


class EvoNishikieConditioningImageProcessor:
    def __init__(self, device="cpu"):
        self.lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators").to(device)
        self.image_filter = ImageFilter.MedianFilter(size=3)

    def __call__(self, original_image: Image.Image) -> Image.Image:
        lineart_image = self.lineart_detector(original_image, coarse=False, image_resolution=1024)
        lineart_image_filtered = lineart_image.filter(self.image_filter)
        conditioning_image = lineart_image_filtered.point(lambda p: 255 if p > 40 else 0).convert("L")
        return conditioning_image


def load_state_dict(checkpoint_file: Union[str, os.PathLike], device: str = "cpu"):
    file_extension = os.path.basename(checkpoint_file).split(".")[-1]
    if file_extension == "safetensors":
        return safetensors.torch.load_file(checkpoint_file, device=device)
    else:
        return torch.load(checkpoint_file, map_location=device)


def load_from_pretrained(
    repo_id,
    filename="diffusion_pytorch_model.fp16.safetensors",
    subfolder="unet",
    device="cuda",
) -> Dict[str, torch.Tensor]:
    return load_state_dict(
        hf_hub_download(
            repo_id=repo_id,
            filename=filename,
            subfolder=subfolder,
        ),
        device=device,
    )


def reshape_weight_task_tensors(task_tensors, weights):
    """
    Reshapes `weights` to match the shape of `task_tensors` by unsqueezing in the remaining dimensions.

    Args:
        task_tensors (`torch.Tensor`): The tensors that will be used to reshape `weights`.
        weights (`torch.Tensor`): The tensor to be reshaped.

    Returns:
        `torch.Tensor`: The reshaped tensor.
    """
    new_shape = weights.shape + (1,) * (task_tensors.dim() - weights.dim())
    weights = weights.view(new_shape)
    return weights


def linear(task_tensors: List[torch.Tensor], weights: torch.Tensor) -> torch.Tensor:
    """
    Merge the task tensors using `linear`.

    Args:
        task_tensors(`List[torch.Tensor]`):The task tensors to merge.
        weights (`torch.Tensor`):The weights of the task tensors.

    Returns:
        `torch.Tensor`: The merged tensor.
    """
    task_tensors = torch.stack(task_tensors, dim=0)
    # weighted task tensors
    weights = reshape_weight_task_tensors(task_tensors, weights)
    weighted_task_tensors = task_tensors * weights
    mixed_task_tensors = weighted_task_tensors.sum(dim=0)
    return mixed_task_tensors


def merge_models(task_tensors, weights):
    keys = list(task_tensors[0].keys())
    weights = torch.tensor(weights, device=task_tensors[0][keys[0]].device)
    state_dict = {}
    for key in tqdm(keys, desc="Merging"):
        w_list = []
        for i, sd in enumerate(task_tensors):
            w = sd.pop(key)
            w_list.append(w)
        new_w = linear(task_tensors=w_list, weights=weights)
        state_dict[key] = new_w
    return state_dict


def split_conv_attn(weights):
    attn_tensors = {}
    conv_tensors = {}
    for key in list(weights.keys()):
        if any(k in key for k in ["to_k", "to_q", "to_v", "to_out.0"]):
            attn_tensors[key] = weights.pop(key)
        else:
            conv_tensors[key] = weights.pop(key)
    return {"conv": conv_tensors, "attn": attn_tensors}


def load_evo_nishikie(device="cuda", processor_device="cpu") -> Tuple[
    StableDiffusionXLControlNetPipeline, EvoNishikieConditioningImageProcessor
]:
    # Load base models
    sdxl_weights = split_conv_attn(load_from_pretrained(SDXL_REPO, device=device))
    dpo_weights = split_conv_attn(
        load_from_pretrained(
            DPO_REPO, "diffusion_pytorch_model.safetensors", device=device
        )
    )
    jn_weights = split_conv_attn(load_from_pretrained(JN_REPO, device=device))
    jsdxl_weights = split_conv_attn(load_from_pretrained(JSDXL_REPO, device=device))

    # Merge base models
    tensors = [sdxl_weights, dpo_weights, jn_weights, jsdxl_weights]
    new_conv = merge_models(
        [sd["conv"] for sd in tensors],
        [
            0.15928833971605916,
            0.1032449268871776,
            0.6503217149752791,
            0.08714501842148402,
        ],
    )
    new_attn = merge_models(
        [sd["attn"] for sd in tensors],
        [
            0.1877279276437178,
            0.20014114603909822,
            0.3922685507065275,
            0.2198623756106564,
        ],
    )

    # Delete no longer needed variables to free
    del sdxl_weights, dpo_weights, jn_weights, jsdxl_weights
    gc.collect()
    if "cuda" in device:
        torch.cuda.empty_cache()

    # Instantiate UNet
    unet_config = UNet2DConditionModel.load_config(SDXL_REPO, subfolder="unet")
    unet = UNet2DConditionModel.from_config(unet_config).to(device=device)
    unet.load_state_dict({**new_conv, **new_attn})

    # Load other modules
    text_encoder = CLIPTextModelWithProjection.from_pretrained(
        JSDXL_REPO, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16",
    )
    tokenizer = AutoTokenizer.from_pretrained(
        JSDXL_REPO, subfolder="tokenizer", use_fast=False,
    )

    # Load Evo-Nishikie weights
    controlnet = ControlNetModel.from_pretrained(
        NISHIKIE_REPO, torch_dtype=torch.float16, device=device,
    )

    # Load pipeline
    pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
        SDXL_REPO,
        unet=unet,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        controlnet=controlnet,
        torch_dtype=torch.float16,
        variant="fp16",
    )

    # Load Evo-Ukiyoe weights
    pipe.load_lora_weights(UKIYOE_REPO)
    pipe.fuse_lora(lora_scale=1.0)

    pipe = pipe.to(device, dtype=torch.float16)

    # Load conditioning image processor
    processor = EvoNishikieConditioningImageProcessor(device=processor_device)

    return pipe, processor