--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-nepali results: [] widget: - text: "नेपाल र भारतबीच" example_title: "Example 1" - text: "प्रधानमन्त्री" example_title: "Example 2" - text: "दस वर्ष लामो " example_title: "Example 3" - text: "जापानमा आज " example_title: "Example 4" - text: "नेपालका धेरैजसो चाडपर्वहरूमध्ये," example_title: "Example 5" --- # distilgpt2-nepali This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a Causal language modeling (CLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [distilgpt2](https://huggingface.co/distilgpt2) for language modeling. It achieves the following results on the evaluation set: | Training Loss | Validation Loss | Perplexity |:-------------:|:---------------:|:----------:| | 3.3968 | 3.2705 | 26.3245 ## Model description Refer to original [distilgpt2](https://huggingface.co/distilgpt2) ## Intended uses & limitations This raw model can be used for Nepali text generation and intends to be fine-tuned on Nepali language focused downstream task. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences. ## Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> set_seed(42) >>> generator = pipeline('text-generation', model='Sakonii/distilgpt2-nepali') >>> generator("नेपालका धेरैजसो चाडपर्वहरूमध्ये,", max_length=30, num_return_sequences=5) Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. [{'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहार र छठपर्व विशेष रूपमा मनाइने भएकाले नेपाली मौलिक पर्व पनि हो । हिन्दू धर्म र संस्कृतिक... काठमाडौं ।'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहारको मुख्य दिन आज साँझ अस्ताउँदो सूर्यलाई अर्घ्य दिइएको छ । वैदिक विधि...विस्तृतमा पढ्नुस् काठमाडौं । नेपाल चिकित्सक संघका'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, चाडपर्व, विवाह,... नेपाली काँग्रेसका प्रवक्ता विश्वप्रकाश शर्माले पार्टीभित्र आन्तरिक झगडा हुने निश्चित भएको र गुटबन्दीका कारण चुनावमा हार बेहोर्नु'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, दशैं नेपालीहरूको मौलिक पर्वका रूपमा मनाउँछन् । नेपालीहरूको दोस्रो महान् पर्व तिहार हो । तिहारले दाजुभाइ तथा दिदीबहिनीहरूको बीचमा प्रगाढ सम्बन्ध स्थापित'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, माघे संक्रान्ति र माघे संक्रान्तिमा माघे संक्रान्तिमा मात्र नभएर फागुन महिनाभर नै विशेष महत्व रहने गरेको छ । काठमाडौं ।'}] ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('Sakonii/distilgpt2-nepali') model = AutoModelForCausalLM.from_pretrained('Sakonii/distilgpt2-nepali') # prepare input text = "चाहिएको text यता राख्नु होला।" encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ## Training data This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts are tokenized using Sentence Piece Model (SPM), a vocabulary size of 24,576 and texts are are grouped to a block of 512 tokens. ## Training procedure The model is trained with the same configuration as the original [distilgpt2](https://huggingface.co/distilgpt2); but with 512 tokens per instance, 12 instances per batch, and around 188.8K training steps. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Perplexity | |:-------------:|:-----:|:------:|:---------------:|:----------:| | 3.7645 | 1.0 | 94395 | 3.6291 | 37.6789 | | 3.5857 | 2.0 | 188790 | 3.4442 | 31.3182 | | 3.505 | 3.0 | 283185 | 3.3749 | 29.2214 | | 3.4688 | 4.0 | 377580 | 3.3439 | 28.3294 | | 3.3968 | 5.0 | 471975 | 3.2705 | 26.3245 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6