yuewang-sf
commited on
Commit
·
9e62c4f
1
Parent(s):
a18f941
update model files
Browse files- configuration_codet5p_bimodal.py +76 -0
- modeling_codet5p_bimodal.py +28 -0
configuration_codet5p_bimodal.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
|
4 |
+
""" CodeT5+ bimodal model configuration"""
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class CodeT5pBimodalConfig(PretrainedConfig):
|
12 |
+
model_type = "codet5p_bimodal"
|
13 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
14 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
vocab_size=32103,
|
19 |
+
d_model=768,
|
20 |
+
embed_dim=256,
|
21 |
+
d_kv=64,
|
22 |
+
d_ff=3072,
|
23 |
+
num_layers=12,
|
24 |
+
num_decoder_layers=None,
|
25 |
+
num_heads=12,
|
26 |
+
relative_attention_num_buckets=32,
|
27 |
+
relative_attention_max_distance=128,
|
28 |
+
dropout_rate=0.1,
|
29 |
+
layer_norm_epsilon=1e-6,
|
30 |
+
initializer_factor=1.0,
|
31 |
+
feed_forward_proj="relu",
|
32 |
+
is_encoder_decoder=False,
|
33 |
+
use_cache=True,
|
34 |
+
pad_token_id=0,
|
35 |
+
eos_token_id=2,
|
36 |
+
**kwargs
|
37 |
+
):
|
38 |
+
self.vocab_size = vocab_size
|
39 |
+
self.d_model = d_model
|
40 |
+
self.embed_dim = embed_dim
|
41 |
+
self.d_kv = d_kv
|
42 |
+
self.d_ff = d_ff
|
43 |
+
self.num_layers = num_layers
|
44 |
+
self.num_decoder_layers = (
|
45 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
46 |
+
) # default = symmetry
|
47 |
+
self.num_heads = num_heads
|
48 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
49 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
50 |
+
self.dropout_rate = dropout_rate
|
51 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
52 |
+
self.initializer_factor = initializer_factor
|
53 |
+
self.feed_forward_proj = feed_forward_proj
|
54 |
+
self.use_cache = use_cache
|
55 |
+
|
56 |
+
act_info = self.feed_forward_proj.split("-")
|
57 |
+
self.dense_act_fn = act_info[-1]
|
58 |
+
self.is_gated_act = act_info[0] == "gated"
|
59 |
+
|
60 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
61 |
+
raise ValueError(
|
62 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
|
63 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
64 |
+
"'gated-gelu' or 'relu'"
|
65 |
+
)
|
66 |
+
|
67 |
+
# for backwards compatibility
|
68 |
+
if feed_forward_proj == "gated-gelu":
|
69 |
+
self.dense_act_fn = "gelu_new"
|
70 |
+
|
71 |
+
super().__init__(
|
72 |
+
pad_token_id=pad_token_id,
|
73 |
+
eos_token_id=eos_token_id,
|
74 |
+
is_encoder_decoder=is_encoder_decoder,
|
75 |
+
**kwargs,
|
76 |
+
)
|
modeling_codet5p_bimodal.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
|
3 |
+
""" PyTorch CodeT5+ matching models.
|
4 |
+
The implementation is based on transformers.models.t5.modeling_t5 by adding a projection layer on T5EncoderModel
|
5 |
+
"""
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import T5ForConditionalGeneration
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutput,
|
14 |
+
)
|
15 |
+
from configuration_codet5p_bimodal import CodeT5pBimodalConfig
|
16 |
+
|
17 |
+
|
18 |
+
class CodeT5pBimodalModel(T5ForConditionalGeneration):
|
19 |
+
config_class = CodeT5pBimodalConfig
|
20 |
+
|
21 |
+
authorized_missing_keys = [
|
22 |
+
r"encoder.embed_tokens.weight",
|
23 |
+
]
|
24 |
+
|
25 |
+
def __init__(self, config: CodeT5pBimodalConfig):
|
26 |
+
super().__init__(config)
|
27 |
+
self.proj = nn.Linear(config.d_model, config.embed_dim)
|
28 |
+
self.itm_head = nn.Linear(config.d_model, 2)
|