Salz900 commited on
Commit
73087b5
·
verified ·
1 Parent(s): 32e8ddd

layoutlmv3-finetuned-cord_100

Browse files
Files changed (1) hide show
  1. README.md +100 -0
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - cord-layoutlmv3
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: layoutlmv3-finetuned-cord_100
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: cord-layoutlmv3
22
+ type: cord-layoutlmv3
23
+ config: cord
24
+ split: test
25
+ args: cord
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.8836524300441826
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.8982035928143712
33
+ - name: F1
34
+ type: f1
35
+ value: 0.8908685968819599
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.9057724957555179
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # layoutlmv3-finetuned-cord_100
45
+
46
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.3809
49
+ - Precision: 0.8837
50
+ - Recall: 0.8982
51
+ - F1: 0.8909
52
+ - Accuracy: 0.9058
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 1e-05
72
+ - train_batch_size: 1
73
+ - eval_batch_size: 1
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - training_steps: 2500
78
+
79
+ ### Training results
80
+
81
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | No log | 0.3125 | 250 | 1.4179 | 0.5786 | 0.6751 | 0.6231 | 0.7037 |
84
+ | 1.8601 | 0.625 | 500 | 0.9021 | 0.7458 | 0.8016 | 0.7727 | 0.7988 |
85
+ | 1.8601 | 0.9375 | 750 | 0.6900 | 0.8096 | 0.8338 | 0.8215 | 0.8294 |
86
+ | 0.7675 | 1.25 | 1000 | 0.5915 | 0.8128 | 0.8481 | 0.8300 | 0.8544 |
87
+ | 0.7675 | 1.5625 | 1250 | 0.5041 | 0.8381 | 0.8638 | 0.8507 | 0.8722 |
88
+ | 0.4979 | 1.875 | 1500 | 0.4669 | 0.8413 | 0.8728 | 0.8567 | 0.8850 |
89
+ | 0.4979 | 2.1875 | 1750 | 0.4080 | 0.8628 | 0.8847 | 0.8736 | 0.8990 |
90
+ | 0.384 | 2.5 | 2000 | 0.3878 | 0.8731 | 0.8907 | 0.8818 | 0.9003 |
91
+ | 0.384 | 2.8125 | 2250 | 0.3880 | 0.8794 | 0.8952 | 0.8872 | 0.9032 |
92
+ | 0.3439 | 3.125 | 2500 | 0.3809 | 0.8837 | 0.8982 | 0.8909 | 0.9058 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.45.1
98
+ - Pytorch 2.4.1+cu121
99
+ - Datasets 3.0.1
100
+ - Tokenizers 0.20.0