layoutlmv3-finetuned-cord_100
Browse files
README.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- cord-layoutlmv3
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: layoutlmv3-finetuned-cord_100
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: cord-layoutlmv3
|
22 |
+
type: cord-layoutlmv3
|
23 |
+
config: cord
|
24 |
+
split: test
|
25 |
+
args: cord
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.8836524300441826
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.8982035928143712
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.8908685968819599
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.9057724957555179
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# layoutlmv3-finetuned-cord_100
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.3809
|
49 |
+
- Precision: 0.8837
|
50 |
+
- Recall: 0.8982
|
51 |
+
- F1: 0.8909
|
52 |
+
- Accuracy: 0.9058
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 1e-05
|
72 |
+
- train_batch_size: 1
|
73 |
+
- eval_batch_size: 1
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- training_steps: 2500
|
78 |
+
|
79 |
+
### Training results
|
80 |
+
|
81 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 0.3125 | 250 | 1.4179 | 0.5786 | 0.6751 | 0.6231 | 0.7037 |
|
84 |
+
| 1.8601 | 0.625 | 500 | 0.9021 | 0.7458 | 0.8016 | 0.7727 | 0.7988 |
|
85 |
+
| 1.8601 | 0.9375 | 750 | 0.6900 | 0.8096 | 0.8338 | 0.8215 | 0.8294 |
|
86 |
+
| 0.7675 | 1.25 | 1000 | 0.5915 | 0.8128 | 0.8481 | 0.8300 | 0.8544 |
|
87 |
+
| 0.7675 | 1.5625 | 1250 | 0.5041 | 0.8381 | 0.8638 | 0.8507 | 0.8722 |
|
88 |
+
| 0.4979 | 1.875 | 1500 | 0.4669 | 0.8413 | 0.8728 | 0.8567 | 0.8850 |
|
89 |
+
| 0.4979 | 2.1875 | 1750 | 0.4080 | 0.8628 | 0.8847 | 0.8736 | 0.8990 |
|
90 |
+
| 0.384 | 2.5 | 2000 | 0.3878 | 0.8731 | 0.8907 | 0.8818 | 0.9003 |
|
91 |
+
| 0.384 | 2.8125 | 2250 | 0.3880 | 0.8794 | 0.8952 | 0.8872 | 0.9032 |
|
92 |
+
| 0.3439 | 3.125 | 2500 | 0.3809 | 0.8837 | 0.8982 | 0.8909 | 0.9058 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.45.1
|
98 |
+
- Pytorch 2.4.1+cu121
|
99 |
+
- Datasets 3.0.1
|
100 |
+
- Tokenizers 0.20.0
|