--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.8836524300441826 - name: Recall type: recall value: 0.8982035928143712 - name: F1 type: f1 value: 0.8908685968819599 - name: Accuracy type: accuracy value: 0.9057724957555179 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3809 - Precision: 0.8837 - Recall: 0.8982 - F1: 0.8909 - Accuracy: 0.9058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.3125 | 250 | 1.4179 | 0.5786 | 0.6751 | 0.6231 | 0.7037 | | 1.8601 | 0.625 | 500 | 0.9021 | 0.7458 | 0.8016 | 0.7727 | 0.7988 | | 1.8601 | 0.9375 | 750 | 0.6900 | 0.8096 | 0.8338 | 0.8215 | 0.8294 | | 0.7675 | 1.25 | 1000 | 0.5915 | 0.8128 | 0.8481 | 0.8300 | 0.8544 | | 0.7675 | 1.5625 | 1250 | 0.5041 | 0.8381 | 0.8638 | 0.8507 | 0.8722 | | 0.4979 | 1.875 | 1500 | 0.4669 | 0.8413 | 0.8728 | 0.8567 | 0.8850 | | 0.4979 | 2.1875 | 1750 | 0.4080 | 0.8628 | 0.8847 | 0.8736 | 0.8990 | | 0.384 | 2.5 | 2000 | 0.3878 | 0.8731 | 0.8907 | 0.8818 | 0.9003 | | 0.384 | 2.8125 | 2250 | 0.3880 | 0.8794 | 0.8952 | 0.8872 | 0.9032 | | 0.3439 | 3.125 | 2500 | 0.3809 | 0.8837 | 0.8982 | 0.8909 | 0.9058 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0