File size: 8,721 Bytes
2a84352
 
 
 
 
 
 
 
 
 
 
 
 
e7b1f4e
997526b
 
e7b1f4e
 
997526b
 
e7b1f4e
 
997526b
 
e7b1f4e
 
997526b
 
e7b1f4e
 
c027266
e7b1f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c027266
e7b1f4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997526b
e7b1f4e
997526b
e7b1f4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
language: en
tags:
- text-classification
- pytorch
- roberta
- emotions
- multi-class-classification
- multi-label-classification
datasets:
- go_emotions
license: mit
widget:
- text: I am not having a great day.
---

#### Overview

Model trained from [roberta-base](https://huggingface.co/roberta-base) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset for multi-label classification.

#### Dataset used for the model

[go_emotions](https://huggingface.co/datasets/go_emotions) is based on Reddit data and has 28 labels. It is a multi-label dataset where one or multiple labels may apply for any given input text, hence this model is a multi-label classification model with 28 'probability' float outputs for any given input text. Typically a threshold of 0.5 is applied to the probabilities for the prediction for each label.

#### How the model was created

The model was trained using `AutoModelForSequenceClassification.from_pretrained` with `problem_type="multi_label_classification"` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01.

#### Inference

There are multiple ways to use this model in Huggingface Transformers. Possibly the simplest is using a pipeline:

```python
from transformers import pipeline

classifier = pipeline(task="text-classification", model="SamLowe/roberta-base-go_emotions", top_k=None)

sentences = ["I am not having a great day"]

model_outputs = classifier(sentences)
print(model_outputs[0])
# produces a list of dicts for each of the labels
```

#### Evaluation / metrics

Evaluation of the model is available at

- https://github.com/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb
- which can be opened in Google Colab via https://colab.research.google.com/github/samlowe/go_emotions-dataset/blob/main/eval-roberta-base-go_emotions.ipynb

##### Summary

As provided in the above notebook, evaluation of the multi-label output (of the 28 dim output via a threshold of 0.5 to binarize each) using the dataset test split gives:

- Accuracy: 0.474
- Precision: 0.575
- Recall: 0.396
- F1: 0.450

But the metrics are more meaningful when measured per label given the multi-label nature (each label is effectively an independent binary classification) and the fact that there is drastically different representations of the labels in the dataset.

With a threshold of 0.5 applied to binarize the model outputs, as per the above notebook, the metrics per label are:

|                | accuracy | precision | recall | f1    | mcc   | support | threshold |
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
| admiration     | 0.946    | 0.725     | 0.675  | 0.699 | 0.670 | 504     | 0.5       |
| amusement      | 0.982    | 0.790     | 0.871  | 0.829 | 0.821 | 264     | 0.5       |
| anger          | 0.970    | 0.652     | 0.379  | 0.479 | 0.483 | 198     | 0.5       |
| annoyance      | 0.940    | 0.472     | 0.159  | 0.238 | 0.250 | 320     | 0.5       |
| approval       | 0.942    | 0.609     | 0.302  | 0.404 | 0.403 | 351     | 0.5       |
| caring         | 0.973    | 0.448     | 0.319  | 0.372 | 0.364 | 135     | 0.5       |
| confusion      | 0.972    | 0.500     | 0.431  | 0.463 | 0.450 | 153     | 0.5       |
| curiosity      | 0.950    | 0.537     | 0.356  | 0.428 | 0.412 | 284     | 0.5       |
| desire         | 0.987    | 0.630     | 0.410  | 0.496 | 0.502 | 83      | 0.5       |
| disappointment | 0.974    | 0.625     | 0.199  | 0.302 | 0.343 | 151     | 0.5       |
| disapproval    | 0.950    | 0.494     | 0.307  | 0.379 | 0.365 | 267     | 0.5       |
| disgust        | 0.982    | 0.707     | 0.333  | 0.453 | 0.478 | 123     | 0.5       |
| embarrassment  | 0.994    | 0.750     | 0.243  | 0.367 | 0.425 | 37      | 0.5       |
| excitement     | 0.983    | 0.603     | 0.340  | 0.435 | 0.445 | 103     | 0.5       |
| fear           | 0.992    | 0.758     | 0.603  | 0.671 | 0.672 | 78      | 0.5       |
| gratitude      | 0.990    | 0.960     | 0.881  | 0.919 | 0.914 | 352     | 0.5       |
| grief          | 0.999    | 0.000     | 0.000  | 0.000 | 0.000 | 6       | 0.5       |
| joy            | 0.978    | 0.647     | 0.559  | 0.600 | 0.590 | 161     | 0.5       |
| love           | 0.982    | 0.773     | 0.832  | 0.802 | 0.793 | 238     | 0.5       |
| nervousness    | 0.996    | 0.600     | 0.130  | 0.214 | 0.278 | 23      | 0.5       |
| optimism       | 0.972    | 0.667     | 0.376  | 0.481 | 0.488 | 186     | 0.5       |
| pride          | 0.997    | 0.000     | 0.000  | 0.000 | 0.000 | 16      | 0.5       |
| realization    | 0.974    | 0.541     | 0.138  | 0.220 | 0.264 | 145     | 0.5       |
| relief         | 0.998    | 0.000     | 0.000  | 0.000 | 0.000 | 11      | 0.5       |
| remorse        | 0.991    | 0.553     | 0.750  | 0.636 | 0.640 | 56      | 0.5       |
| sadness        | 0.977    | 0.621     | 0.494  | 0.550 | 0.542 | 156     | 0.5       |
| surprise       | 0.981    | 0.750     | 0.404  | 0.525 | 0.542 | 141     | 0.5       |
| neutral        | 0.782    | 0.694     | 0.604  | 0.646 | 0.492 | 1787    | 0.5       |

Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics - sacrificing some precision for a greater gain in recall, hence to the benefit of F1 (how this was done is shown in the above notebook):

|                | accuracy | precision | recall | f1    | mcc   | support | threshold |
| -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
| admiration     | 0.940    | 0.651     | 0.776  | 0.708 | 0.678 | 504     | 0.25      |
| amusement      | 0.982    | 0.781     | 0.890  | 0.832 | 0.825 | 264     | 0.45      |
| anger          | 0.959    | 0.454     | 0.601  | 0.517 | 0.502 | 198     | 0.15      |
| annoyance      | 0.864    | 0.243     | 0.619  | 0.349 | 0.328 | 320     | 0.10      |
| approval       | 0.926    | 0.432     | 0.442  | 0.437 | 0.397 | 351     | 0.30      |
| caring         | 0.972    | 0.426     | 0.385  | 0.405 | 0.391 | 135     | 0.40      |
| confusion      | 0.974    | 0.548     | 0.412  | 0.470 | 0.462 | 153     | 0.55      |
| curiosity      | 0.943    | 0.473     | 0.711  | 0.568 | 0.552 | 284     | 0.25      |
| desire         | 0.985    | 0.518     | 0.530  | 0.524 | 0.516 | 83      | 0.25      |
| disappointment | 0.974    | 0.562     | 0.298  | 0.390 | 0.398 | 151     | 0.40      |
| disapproval    | 0.941    | 0.414     | 0.468  | 0.439 | 0.409 | 267     | 0.30      |
| disgust        | 0.978    | 0.523     | 0.463  | 0.491 | 0.481 | 123     | 0.20      |
| embarrassment  | 0.994    | 0.567     | 0.459  | 0.507 | 0.507 | 37      | 0.10      |
| excitement     | 0.981    | 0.500     | 0.417  | 0.455 | 0.447 | 103     | 0.35      |
| fear           | 0.991    | 0.712     | 0.667  | 0.689 | 0.685 | 78      | 0.40      |
| gratitude      | 0.990    | 0.957     | 0.889  | 0.922 | 0.917 | 352     | 0.45      |
| grief          | 0.999    | 0.333     | 0.333  | 0.333 | 0.333 | 6       | 0.05      |
| joy            | 0.978    | 0.623     | 0.646  | 0.634 | 0.623 | 161     | 0.40      |
| love           | 0.982    | 0.740     | 0.899  | 0.812 | 0.807 | 238     | 0.25      |
| nervousness    | 0.996    | 0.571     | 0.348  | 0.432 | 0.444 | 23      | 0.25      |
| optimism       | 0.971    | 0.580     | 0.565  | 0.572 | 0.557 | 186     | 0.20      |
| pride          | 0.998    | 0.875     | 0.438  | 0.583 | 0.618 | 16      | 0.10      |
| realization    | 0.961    | 0.270     | 0.262  | 0.266 | 0.246 | 145     | 0.15      |
| relief         | 0.992    | 0.152     | 0.636  | 0.246 | 0.309 | 11      | 0.05      |
| remorse        | 0.991    | 0.541     | 0.946  | 0.688 | 0.712 | 56      | 0.10      |
| sadness        | 0.977    | 0.599     | 0.583  | 0.591 | 0.579 | 156     | 0.40      |
| surprise       | 0.977    | 0.543     | 0.674  | 0.601 | 0.593 | 141     | 0.15      |
| neutral        | 0.758    | 0.598     | 0.810  | 0.688 | 0.513 | 1787    | 0.25      |

#### Commentary on the dataset

Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.

This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split).

But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.