File size: 7,322 Bytes
20e841b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from absl import app, flags, logging
from absl.flags import FLAGS
import os
import shutil
import tensorflow as tf
from core.yolov4 import YOLO, decode, compute_loss, decode_train
from core.dataset import Dataset
from core.config import cfg
import numpy as np
from core import utils
from core.utils import freeze_all, unfreeze_all

flags.DEFINE_string('model', 'yolov4', 'yolov4, yolov3')
flags.DEFINE_string('weights', './scripts/yolov4.weights', 'pretrained weights')
flags.DEFINE_boolean('tiny', False, 'yolo or yolo-tiny')

def main(_argv):
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        tf.config.experimental.set_memory_growth(physical_devices[0], True)

    trainset = Dataset(FLAGS, is_training=True)
    testset = Dataset(FLAGS, is_training=False)
    logdir = "./data/log"
    isfreeze = False
    steps_per_epoch = len(trainset)
    first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
    second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
    global_steps = tf.Variable(1, trainable=False, dtype=tf.int64)
    warmup_steps = cfg.TRAIN.WARMUP_EPOCHS * steps_per_epoch
    total_steps = (first_stage_epochs + second_stage_epochs) * steps_per_epoch
    # train_steps = (first_stage_epochs + second_stage_epochs) * steps_per_period

    input_layer = tf.keras.layers.Input([cfg.TRAIN.INPUT_SIZE, cfg.TRAIN.INPUT_SIZE, 3])
    STRIDES, ANCHORS, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
    IOU_LOSS_THRESH = cfg.YOLO.IOU_LOSS_THRESH

    freeze_layers = utils.load_freeze_layer(FLAGS.model, FLAGS.tiny)

    feature_maps = YOLO(input_layer, NUM_CLASS, FLAGS.model, FLAGS.tiny)
    if FLAGS.tiny:
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            if i == 0:
                bbox_tensor = decode_train(fm, cfg.TRAIN.INPUT_SIZE // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
            else:
                bbox_tensor = decode_train(fm, cfg.TRAIN.INPUT_SIZE // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
            bbox_tensors.append(fm)
            bbox_tensors.append(bbox_tensor)
    else:
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            if i == 0:
                bbox_tensor = decode_train(fm, cfg.TRAIN.INPUT_SIZE // 8, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
            elif i == 1:
                bbox_tensor = decode_train(fm, cfg.TRAIN.INPUT_SIZE // 16, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
            else:
                bbox_tensor = decode_train(fm, cfg.TRAIN.INPUT_SIZE // 32, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
            bbox_tensors.append(fm)
            bbox_tensors.append(bbox_tensor)

    model = tf.keras.Model(input_layer, bbox_tensors)
    model.summary()

    if FLAGS.weights == None:
        print("Training from scratch")
    else:
        if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights":
            utils.load_weights(model, FLAGS.weights, FLAGS.model, FLAGS.tiny)
        else:
            model.load_weights(FLAGS.weights)
        print('Restoring weights from: %s ... ' % FLAGS.weights)


    optimizer = tf.keras.optimizers.Adam()
    if os.path.exists(logdir): shutil.rmtree(logdir)
    writer = tf.summary.create_file_writer(logdir)

    # define training step function
    # @tf.function
    def train_step(image_data, target):
        with tf.GradientTape() as tape:
            pred_result = model(image_data, training=True)
            giou_loss = conf_loss = prob_loss = 0

            # optimizing process
            for i in range(len(freeze_layers)):
                conv, pred = pred_result[i * 2], pred_result[i * 2 + 1]
                loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i)
                giou_loss += loss_items[0]
                conf_loss += loss_items[1]
                prob_loss += loss_items[2]

            total_loss = giou_loss + conf_loss + prob_loss

            gradients = tape.gradient(total_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(gradients, model.trainable_variables))
            tf.print("=> STEP %4d/%4d   lr: %.6f   giou_loss: %4.2f   conf_loss: %4.2f   "
                     "prob_loss: %4.2f   total_loss: %4.2f" % (global_steps, total_steps, optimizer.lr.numpy(),
                                                               giou_loss, conf_loss,
                                                               prob_loss, total_loss))
            # update learning rate
            global_steps.assign_add(1)
            if global_steps < warmup_steps:
                lr = global_steps / warmup_steps * cfg.TRAIN.LR_INIT
            else:
                lr = cfg.TRAIN.LR_END + 0.5 * (cfg.TRAIN.LR_INIT - cfg.TRAIN.LR_END) * (
                    (1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))
                )
            optimizer.lr.assign(lr.numpy())

            # writing summary data
            with writer.as_default():
                tf.summary.scalar("lr", optimizer.lr, step=global_steps)
                tf.summary.scalar("loss/total_loss", total_loss, step=global_steps)
                tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps)
                tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps)
                tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps)
            writer.flush()
    def test_step(image_data, target):
        with tf.GradientTape() as tape:
            pred_result = model(image_data, training=True)
            giou_loss = conf_loss = prob_loss = 0

            # optimizing process
            for i in range(len(freeze_layers)):
                conv, pred = pred_result[i * 2], pred_result[i * 2 + 1]
                loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i)
                giou_loss += loss_items[0]
                conf_loss += loss_items[1]
                prob_loss += loss_items[2]

            total_loss = giou_loss + conf_loss + prob_loss

            tf.print("=> TEST STEP %4d   giou_loss: %4.2f   conf_loss: %4.2f   "
                     "prob_loss: %4.2f   total_loss: %4.2f" % (global_steps, giou_loss, conf_loss,
                                                               prob_loss, total_loss))

    for epoch in range(first_stage_epochs + second_stage_epochs):
        if epoch < first_stage_epochs:
            if not isfreeze:
                isfreeze = True
                for name in freeze_layers:
                    freeze = model.get_layer(name)
                    freeze_all(freeze)
        elif epoch >= first_stage_epochs:
            if isfreeze:
                isfreeze = False
                for name in freeze_layers:
                    freeze = model.get_layer(name)
                    unfreeze_all(freeze)
        for image_data, target in trainset:
            train_step(image_data, target)
        for image_data, target in testset:
            test_step(image_data, target)
        model.save_weights("./checkpoints/yolov4")

if __name__ == '__main__':
    try:
        app.run(main)
    except SystemExit:
        pass