Samalabama66
commited on
Commit
•
ea24fec
1
Parent(s):
fb16804
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv.zip +3 -0
- a2c-AntBulletEnv/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv/data +107 -0
- a2c-AntBulletEnv/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv/policy.pth +3 -0
- a2c-AntBulletEnv/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1234.42 +/- 188.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb67d274827a3fe7dc3e114ace7e0744a479cf6c8ce0297bd920d2fab8b874dd
|
3 |
+
size 129244
|
a2c-AntBulletEnv/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c074bbd9750>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c074bbd97e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c074bbd9870>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c074bbd9900>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c074bbd9990>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c074bbd9a20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c074bbd9ab0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c074bbd9b40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c074bbd9bd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c074bbd9c60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c074bbd9cf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c074bbd9d80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c074bbcfe00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690357497280170927,
|
41 |
+
"learning_rate": 0.001,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMkvwz5E3z4+K1ETP9ePpT8HDes9f9BaPxP2b79gQNI9ceEsv7YK0j0MN3c+cu4bP3qihby/1e6+5wUAP0pA5zwFvkm/DNKWvxX4gr98wHk/KUjjP5smCT8cm6q+FmJZv8RAKj+TgZM+iAkqP+l5Or9Zt0A/cx9Iv9X13r7yIFy+8nB2P/uf3j4fsTY/jiaAP+NQir/FHoM/iIMrP0pcAz8fCYY//12dvcr24L9XSTm/nm/NvkypNT5O+cO++ehWPwPUZD+i4VpA57xhPzjWiL/EQCo/iiVewPK1wL/euK8/l6WVPzVRXr8f5hW/bL8GQInzYb5FcAM/Ce5Xv4Vbo78OVKo/8T8Avq8zLD85FUq/5VuSv1an4b/VZ/s+YykJPX4Gqr8lvMi/uDjvPmRZE0BJg9++VGZPwGpztL+Icsq/xEAqP5OBkz6ICSo/6Xk6v4SRtjyM37C++0wIPsTJ/z4ky/A9Mb0eP02kbb8vytG97d4sP+JHmT54pmK/Gq5bvjbVqj/Hojm+YJsAP0jUOTwJyQ0/PRKGv2Rr07+9nU27tgV7Pq52ljsieQG+N7+mv8RAKj+TgZM+iAkqP+l5Or+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD5klC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASvP7PQAAAAAbR/+/AAAAAJMCeT0AAAAAnon9PwAAAAAL7A88AAAAADXN8j8AAAAANVmvPQAAAAD2Wf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn6kEtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFj5Cz4AAAAA0ff1vwAAAACaq/W9AAAAANS/7j8AAAAAUTwFvQAAAAC94f0/AAAAAO/xdT0AAAAAxWDsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIMehjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBq0sO9AAAAAKOr578AAAAARM4hvQAAAADtAPY/AAAAAEH0Cb4AAAAA8bHkPwAAAADtYAW+AAAAAFpE9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3pwg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYP0ZvQAAAAA7DN6/AAAAAPQaB74AAAAA3fTuPwAAAABj7IE9AAAAAKul7D8AAAAAdlzvvQAAAACRZey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwSZ/e+Eh+MAWyUTegDjAF0lEdAqRNGcOLBK3V9lChoBkdAoB/CbBoEjmgHTegDaAhHQKkXRBHCoCN1fZQoaAZHQKBOO3m3fANoB03oA2gIR0CpGGZmZmZmdX2UKGgGR0ChrnK8+RozaAdN6ANoCEdAqR+kzQ/oq3V9lChoBkdAoRy5Tn7pFGgHTegDaAhHQKkhgvzvqkd1fZQoaAZHQKFEO73fygBoB03oA2gIR0CpJXluvUz9dX2UKGgGR0CgnTP1UVBVaAdN6ANoCEdAqSarho/RmnV9lChoBkdAoLymOuJUHmgHTegDaAhHQKkr+uxKQJZ1fZQoaAZHQKBqAXNTtLNoB03oA2gIR0CpLXpMg2ZRdX2UKGgGR0CfhB9n9NvgaAdN6ANoCEdAqTF6UVzp5nV9lChoBkdAn+9LYK6WgWgHTegDaAhHQKkymw7kn1F1fZQoaAZHQJ9tHuogmqpoB03oA2gIR0CpOXjcuanadX2UKGgGR0Cf5USydFvyaAdN6ANoCEdAqTu4RywOfHV9lChoBkdAndDIX9BKMGgHTegDaAhHQKk/xchTwUh1fZQoaAZHQKC/t3hXKbNoB03oA2gIR0CpQPVGTcIrdX2UKGgGR0ChMIHDrJKbaAdN6ANoCEdAqUZ1L+PzWnV9lChoBkdAoII7p9qk/WgHTegDaAhHQKlH/Rk3CKt1fZQoaAZHQKAaWxt52QpoB03oA2gIR0CpS//4ZdfLdX2UKGgGR0Cg72vy9VWCaAdN6ANoCEdAqU0oiV0LdHV9lChoBkdAnlHIWUKRdWgHTegDaAhHQKlUBqveP7x1fZQoaAZHQKAkO3qAz55oB03oA2gIR0CpVkhI4EOidX2UKGgGR0Cf4IVcUucuaAdN6ANoCEdAqVpJsXSBsnV9lChoBkdAoGbOqebut2gHTegDaAhHQKlbdYB/7SB1fZQoaAZHQJ/DCRGMGX5oB03oA2gIR0CpYOWx6fJ4dX2UKGgGR0Ceu92NedCmaAdN6ANoCEdAqWJheC04R3V9lChoBkdAnxwpHqeK9GgHTegDaAhHQKlmb+irT6V1fZQoaAZHQJti0Y77sOZoB03oA2gIR0CpZ5uUD+zddX2UKGgGR0CdP/xjawljaAdN6ANoCEdAqW48er+5v3V9lChoBkdAmvYqDK5kLGgHTegDaAhHQKlwm4Wk8A91fZQoaAZHQJzhZp0wJw9oB03oA2gIR0CpdMUz9CNTdX2UKGgGR0CeKwMcIZ62aAdN6ANoCEdAqXX6GlANX3V9lChoBkdAmqHHoouwo2gHTegDaAhHQKl7cAoXsPd1fZQoaAZHQJzj/jBEa2poB03oA2gIR0CpfP2uxKQJdX2UKGgGR0CcIQneSB9UaAdN6ANoCEdAqYEHh60IC3V9lChoBkdAmqHPaDf3vmgHTegDaAhHQKmCLLhaTwF1fZQoaAZHQJ1IoVHnU2FoB03oA2gIR0CpiOTQ3PzGdX2UKGgGR0CdiWpIMBp6aAdN6ANoCEdAqYtJJK8L8nV9lChoBkdAnJxoyTINmWgHTegDaAhHQKmPbGR3eN11fZQoaAZHQJoMMldC3PRoB03oA2gIR0CpkJlAE+xGdX2UKGgGR0Cb6ww2ETQFaAdN6ANoCEdAqZX04//vOXV9lChoBkdAmC/8sYl6aGgHTegDaAhHQKmXcFJxvNx1fZQoaAZHQJsAsrupjtpoB03oA2gIR0Cpm4QwTM7mdX2UKGgGR0CaEIyB06o3aAdN6ANoCEdAqZyvbuc+aHV9lChoBkdAnLCTdk8RtmgHTegDaAhHQKmjHXGOuJV1fZQoaAZHQJt9ILncL0BoB03oA2gIR0CppWgjhUBGdX2UKGgGR0Cc8zlme18caAdN6ANoCEdAqam+3c580HV9lChoBkdAnlAb8FY+0WgHTegDaAhHQKmq4+wkgOl1fZQoaAZHQJ5W626TW5JoB03oA2gIR0CpsD+mNzbOdX2UKGgGR0CdymNOuaF3aAdN6ANoCEdAqbHMVUModHV9lChoBkdAnx5iE12q1mgHTegDaAhHQKm11Fy7wrl1fZQoaAZHQJ3GF7hNucdoB03oA2gIR0CptvwYtQKsdX2UKGgGR0Cemsh3JPqLaAdN6ANoCEdAqb1Kuhbno3V9lChoBkdAnC/XctXgcmgHTegDaAhHQKm/lliBoVV1fZQoaAZHQJ2yIkOZssRoB03oA2gIR0CpxCUT101ZdX2UKGgGR0CeoNnndO6/aAdN6ANoCEdAqcVT2g398HV9lChoBkdAneEn9JjDsWgHTegDaAhHQKnKvtwaR6p1fZQoaAZHQJ2EP2RJVbRoB03oA2gIR0CpzECzC1qndX2UKGgGR0CZ+4O5J9RaaAdN6ANoCEdAqdBLS1E3KnV9lChoBkdAm5jRTKkl/2gHTegDaAhHQKnRcngpBop1fZQoaAZHQJlL+DHwPRRoB03oA2gIR0Cp15KFIuoQdX2UKGgGR0CcOOwKjSG8aAdN6ANoCEdAqdnavxH5J3V9lChoBkdAmf9g5NoJzGgHTegDaAhHQKnewCNjsld1fZQoaAZHQJw+iotL+P1oB03oA2gIR0Cp3+vLX+VDdX2UKGgGR0CbfUaNuLrHaAdN6ANoCEdAqeVFd5Y5k3V9lChoBkdAl96dgjQiRmgHTegDaAhHQKnm03AmAsl1fZQoaAZHQJiNaoLofSxoB03oA2gIR0Cp6s/wqiGndX2UKGgGR0CVstf6oESvaAdN6ANoCEdAqev/lEJBxHV9lChoBkdAlr7Lux8lX2gHTegDaAhHQKnyHn7pFCt1fZQoaAZHQJdswKTjebdoB03oA2gIR0Cp9F0Z3s5XdX2UKGgGR0CWhI6XjU/faAdN6ANoCEdAqflXwd8zAXV9lChoBkdAmQ51XA/LT2gHTegDaAhHQKn6ijKxLTR1fZQoaAZHQJgfd2icoYxoB03oA2gIR0Cp//WcSXdCdX2UKGgGR0CcBzYVIqb0aAdN6ANoCEdAqgGMzwc5sHV9lChoBkdAmQFjJEH+qGgHTegDaAhHQKoFrYWcjJN1fZQoaAZHQJaqabx3FDRoB03oA2gIR0CqBtZIxxkvdX2UKGgGR0CaR38OTaCdaAdN6ANoCEdAqgzWN96Tn3V9lChoBkdAma7W7SRbKWgHTegDaAhHQKoPEc0+C9R1fZQoaAZHQJh82XlbNbFoB03oA2gIR0CqE/4zJp35dX2UKGgGR0CTwkf9xZMdaAdN6ANoCEdAqhUx1V5rxnV9lChoBkdAnQRiBClabGgHTegDaAhHQKoajGYrrgR1fZQoaAZHQJzjAgHNX5poB03oA2gIR0CqHBB24d6tdX2UKGgGR0CdAQW5paicaAdN6ANoCEdAqiAQHPeHi3V9lChoBkdAnHGKfe1rqWgHTegDaAhHQKohO2XLNfR1fZQoaAZHQJ5GBRYRuj1oB03oA2gIR0CqJxNu+AVgdX2UKGgGR0CclrvllsguaAdN6ANoCEdAqilIh2W6b3V9lChoBkdAn6yf029+PWgHTegDaAhHQKouYmLtNSJ1fZQoaAZHQJ28p7PY4AFoB03oA2gIR0CqL5CLMs6JdX2UKGgGR0CcIIMZP2wnaAdN6ANoCEdAqjT7afzz3HV9lChoBkdAm7FIWpIczmgHTegDaAhHQKo2enYxtYV1fZQoaAZHQJbhNQJokAxoB03oA2gIR0CqOn1wYLssdX2UKGgGR0CXQirPdEb6aAdN6ANoCEdAqjue3Sa3JHV9lChoBkdAgisS9EkSmWgHTS8CaAhHQKo9L+yZ8a51fZQoaAZHQJWW6TOgQH1oB03oA2gIR0CqQVi/O+qSdX2UKGgGR0CX0wk4m1IAaAdN6ANoCEdAqkjV7laKUHV9lChoBkdAlOs8v/R3NmgHTegDaAhHQKpJ9rgwXZZ1fZQoaAZHQJXNukTHsC1oB03oA2gIR0CqS4RF7UobdX2UKGgGR0CWjlLLZBcBaAdN6ANoCEdAqk9homG/OHV9lChoBkdAkq9J6D5CW2gHTegDaAhHQKpVADkELYx1fZQoaAZHQJMpbZbpu/FoB03oA2gIR0CqVijv/io9dX2UKGgGR0CUAbm9xp+MaAdN6ANoCEdAqlfCXSjQA3VlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f229a6e9624dbf7bc3bd9edc8e0339c6852de4f9cd2c4bfea8e084222d9cd17c
|
3 |
+
size 56190
|
a2c-AntBulletEnv/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9da5f5f9b8c292e23294bbbcdc7071fea849acffb3a7c5d1c6c3a9c4333b59d2
|
3 |
+
size 56894
|
a2c-AntBulletEnv/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c074bbd9750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c074bbd97e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c074bbd9870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c074bbd9900>", "_build": "<function ActorCriticPolicy._build at 0x7c074bbd9990>", "forward": "<function ActorCriticPolicy.forward at 0x7c074bbd9a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c074bbd9ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c074bbd9b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7c074bbd9bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c074bbd9c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c074bbd9cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c074bbd9d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c074bbcfe00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690357497280170927, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMkvwz5E3z4+K1ETP9ePpT8HDes9f9BaPxP2b79gQNI9ceEsv7YK0j0MN3c+cu4bP3qihby/1e6+5wUAP0pA5zwFvkm/DNKWvxX4gr98wHk/KUjjP5smCT8cm6q+FmJZv8RAKj+TgZM+iAkqP+l5Or9Zt0A/cx9Iv9X13r7yIFy+8nB2P/uf3j4fsTY/jiaAP+NQir/FHoM/iIMrP0pcAz8fCYY//12dvcr24L9XSTm/nm/NvkypNT5O+cO++ehWPwPUZD+i4VpA57xhPzjWiL/EQCo/iiVewPK1wL/euK8/l6WVPzVRXr8f5hW/bL8GQInzYb5FcAM/Ce5Xv4Vbo78OVKo/8T8Avq8zLD85FUq/5VuSv1an4b/VZ/s+YykJPX4Gqr8lvMi/uDjvPmRZE0BJg9++VGZPwGpztL+Icsq/xEAqP5OBkz6ICSo/6Xk6v4SRtjyM37C++0wIPsTJ/z4ky/A9Mb0eP02kbb8vytG97d4sP+JHmT54pmK/Gq5bvjbVqj/Hojm+YJsAP0jUOTwJyQ0/PRKGv2Rr07+9nU27tgV7Pq52ljsieQG+N7+mv8RAKj+TgZM+iAkqP+l5Or+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD5klC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACASvP7PQAAAAAbR/+/AAAAAJMCeT0AAAAAnon9PwAAAAAL7A88AAAAADXN8j8AAAAANVmvPQAAAAD2Wf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn6kEtwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFj5Cz4AAAAA0ff1vwAAAACaq/W9AAAAANS/7j8AAAAAUTwFvQAAAAC94f0/AAAAAO/xdT0AAAAAxWDsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIMehjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBq0sO9AAAAAKOr578AAAAARM4hvQAAAADtAPY/AAAAAEH0Cb4AAAAA8bHkPwAAAADtYAW+AAAAAFpE9b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3pwg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYP0ZvQAAAAA7DN6/AAAAAPQaB74AAAAA3fTuPwAAAABj7IE9AAAAAKul7D8AAAAAdlzvvQAAAACRZey/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwSZ/e+Eh+MAWyUTegDjAF0lEdAqRNGcOLBK3V9lChoBkdAoB/CbBoEjmgHTegDaAhHQKkXRBHCoCN1fZQoaAZHQKBOO3m3fANoB03oA2gIR0CpGGZmZmZmdX2UKGgGR0ChrnK8+RozaAdN6ANoCEdAqR+kzQ/oq3V9lChoBkdAoRy5Tn7pFGgHTegDaAhHQKkhgvzvqkd1fZQoaAZHQKFEO73fygBoB03oA2gIR0CpJXluvUz9dX2UKGgGR0CgnTP1UVBVaAdN6ANoCEdAqSarho/RmnV9lChoBkdAoLymOuJUHmgHTegDaAhHQKkr+uxKQJZ1fZQoaAZHQKBqAXNTtLNoB03oA2gIR0CpLXpMg2ZRdX2UKGgGR0CfhB9n9NvgaAdN6ANoCEdAqTF6UVzp5nV9lChoBkdAn+9LYK6WgWgHTegDaAhHQKkymw7kn1F1fZQoaAZHQJ9tHuogmqpoB03oA2gIR0CpOXjcuanadX2UKGgGR0Cf5USydFvyaAdN6ANoCEdAqTu4RywOfHV9lChoBkdAndDIX9BKMGgHTegDaAhHQKk/xchTwUh1fZQoaAZHQKC/t3hXKbNoB03oA2gIR0CpQPVGTcIrdX2UKGgGR0ChMIHDrJKbaAdN6ANoCEdAqUZ1L+PzWnV9lChoBkdAoII7p9qk/WgHTegDaAhHQKlH/Rk3CKt1fZQoaAZHQKAaWxt52QpoB03oA2gIR0CpS//4ZdfLdX2UKGgGR0Cg72vy9VWCaAdN6ANoCEdAqU0oiV0LdHV9lChoBkdAnlHIWUKRdWgHTegDaAhHQKlUBqveP7x1fZQoaAZHQKAkO3qAz55oB03oA2gIR0CpVkhI4EOidX2UKGgGR0Cf4IVcUucuaAdN6ANoCEdAqVpJsXSBsnV9lChoBkdAoGbOqebut2gHTegDaAhHQKlbdYB/7SB1fZQoaAZHQJ/DCRGMGX5oB03oA2gIR0CpYOWx6fJ4dX2UKGgGR0Ceu92NedCmaAdN6ANoCEdAqWJheC04R3V9lChoBkdAnxwpHqeK9GgHTegDaAhHQKlmb+irT6V1fZQoaAZHQJti0Y77sOZoB03oA2gIR0CpZ5uUD+zddX2UKGgGR0CdP/xjawljaAdN6ANoCEdAqW48er+5v3V9lChoBkdAmvYqDK5kLGgHTegDaAhHQKlwm4Wk8A91fZQoaAZHQJzhZp0wJw9oB03oA2gIR0CpdMUz9CNTdX2UKGgGR0CeKwMcIZ62aAdN6ANoCEdAqXX6GlANX3V9lChoBkdAmqHHoouwo2gHTegDaAhHQKl7cAoXsPd1fZQoaAZHQJzj/jBEa2poB03oA2gIR0CpfP2uxKQJdX2UKGgGR0CcIQneSB9UaAdN6ANoCEdAqYEHh60IC3V9lChoBkdAmqHPaDf3vmgHTegDaAhHQKmCLLhaTwF1fZQoaAZHQJ1IoVHnU2FoB03oA2gIR0CpiOTQ3PzGdX2UKGgGR0CdiWpIMBp6aAdN6ANoCEdAqYtJJK8L8nV9lChoBkdAnJxoyTINmWgHTegDaAhHQKmPbGR3eN11fZQoaAZHQJoMMldC3PRoB03oA2gIR0CpkJlAE+xGdX2UKGgGR0Cb6ww2ETQFaAdN6ANoCEdAqZX04//vOXV9lChoBkdAmC/8sYl6aGgHTegDaAhHQKmXcFJxvNx1fZQoaAZHQJsAsrupjtpoB03oA2gIR0Cpm4QwTM7mdX2UKGgGR0CaEIyB06o3aAdN6ANoCEdAqZyvbuc+aHV9lChoBkdAnLCTdk8RtmgHTegDaAhHQKmjHXGOuJV1fZQoaAZHQJt9ILncL0BoB03oA2gIR0CppWgjhUBGdX2UKGgGR0Cc8zlme18caAdN6ANoCEdAqam+3c580HV9lChoBkdAnlAb8FY+0WgHTegDaAhHQKmq4+wkgOl1fZQoaAZHQJ5W626TW5JoB03oA2gIR0CpsD+mNzbOdX2UKGgGR0CdymNOuaF3aAdN6ANoCEdAqbHMVUModHV9lChoBkdAnx5iE12q1mgHTegDaAhHQKm11Fy7wrl1fZQoaAZHQJ3GF7hNucdoB03oA2gIR0CptvwYtQKsdX2UKGgGR0Cemsh3JPqLaAdN6ANoCEdAqb1Kuhbno3V9lChoBkdAnC/XctXgcmgHTegDaAhHQKm/lliBoVV1fZQoaAZHQJ2yIkOZssRoB03oA2gIR0CpxCUT101ZdX2UKGgGR0CeoNnndO6/aAdN6ANoCEdAqcVT2g398HV9lChoBkdAneEn9JjDsWgHTegDaAhHQKnKvtwaR6p1fZQoaAZHQJ2EP2RJVbRoB03oA2gIR0CpzECzC1qndX2UKGgGR0CZ+4O5J9RaaAdN6ANoCEdAqdBLS1E3KnV9lChoBkdAm5jRTKkl/2gHTegDaAhHQKnRcngpBop1fZQoaAZHQJlL+DHwPRRoB03oA2gIR0Cp15KFIuoQdX2UKGgGR0CcOOwKjSG8aAdN6ANoCEdAqdnavxH5J3V9lChoBkdAmf9g5NoJzGgHTegDaAhHQKnewCNjsld1fZQoaAZHQJw+iotL+P1oB03oA2gIR0Cp3+vLX+VDdX2UKGgGR0CbfUaNuLrHaAdN6ANoCEdAqeVFd5Y5k3V9lChoBkdAl96dgjQiRmgHTegDaAhHQKnm03AmAsl1fZQoaAZHQJiNaoLofSxoB03oA2gIR0Cp6s/wqiGndX2UKGgGR0CVstf6oESvaAdN6ANoCEdAqev/lEJBxHV9lChoBkdAlr7Lux8lX2gHTegDaAhHQKnyHn7pFCt1fZQoaAZHQJdswKTjebdoB03oA2gIR0Cp9F0Z3s5XdX2UKGgGR0CWhI6XjU/faAdN6ANoCEdAqflXwd8zAXV9lChoBkdAmQ51XA/LT2gHTegDaAhHQKn6ijKxLTR1fZQoaAZHQJgfd2icoYxoB03oA2gIR0Cp//WcSXdCdX2UKGgGR0CcBzYVIqb0aAdN6ANoCEdAqgGMzwc5sHV9lChoBkdAmQFjJEH+qGgHTegDaAhHQKoFrYWcjJN1fZQoaAZHQJaqabx3FDRoB03oA2gIR0CqBtZIxxkvdX2UKGgGR0CaR38OTaCdaAdN6ANoCEdAqgzWN96Tn3V9lChoBkdAma7W7SRbKWgHTegDaAhHQKoPEc0+C9R1fZQoaAZHQJh82XlbNbFoB03oA2gIR0CqE/4zJp35dX2UKGgGR0CTwkf9xZMdaAdN6ANoCEdAqhUx1V5rxnV9lChoBkdAnQRiBClabGgHTegDaAhHQKoajGYrrgR1fZQoaAZHQJzjAgHNX5poB03oA2gIR0CqHBB24d6tdX2UKGgGR0CdAQW5paicaAdN6ANoCEdAqiAQHPeHi3V9lChoBkdAnHGKfe1rqWgHTegDaAhHQKohO2XLNfR1fZQoaAZHQJ5GBRYRuj1oB03oA2gIR0CqJxNu+AVgdX2UKGgGR0CclrvllsguaAdN6ANoCEdAqilIh2W6b3V9lChoBkdAn6yf029+PWgHTegDaAhHQKouYmLtNSJ1fZQoaAZHQJ28p7PY4AFoB03oA2gIR0CqL5CLMs6JdX2UKGgGR0CcIIMZP2wnaAdN6ANoCEdAqjT7afzz3HV9lChoBkdAm7FIWpIczmgHTegDaAhHQKo2enYxtYV1fZQoaAZHQJbhNQJokAxoB03oA2gIR0CqOn1wYLssdX2UKGgGR0CXQirPdEb6aAdN6ANoCEdAqjue3Sa3JHV9lChoBkdAgisS9EkSmWgHTS8CaAhHQKo9L+yZ8a51fZQoaAZHQJWW6TOgQH1oB03oA2gIR0CqQVi/O+qSdX2UKGgGR0CX0wk4m1IAaAdN6ANoCEdAqkjV7laKUHV9lChoBkdAlOs8v/R3NmgHTegDaAhHQKpJ9rgwXZZ1fZQoaAZHQJXNukTHsC1oB03oA2gIR0CqS4RF7UobdX2UKGgGR0CWjlLLZBcBaAdN6ANoCEdAqk9homG/OHV9lChoBkdAkq9J6D5CW2gHTegDaAhHQKpVADkELYx1fZQoaAZHQJMpbZbpu/FoB03oA2gIR0CqVijv/io9dX2UKGgGR0CUAbm9xp+MaAdN6ANoCEdAqlfCXSjQA3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:258c3b7addb5c86e18dc070b7ba34521042a23089c925dbbdfe9bda515e7a64e
|
3 |
+
size 1131509
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1234.42331836792, "std_reward": 188.24233752634322, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-26T08:47:26.613216"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a65c2da37a170128a9a10639c615d906aa844c55e0ec74f0e6a46127a138c2e2
|
3 |
+
size 2176
|