a2c-PandaReachDense-v2 / config.json
Samalabama66's picture
Initial commit
5312665
raw
history blame
15.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c074bbd9ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c074bbcff40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690361667884200370, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAG5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/G5u+Pu4vnzvCCQg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUZScP4PzrD5d9xo/HwWmv6dEnD5Fp6a/Vz+iv9rFKL7N/Yy/EAnVvg10kj+av7q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzsbm74+7i+fO8IJCD/zado7EPzRuTZ3tzuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]\n [0.3722771 0.00485801 0.5313989 ]]", "desired_goal": "[[ 1.2232763 0.33779535 0.60533696]\n [-1.2970313 0.30521128 -1.3019797 ]\n [-1.267558 -0.16481724 -1.1014954 ]\n [-0.41608477 1.1441666 -0.36474305]]", "observation": "[[ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]\n [ 3.7227711e-01 4.8580086e-03 5.3139889e-01 6.6654622e-03\n -4.0051388e-04 5.5989278e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYsSdvKtsCjttQn09/TyPPKbIsb3+FIg+1LwXvq0DTz3UJ2Y+dtjaPV+rt7vfSTc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01925868 0.00211219 0.06183093]\n [ 0.01748514 -0.08680849 0.26578516]\n [-0.14818126 0.05054061 0.2247613 ]\n [ 0.10685818 -0.00560515 0.17899273]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIQGjy5uDBMCUhpRSlIwBbJRLMowBdJRHQKXdCgrYoRZ1fZQoaAZoCWgPQwhm3NRA8znhv5SGlFKUaBVLMmgWR0Cl3MghKUV0dX2UKGgGaAloD0MI/WzkuikFCsCUhpRSlGgVSzJoFkdApdyK2KEWZnV9lChoBmgJaA9DCPPJiuHqIBHAlIaUUpRoFUsyaBZHQKXcTqgRK6F1fZQoaAZoCWgPQwhE3JxKBgDhv5SGlFKUaBVLMmgWR0Cl3h2fseGPdX2UKGgGaAloD0MIOsyXF2A/EMCUhpRSlGgVSzJoFkdApd3bu6VdHHV9lChoBmgJaA9DCJbOh2cJ8vq/lIaUUpRoFUsyaBZHQKXdnpLVWjp1fZQoaAZoCWgPQwjE7dCwGHUDwJSGlFKUaBVLMmgWR0Cl3WJRXOnmdX2UKGgGaAloD0MIkbdc/dgk7b+UhpRSlGgVSzJoFkdApd8mCuloDnV9lChoBmgJaA9DCEKygAncOua/lIaUUpRoFUsyaBZHQKXe5CHh0hh1fZQoaAZoCWgPQwinH9RFCqUHwJSGlFKUaBVLMmgWR0Cl3qbvoePrdX2UKGgGaAloD0MIEYyDS8dc+L+UhpRSlGgVSzJoFkdApd5qol2NenV9lChoBmgJaA9DCLsKKT+pthDAlIaUUpRoFUsyaBZHQKXgL0nw5Np1fZQoaAZoCWgPQwigbMoV3qUJwJSGlFKUaBVLMmgWR0Cl3+1n/T9bdX2UKGgGaAloD0MIZJP8iF8x7b+UhpRSlGgVSzJoFkdApd+wOe8PF3V9lChoBmgJaA9DCMnIWdjT7gTAlIaUUpRoFUsyaBZHQKXfc+VTrE91fZQoaAZoCWgPQwgxlBPtKiT+v5SGlFKUaBVLMmgWR0Cl4UAHVwxWdX2UKGgGaAloD0MII6DCEaSSAMCUhpRSlGgVSzJoFkdApeD+NHYpUnV9lChoBmgJaA9DCPUvSWWKOeC/lIaUUpRoFUsyaBZHQKXgwQvpQk51fZQoaAZoCWgPQwgWFAZlGk3wv5SGlFKUaBVLMmgWR0Cl4ITBqKxcdX2UKGgGaAloD0MIXaj8a3kFEcCUhpRSlGgVSzJoFkdApeJVEkSmInV9lChoBmgJaA9DCFDDt7Bu3AzAlIaUUpRoFUsyaBZHQKXiE0uUUwl1fZQoaAZoCWgPQwgSMSWS6EUPwJSGlFKUaBVLMmgWR0Cl4dYAsCkodX2UKGgGaAloD0MIrTQpBd3eCMCUhpRSlGgVSzJoFkdApeGZmkFfRnV9lChoBmgJaA9DCLEUyVcCyQPAlIaUUpRoFUsyaBZHQKXjadH2AXl1fZQoaAZoCWgPQwilMVpHVTMFwJSGlFKUaBVLMmgWR0Cl4yfsmfGudX2UKGgGaAloD0MIGvuSjQc7BMCUhpRSlGgVSzJoFkdApeLqrNnoPnV9lChoBmgJaA9DCA1v1uB9lfW/lIaUUpRoFUsyaBZHQKXirmNBF/h1fZQoaAZoCWgPQwi5xJEHIqsLwJSGlFKUaBVLMmgWR0Cl5HX6hxo7dX2UKGgGaAloD0MIdlCJ6xjXAcCUhpRSlGgVSzJoFkdApeQ0CcPOIXV9lChoBmgJaA9DCOT5DKg3I/K/lIaUUpRoFUsyaBZHQKXj9qoIfKZ1fZQoaAZoCWgPQwgIyQImcCsVwJSGlFKUaBVLMmgWR0Cl47pUxVQzdX2UKGgGaAloD0MIHAx1WOHW87+UhpRSlGgVSzJoFkdApeWhFspG4XV9lChoBmgJaA9DCG1zY3rCEt6/lIaUUpRoFUsyaBZHQKXlYBiCrcV1fZQoaAZoCWgPQwiBmIQLeeQUwJSGlFKUaBVLMmgWR0Cl5SOq//NrdX2UKGgGaAloD0MIPrDjv0BQ97+UhpRSlGgVSzJoFkdApeToHE/B33V9lChoBmgJaA9DCN4ehIB8ifK/lIaUUpRoFUsyaBZHQKXnT73wkPd1fZQoaAZoCWgPQwj3d7ZHb7gCwJSGlFKUaBVLMmgWR0Cl5w7iZOSGdX2UKGgGaAloD0MI22tB740pIMCUhpRSlGgVSzJoFkdApebSg5BC2XV9lChoBmgJaA9DCIKpZtZSiCLAlIaUUpRoFUsyaBZHQKXml1/2Cd11fZQoaAZoCWgPQwiYiLfOv934v5SGlFKUaBVLMmgWR0Cl6RTYEnstdX2UKGgGaAloD0MIo1uv6UGB+b+UhpRSlGgVSzJoFkdApejTtgKF7HV9lChoBmgJaA9DCLMJMCx/PuG/lIaUUpRoFUsyaBZHQKXol0dRzil1fZQoaAZoCWgPQwiHhsWoa+3pv5SGlFKUaBVLMmgWR0Cl6FvYnOSodX2UKGgGaAloD0MIBi0kYHRZD8CUhpRSlGgVSzJoFkdApeq/nQpnYnV9lChoBmgJaA9DCM43onvWtQTAlIaUUpRoFUsyaBZHQKXqfdWQwK11fZQoaAZoCWgPQwi7mjxlNf0FwJSGlFKUaBVLMmgWR0Cl6kDG1hLHdX2UKGgGaAloD0MIQPuRIjJs9b+UhpRSlGgVSzJoFkdApeoErRSgoXV9lChoBmgJaA9DCCHM7V7uMwnAlIaUUpRoFUsyaBZHQKXr60GeMAF1fZQoaAZoCWgPQwjIBtLFpvUGwJSGlFKUaBVLMmgWR0Cl66lhoduHdX2UKGgGaAloD0MIlbpkHCMZAsCUhpRSlGgVSzJoFkdApetsOPNmlXV9lChoBmgJaA9DCFtB0xIrkxfAlIaUUpRoFUsyaBZHQKXrMAHVwxZ1fZQoaAZoCWgPQwgcti3KbPAOwJSGlFKUaBVLMmgWR0Cl7PuBDohZdX2UKGgGaAloD0MIKXgKuVIvCcCUhpRSlGgVSzJoFkdApey5d6cAinV9lChoBmgJaA9DCMe6uI0G8PG/lIaUUpRoFUsyaBZHQKXsfECvHLl1fZQoaAZoCWgPQwi/J9ap8l0DwJSGlFKUaBVLMmgWR0Cl7EAOz6acdX2UKGgGaAloD0MI2ucxyjMPAsCUhpRSlGgVSzJoFkdApe4SB9TgmHV9lChoBmgJaA9DCLRYiuQrQf6/lIaUUpRoFUsyaBZHQKXt0EB8x9J1fZQoaAZoCWgPQwjt8UI6PMT7v5SGlFKUaBVLMmgWR0Cl7ZMfzSThdX2UKGgGaAloD0MIiuWWVkPi7r+UhpRSlGgVSzJoFkdApe1XDUExI3V9lChoBmgJaA9DCDeJQWDl0AHAlIaUUpRoFUsyaBZHQKXvIpCrtE51fZQoaAZoCWgPQwi9GqA01AgAwJSGlFKUaBVLMmgWR0Cl7uBvR7Z4dX2UKGgGaAloD0MIzt+EQgS8EMCUhpRSlGgVSzJoFkdApe6jJW/8EXV9lChoBmgJaA9DCAyx+iMMgwTAlIaUUpRoFUsyaBZHQKXuZu+AVfx1fZQoaAZoCWgPQwgkJT0MrW4EwJSGlFKUaBVLMmgWR0Cl8DpFb3XadX2UKGgGaAloD0MIgPJ376ix47+UhpRSlGgVSzJoFkdApe/4ZydWhnV9lChoBmgJaA9DCC9vDtdqTwLAlIaUUpRoFUsyaBZHQKXvuzdk8Rt1fZQoaAZoCWgPQwg7wmnBi773v5SGlFKUaBVLMmgWR0Cl738Gkep5dX2UKGgGaAloD0MI/YUeMXrOFMCUhpRSlGgVSzJoFkdApfFKCL/CInV9lChoBmgJaA9DCAAce/Zcpv6/lIaUUpRoFUsyaBZHQKXxCDYAbQ11fZQoaAZoCWgPQwg8TtGRXI4SwJSGlFKUaBVLMmgWR0Cl8MsVDa4+dX2UKGgGaAloD0MITYOieQAbEsCUhpRSlGgVSzJoFkdApfCO2kSElHV9lChoBmgJaA9DCC13ZoLhXOy/lIaUUpRoFUsyaBZHQKXyXG5tm+V1fZQoaAZoCWgPQwiDMo0mF2Ptv5SGlFKUaBVLMmgWR0Cl8hp/gBLgdX2UKGgGaAloD0MIrYbEPZaOEsCUhpRSlGgVSzJoFkdApfHdKZlWfnV9lChoBmgJaA9DCH2zzY3pqQzAlIaUUpRoFUsyaBZHQKXxoOT7l7t1fZQoaAZoCWgPQwiPVUrP9JINwJSGlFKUaBVLMmgWR0Cl82zCDVYqdX2UKGgGaAloD0MISwLU1LK15b+UhpRSlGgVSzJoFkdApfMq7kGRm3V9lChoBmgJaA9DCGhBKO/j6AnAlIaUUpRoFUsyaBZHQKXy7bA1vVF1fZQoaAZoCWgPQwhzg6EOK5z1v5SGlFKUaBVLMmgWR0Cl8rGOMl1KdX2UKGgGaAloD0MIaMu5FFcVAMCUhpRSlGgVSzJoFkdApfSGnwXqJXV9lChoBmgJaA9DCCqtvyUAfxrAlIaUUpRoFUsyaBZHQKX0RKAavRt1fZQoaAZoCWgPQwjWAntMpHT9v5SGlFKUaBVLMmgWR0Cl9AdoN/e+dX2UKGgGaAloD0MIPsqIC0Aj4b+UhpRSlGgVSzJoFkdApfPL48EFGHV9lChoBmgJaA9DCAXDuYYZWgXAlIaUUpRoFUsyaBZHQKX1m0jTrmh1fZQoaAZoCWgPQwiTN8DMd3ABwJSGlFKUaBVLMmgWR0Cl9VmE4//vdX2UKGgGaAloD0MIUvNV8rH7BsCUhpRSlGgVSzJoFkdApfUcP8Q7LnV9lChoBmgJaA9DCK5kx0YgHgPAlIaUUpRoFUsyaBZHQKX04CVbA1x1fZQoaAZoCWgPQwgf8parH1v4v5SGlFKUaBVLMmgWR0Cl9rZqubI+dX2UKGgGaAloD0MIkdRCyeR0BcCUhpRSlGgVSzJoFkdApfZ0nCwbEXV9lChoBmgJaA9DCNnNjH40fAPAlIaUUpRoFUsyaBZHQKX2N3mFJxx1fZQoaAZoCWgPQwiXcr7Ye5EHwJSGlFKUaBVLMmgWR0Cl9fs0gr6MdX2UKGgGaAloD0MIIjMXuDwW8r+UhpRSlGgVSzJoFkdApffMKE3843V9lChoBmgJaA9DCK1tisdFNQXAlIaUUpRoFUsyaBZHQKX3ijs2NvR1fZQoaAZoCWgPQwgpr5XQXbIOwJSGlFKUaBVLMmgWR0Cl90z/6wdKdX2UKGgGaAloD0MIfTz03a1cEMCUhpRSlGgVSzJoFkdApfcQpnYg73V9lChoBmgJaA9DCOP74lKVFg/AlIaUUpRoFUsyaBZHQKX46iQkond1fZQoaAZoCWgPQwgAGxAhrlz2v5SGlFKUaBVLMmgWR0Cl+Khmf5DadX2UKGgGaAloD0MI7Bfshm37EMCUhpRSlGgVSzJoFkdApfhrSofjj3V9lChoBmgJaA9DCHpsy4CzFO6/lIaUUpRoFUsyaBZHQKX4Lz/6wdN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}