Samalabama66
commited on
Commit
•
de89b09
1
Parent(s):
0663917
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +20 -18
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.58 +/- 0.16
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f234a0c88c3ce42387fa1cc076241b74e5bd96a48c31bd0882ada796a3b300c4
|
3 |
+
size 109570
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[ 0.
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79813078b400>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x798130790600>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1690444924278807641,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/5VLPf3NNL9rII2/mwU3vlYnoj/VHi8/doVYvxCaqb/awra/r36Rv5VCXj8rUwq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]]",
|
40 |
+
"desired_goal": "[[ 0.04970359 -0.70626813 -1.1025518 ]\n [-0.17873232 1.2668254 0.6840642 ]\n [-0.84578645 -1.3250141 -1.4278214 ]\n [-1.1366786 0.86820346 -0.54033154]]",
|
41 |
+
"observation": "[[ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzh4Gvq/YPL3nk3c+wxkSvtXdw7wtUnM9J87ovdgoC76u/MQ9kcEnu1FQAD41Qqs7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.13097689 -0.04610508 0.24177514]\n [-0.1426764 -0.02390949 0.05940454]\n [-0.11367445 -0.135898 0.09618507]\n [-0.00255976 0.12530638 0.0052264 ]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINQhzu5f76b+UhpRSlIwBbJRLMowBdJRHQKY6dp8neBR1fZQoaAZoCWgPQwjmIVM+BFXPv5SGlFKUaBVLMmgWR0CmOh1clgMMdX2UKGgGaAloD0MIpp2ayw2G1L+UhpRSlGgVSzJoFkdApjnGB19v0nV9lChoBmgJaA9DCIGXGTbK+t2/lIaUUpRoFUsyaBZHQKY5cHObAk91fZQoaAZoCWgPQwi5qBYRxeTpv5SGlFKUaBVLMmgWR0CmO3re67NCdX2UKGgGaAloD0MI3EduTbqt4r+UhpRSlGgVSzJoFkdApjsh7Z39rHV9lChoBmgJaA9DCCSX/5B++9G/lIaUUpRoFUsyaBZHQKY6yojv/ip1fZQoaAZoCWgPQwgr+64I/jfqv5SGlFKUaBVLMmgWR0CmOnVHFxXGdX2UKGgGaAloD0MIML39uWjI6b+UhpRSlGgVSzJoFkdApjySbH6uXHV9lChoBmgJaA9DCMjShy6ob+W/lIaUUpRoFUsyaBZHQKY8OX2M85l1fZQoaAZoCWgPQwjAlleut03mv5SGlFKUaBVLMmgWR0CmO+IwmE5AdX2UKGgGaAloD0MI1c4wtaUO4r+UhpRSlGgVSzJoFkdApjuMuOCGvnV9lChoBmgJaA9DCFgfD313K92/lIaUUpRoFUsyaBZHQKY9nmgam411fZQoaAZoCWgPQwgpQup29hXpv5SGlFKUaBVLMmgWR0CmPUVPWQOndX2UKGgGaAloD0MIBtfc0f/y6L+UhpRSlGgVSzJoFkdApjztqHoHLXV9lChoBmgJaA9DCIveqYB7nt6/lIaUUpRoFUsyaBZHQKY8mDXe3x51fZQoaAZoCWgPQwhZUYNpGD7dv5SGlFKUaBVLMmgWR0CmPqY6GQCCdX2UKGgGaAloD0MIaM76lGOy4L+UhpRSlGgVSzJoFkdApj5NUKiPAHV9lChoBmgJaA9DCBg/jXvzG+u/lIaUUpRoFUsyaBZHQKY99pTMqz91fZQoaAZoCWgPQwifkJ23sdnZv5SGlFKUaBVLMmgWR0CmPaGCyyD7dX2UKGgGaAloD0MIf6KyYU1l5r+UhpRSlGgVSzJoFkdApkBtKujh1nV9lChoBmgJaA9DCOlGWFTE6e2/lIaUUpRoFUsyaBZHQKZAFPmgam51fZQoaAZoCWgPQwgVrHE2HYHrv5SGlFKUaBVLMmgWR0CmP75eAuqWdX2UKGgGaAloD0MIQYAMHTso6r+UhpRSlGgVSzJoFkdApj9pwuM+/3V9lChoBmgJaA9DCJChYweVuN+/lIaUUpRoFUsyaBZHQKZCGl2vB8B1fZQoaAZoCWgPQwji5H6HokDlv5SGlFKUaBVLMmgWR0CmQcIatLcsdX2UKGgGaAloD0MIExCTcCGP47+UhpRSlGgVSzJoFkdApkFrdcjZ+XV9lChoBmgJaA9DCCF1O/vKg+2/lIaUUpRoFUsyaBZHQKZBFo5ggHN1fZQoaAZoCWgPQwgnhA66hEPkv5SGlFKUaBVLMmgWR0CmQ8Qx33YddX2UKGgGaAloD0MInnsPlxx35L+UhpRSlGgVSzJoFkdApkNrkwN9Y3V9lChoBmgJaA9DCHb7rDJTWuS/lIaUUpRoFUsyaBZHQKZDFQVsUIt1fZQoaAZoCWgPQwjEsMOY9Pf2v5SGlFKUaBVLMmgWR0CmQsAKWszVdX2UKGgGaAloD0MI4BCq1OwB8r+UhpRSlGgVSzJoFkdApkWmdZq20HV9lChoBmgJaA9DCOLIA5FFGua/lIaUUpRoFUsyaBZHQKZFTjbSJCV1fZQoaAZoCWgPQwg+yogLQKPev5SGlFKUaBVLMmgWR0CmRPdoN/e+dX2UKGgGaAloD0MIIcoXtJCA7r+UhpRSlGgVSzJoFkdApkSj7j1f3XV9lChoBmgJaA9DCKCH2jaMAuC/lIaUUpRoFUsyaBZHQKZGwQf6oEV1fZQoaAZoCWgPQwg5l+Kqsm/jv5SGlFKUaBVLMmgWR0CmRmhHTZxrdX2UKGgGaAloD0MIH/ZCAdvB4r+UhpRSlGgVSzJoFkdApkYQ2Q4jr3V9lChoBmgJaA9DCNWvdD48S++/lIaUUpRoFUsyaBZHQKZFu3vQWvd1fZQoaAZoCWgPQwhXlX1XBH/jv5SGlFKUaBVLMmgWR0CmR8OPeYUndX2UKGgGaAloD0MIKLuZ0Y8G7b+UhpRSlGgVSzJoFkdApkdqe/YapHV9lChoBmgJaA9DCMfUXdkFQ/C/lIaUUpRoFUsyaBZHQKZHEu/UONJ1fZQoaAZoCWgPQwivP4nPneDhv5SGlFKUaBVLMmgWR0CmRr1x0dR0dX2UKGgGaAloD0MIfSHkvP8P87+UhpRSlGgVSzJoFkdApkjBf4REnnV9lChoBmgJaA9DCAyVfy2v3Oa/lIaUUpRoFUsyaBZHQKZIaInBtUJ1fZQoaAZoCWgPQwhORpVh3A3lv5SGlFKUaBVLMmgWR0CmSBEi+tbLdX2UKGgGaAloD0MI9WkV/aGZ37+UhpRSlGgVSzJoFkdApke7x7RfGHV9lChoBmgJaA9DCLwEpz6QPOG/lIaUUpRoFUsyaBZHQKZJ0vEjxCp1fZQoaAZoCWgPQwgke4SaIVXev5SGlFKUaBVLMmgWR0CmSXmZE2HddX2UKGgGaAloD0MI/Wt55Xrb4b+UhpRSlGgVSzJoFkdApkkiAz544nV9lChoBmgJaA9DCFuzlZf8T+m/lIaUUpRoFUsyaBZHQKZIzGWD6Fd1fZQoaAZoCWgPQwhmhSLdz6nqv5SGlFKUaBVLMmgWR0CmSs41YQrddX2UKGgGaAloD0MI8yA9RQ4R4L+UhpRSlGgVSzJoFkdApkp1Muez2XV9lChoBmgJaA9DCHwm++dpwO+/lIaUUpRoFUsyaBZHQKZKHc+qzZ91fZQoaAZoCWgPQwhPP6iLFErvv5SGlFKUaBVLMmgWR0CmSchtk4FSdX2UKGgGaAloD0MIJ77aUZyj37+UhpRSlGgVSzJoFkdApkvSm/FirnV9lChoBmgJaA9DCHBCIQIOIeC/lIaUUpRoFUsyaBZHQKZLeWuX/o91fZQoaAZoCWgPQwj2tMNfk7Xiv5SGlFKUaBVLMmgWR0CmSyHo5ggHdX2UKGgGaAloD0MIJEIj2Lj+5r+UhpRSlGgVSzJoFkdApkrMidJ8OXV9lChoBmgJaA9DCLAApgwc0Oa/lIaUUpRoFUsyaBZHQKZM5m4iHIp1fZQoaAZoCWgPQwgfZcQFoNHnv5SGlFKUaBVLMmgWR0CmTI4YixFBdX2UKGgGaAloD0MILC6Oyk1U4b+UhpRSlGgVSzJoFkdApkw2hRIjGHV9lChoBmgJaA9DCNqM0xBV+Nq/lIaUUpRoFUsyaBZHQKZL4SYgJTl1fZQoaAZoCWgPQwjR60/ic6fnv5SGlFKUaBVLMmgWR0CmTexlxwQ2dX2UKGgGaAloD0MIKq2/JQB/5b+UhpRSlGgVSzJoFkdApk2TIq9XcXV9lChoBmgJaA9DCBSuR+F6VPO/lIaUUpRoFUsyaBZHQKZNO3PzFuN1fZQoaAZoCWgPQwhiwJKrWHzhv5SGlFKUaBVLMmgWR0CmTOYMvyskdX2UKGgGaAloD0MIUfhsHRzs17+UhpRSlGgVSzJoFkdApk7jIaLn93V9lChoBmgJaA9DCCcxCKwcWuG/lIaUUpRoFUsyaBZHQKZOiinpB5Z1fZQoaAZoCWgPQwjV7ewrD9Lrv5SGlFKUaBVLMmgWR0CmTjLBsQ/YdX2UKGgGaAloD0MI4gLQKF068L+UhpRSlGgVSzJoFkdApk3dW+49YHV9lChoBmgJaA9DCDkoYabt3+C/lIaUUpRoFUsyaBZHQKZP4fhddE91fZQoaAZoCWgPQwjiOsYVF0fwv5SGlFKUaBVLMmgWR0CmT4jUNKAbdX2UKGgGaAloD0MIx549l6lJ5L+UhpRSlGgVSzJoFkdApk8xKODJ2nV9lChoBmgJaA9DCJYEqKllK/K/lIaUUpRoFUsyaBZHQKZO25aNdZ91fZQoaAZoCWgPQwi9VGzM64jlv5SGlFKUaBVLMmgWR0CmUQXzlLezdX2UKGgGaAloD0MI2QbuQJ1y4b+UhpRSlGgVSzJoFkdAplCstdzGP3V9lChoBmgJaA9DCHNIaqFk8uC/lIaUUpRoFUsyaBZHQKZQVSx7iQ11fZQoaAZoCWgPQwha1v1jIbrpv5SGlFKUaBVLMmgWR0CmUABnrY5DdX2UKGgGaAloD0MIvAUSFD9G5L+UhpRSlGgVSzJoFkdAplIHKr7wa3V9lChoBmgJaA9DCCF4fHvXoPC/lIaUUpRoFUsyaBZHQKZRrdkauOl1fZQoaAZoCWgPQwjtDFNb6iDev5SGlFKUaBVLMmgWR0CmUVYmb9ZSdX2UKGgGaAloD0MI66f/rPnx2b+UhpRSlGgVSzJoFkdAplEAy44IbHV9lChoBmgJaA9DCIBgjh6/N+W/lIaUUpRoFUsyaBZHQKZTEOMERrd1fZQoaAZoCWgPQwgN4gM7/gvav5SGlFKUaBVLMmgWR0CmUrerMkhSdX2UKGgGaAloD0MI1As+zcmL1L+UhpRSlGgVSzJoFkdAplJgOrhisnV9lChoBmgJaA9DCONuEK0V7ey/lIaUUpRoFUsyaBZHQKZSCuXeFcp1fZQoaAZoCWgPQwhoXaPlQI/pv5SGlFKUaBVLMmgWR0CmVBvTXrdFdX2UKGgGaAloD0MI662BrRIs2L+UhpRSlGgVSzJoFkdAplPC08eS0XV9lChoBmgJaA9DCETbMXVXduO/lIaUUpRoFUsyaBZHQKZTa1WsA/91fZQoaAZoCWgPQwh4uB0aFqPcv5SGlFKUaBVLMmgWR0CmUxYetCAudX2UKGgGaAloD0MIUz4EVaPX5L+UhpRSlGgVSzJoFkdAplUWaBqbjXV9lChoBmgJaA9DCFHAdjBiH+q/lIaUUpRoFUsyaBZHQKZUvY3eenR1fZQoaAZoCWgPQwg/H2XEBSDpv5SGlFKUaBVLMmgWR0CmVGXnZCfIdX2UKGgGaAloD0MI6gYKvJNP4r+UhpRSlGgVSzJoFkdAplQQzYVZcXV9lChoBmgJaA9DCJZ31QPmIeq/lIaUUpRoFUsyaBZHQKZWEIhyKel1fZQoaAZoCWgPQwj1hZDz/j/Rv5SGlFKUaBVLMmgWR0CmVbfI0ZWJdX2UKGgGaAloD0MIxw2/m25Z47+UhpRSlGgVSzJoFkdAplVgjps41nV9lChoBmgJaA9DCE/rNqj91sC/lIaUUpRoFUsyaBZHQKZVC35N47l1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:85fdb04e86e900501dcba18d208146462d2303b158be0ddbdfd3b31007ae243d
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30466a12583d6ee86e62aadff50e0b7e2f8160d8a07884e69b937d368c553668
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x78838842d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78838841f5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690437645798979876, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAJs7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/Js7aPq+xazxHUww/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6FuXPvPgQT+81LO+JaxlP14Ihb5JMMS/7Ge4P/7vD76rYo4/7D5rvbb1KL/lywU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTwmzto+r7FrPEdTDD/sXIk8TiD5uZkkQTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]\n [0.42735404 0.01438562 0.5481457 ]]", "desired_goal": "[[ 0.29562306 0.7573387 -0.3512324 ]\n [ 0.89715797 -0.25982946 -1.5327235 ]\n [ 1.4406714 -0.14056394 1.1123861 ]\n [-0.05743305 -0.65999925 0.52264243]]", "observation": "[[ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]\n [ 4.2735404e-01 1.4385625e-02 5.4814571e-01 1.6767941e-02\n -4.7517050e-04 1.1788511e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVhUFPdfVBz4fkk0+lac9vfNeFz5YR7Y9Ch74vRJjGL4x54k+UmDbPOuCiL0NKH4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03249105 0.13265167 0.20075272]\n [-0.0463024 0.14782314 0.08900326]\n [-0.12115104 -0.14881542 0.26934198]\n [ 0.02677933 -0.06665596 0.24819966]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcXiN4WVB8CUhpRSlIwBbJRLMowBdJRHQKaZLLlFMIx1fZQoaAZoCWgPQwgiNlg4STMDwJSGlFKUaBVLMmgWR0CmmPPOyE+QdX2UKGgGaAloD0MIiXyXUpeM+7+UhpRSlGgVSzJoFkdAppi7C79Q43V9lChoBmgJaA9DCOBJC5dVCBHAlIaUUpRoFUsyaBZHQKaYgk9ECvJ1fZQoaAZoCWgPQwj5oGez6nMGwJSGlFKUaBVLMmgWR0CmmrR95QgtdX2UKGgGaAloD0MIlsyxvKu+DsCUhpRSlGgVSzJoFkdAppp7dvbXYnV9lChoBmgJaA9DCLO0U3O5QQfAlIaUUpRoFUsyaBZHQKaaQoybhFV1fZQoaAZoCWgPQwgy422l18YKwJSGlFKUaBVLMmgWR0CmmgnkT6BRdX2UKGgGaAloD0MI9PxpozodBsCUhpRSlGgVSzJoFkdAppxRWDHwPXV9lChoBmgJaA9DCMBeYcH94AnAlIaUUpRoFUsyaBZHQKacGEDhcZ91fZQoaAZoCWgPQwjMtz6sNzoWwJSGlFKUaBVLMmgWR0Cmm98Wj45+dX2UKGgGaAloD0MIbCbfbHPDAMCUhpRSlGgVSzJoFkdAppunNPgvUXV9lChoBmgJaA9DCG8QrRVtLgfAlIaUUpRoFUsyaBZHQKadTR7Z39t1fZQoaAZoCWgPQwgSM/s8RjkOwJSGlFKUaBVLMmgWR0CmnRNjLB9DdX2UKGgGaAloD0MIVb/S+fCsA8CUhpRSlGgVSzJoFkdAppzZ1RtP6HV9lChoBmgJaA9DCHl0Iywqgg/AlIaUUpRoFUsyaBZHQKacoFj/dZd1fZQoaAZoCWgPQwgYfJqTFxn1v5SGlFKUaBVLMmgWR0CmnjfWMCLddX2UKGgGaAloD0MIM+IC0Cjd/b+UhpRSlGgVSzJoFkdApp3+DjBEa3V9lChoBmgJaA9DCFor2hzndvW/lIaUUpRoFUsyaBZHQKadxJwsGxF1fZQoaAZoCWgPQwiwAny3eSP7v5SGlFKUaBVLMmgWR0CmnYsIE8q4dX2UKGgGaAloD0MIcLGiBtOw9r+UhpRSlGgVSzJoFkdApp8mWdEsrnV9lChoBmgJaA9DCACMZ9DQv/S/lIaUUpRoFUsyaBZHQKae7KnvUjN1fZQoaAZoCWgPQwgAyt+9o+YAwJSGlFKUaBVLMmgWR0CmnrL39JjEdX2UKGgGaAloD0MIAKq4cYvZFsCUhpRSlGgVSzJoFkdApp55jpcHGHV9lChoBmgJaA9DCCmwAKYMHPu/lIaUUpRoFUsyaBZHQKagGYxcmjV1fZQoaAZoCWgPQwi3RC44g/8PwJSGlFKUaBVLMmgWR0Cmn9/0dzXCdX2UKGgGaAloD0MIHcpQFVMp+b+UhpRSlGgVSzJoFkdApp+mYKIBR3V9lChoBmgJaA9DCAT/W8mOzQ/AlIaUUpRoFUsyaBZHQKafbNhVlwt1fZQoaAZoCWgPQwifVWZK608HwJSGlFKUaBVLMmgWR0CmoQOlXRw7dX2UKGgGaAloD0MIaqFkcmonGcCUhpRSlGgVSzJoFkdApqDKBkI5YHV9lChoBmgJaA9DCN8ZbVUSuQvAlIaUUpRoFUsyaBZHQKagkIVuaWp1fZQoaAZoCWgPQwiQZiyazo71v5SGlFKUaBVLMmgWR0CmoFc3++/QdX2UKGgGaAloD0MIVkrP9BLj/L+UhpRSlGgVSzJoFkdApqHwjhUBGXV9lChoBmgJaA9DCFTm5hvRrRXAlIaUUpRoFUsyaBZHQKahtvRZ2ZB1fZQoaAZoCWgPQwh+cD51rIIQwJSGlFKUaBVLMmgWR0CmoX1E/jbSdX2UKGgGaAloD0MItyqJ7IOsEMCUhpRSlGgVSzJoFkdApqFDot+TeXV9lChoBmgJaA9DCFRzucFQR/e/lIaUUpRoFUsyaBZHQKai2bwz+FV1fZQoaAZoCWgPQwj5vrhUpV0YwJSGlFKUaBVLMmgWR0CmoqB1klNUdX2UKGgGaAloD0MIzqrP1VYsCMCUhpRSlGgVSzJoFkdApqJnPNVzZHV9lChoBmgJaA9DCM1bdR2qqQzAlIaUUpRoFUsyaBZHQKaiLjbzshR1fZQoaAZoCWgPQwgRqWkX00wPwJSGlFKUaBVLMmgWR0Cmo8KHfuTidX2UKGgGaAloD0MIyR02kZnLFcCUhpRSlGgVSzJoFkdApqOJH7P6bnV9lChoBmgJaA9DCMLdWbvtwgTAlIaUUpRoFUsyaBZHQKajT2vB7/p1fZQoaAZoCWgPQwgCYhIu5FEAwJSGlFKUaBVLMmgWR0CmoxXyRSxadX2UKGgGaAloD0MIdVjhlo9k+b+UhpRSlGgVSzJoFkdApqSjjPv8ZXV9lChoBmgJaA9DCLFSQUXVjwHAlIaUUpRoFUsyaBZHQKakacc2itd1fZQoaAZoCWgPQwih9ls7URL5v5SGlFKUaBVLMmgWR0CmpDAe7tiQdX2UKGgGaAloD0MIe/Xx0Hd3AMCUhpRSlGgVSzJoFkdApqP2kFfReHV9lChoBmgJaA9DCJ2huONNPgPAlIaUUpRoFUsyaBZHQKalh9pAUtZ1fZQoaAZoCWgPQwjWxtgJL2EGwJSGlFKUaBVLMmgWR0CmpU4Zl4C7dX2UKGgGaAloD0MIqtctAmOdDsCUhpRSlGgVSzJoFkdApqUUY64lQnV9lChoBmgJaA9DCMZRuYlaWgLAlIaUUpRoFUsyaBZHQKak2tcv/R51fZQoaAZoCWgPQwgOn3QiwTQBwJSGlFKUaBVLMmgWR0CmpnY3vQWvdX2UKGgGaAloD0MIs/D1tS41DsCUhpRSlGgVSzJoFkdApqY8v24/eXV9lChoBmgJaA9DCB7+mqxRz/2/lIaUUpRoFUsyaBZHQKamAw5eZ5R1fZQoaAZoCWgPQwhczM8NTRkFwJSGlFKUaBVLMmgWR0Cmpcm9HtngdX2UKGgGaAloD0MIho+IKZHEFMCUhpRSlGgVSzJoFkdApqdigPEsKHV9lChoBmgJaA9DCMed0sH6PwXAlIaUUpRoFUsyaBZHQKanKNVinYR1fZQoaAZoCWgPQwgWwmosYe0DwJSGlFKUaBVLMmgWR0Cmpu9BBzFNdX2UKGgGaAloD0MId9hEZi7w+b+UhpRSlGgVSzJoFkdApqa10YCQtHV9lChoBmgJaA9DCPTAx2DF6QvAlIaUUpRoFUsyaBZHQKaoXkNnXd11fZQoaAZoCWgPQwgP7s7abdfzv5SGlFKUaBVLMmgWR0CmqCSHmA9WdX2UKGgGaAloD0MIRRDn4QQmD8CUhpRSlGgVSzJoFkdApqfq1og3cnV9lChoBmgJaA9DCEph3uNMUxLAlIaUUpRoFUsyaBZHQKansadc0Lt1fZQoaAZoCWgPQwh24JwRpd0FwJSGlFKUaBVLMmgWR0CmqT8DSw4bdX2UKGgGaAloD0MIBd1e0hhtBsCUhpRSlGgVSzJoFkdApqkFRaX8fnV9lChoBmgJaA9DCBCTcCGPIPa/lIaUUpRoFUsyaBZHQKaoy6DoQnR1fZQoaAZoCWgPQwg6Pe/GgkL2v5SGlFKUaBVLMmgWR0CmqJIi9qUNdX2UKGgGaAloD0MITUnW4ejq/L+UhpRSlGgVSzJoFkdApqohQvYe1nV9lChoBmgJaA9DCKD7cma7ogDAlIaUUpRoFUsyaBZHQKap55JK8L91fZQoaAZoCWgPQwiP39v0Zx8HwJSGlFKUaBVLMmgWR0Cmqa3cHnlodX2UKGgGaAloD0MIuoPYmUIHAsCUhpRSlGgVSzJoFkdApql0VWS2Y3V9lChoBmgJaA9DCMHHYMWpFg3AlIaUUpRoFUsyaBZHQKarAYF7laN1fZQoaAZoCWgPQwh39pUH6WkBwJSGlFKUaBVLMmgWR0CmqsgSWZ7YdX2UKGgGaAloD0MITBk4oKWrA8CUhpRSlGgVSzJoFkdApqqPEjxCpnV9lChoBmgJaA9DCBO6S+KsaAbAlIaUUpRoFUsyaBZHQKaqViLEUCd1fZQoaAZoCWgPQwidoE0On5QNwJSGlFKUaBVLMmgWR0Cmq+srd30PdX2UKGgGaAloD0MIlIYahSTzDsCUhpRSlGgVSzJoFkdApquxceKba3V9lChoBmgJaA9DCHB7gsR29xXAlIaUUpRoFUsyaBZHQKard8kUsWh1fZQoaAZoCWgPQwgeNSbEXBIKwJSGlFKUaBVLMmgWR0Cmqz5Cv5gxdX2UKGgGaAloD0MIdENTdvoBB8CUhpRSlGgVSzJoFkdApqzFShrWRXV9lChoBmgJaA9DCBtJgnAFdBPAlIaUUpRoFUsyaBZHQKasi2mYSg51fZQoaAZoCWgPQwjohNBBl3D+v5SGlFKUaBVLMmgWR0CmrFHNHH3ldX2UKGgGaAloD0MIl6sfm+THBsCUhpRSlGgVSzJoFkdApqwYTfzjFXV9lChoBmgJaA9DCN0m3Cvz9gDAlIaUUpRoFUsyaBZHQKatpr3TNMZ1fZQoaAZoCWgPQwgtX5fhP30PwJSGlFKUaBVLMmgWR0CmrW0F8ohIdX2UKGgGaAloD0MIXvdWJCZoA8CUhpRSlGgVSzJoFkdApq0ziEQGwHV9lChoBmgJaA9DCNAoXfqXBBbAlIaUUpRoFUsyaBZHQKas+hzvJBB1fZQoaAZoCWgPQwg9gEV+/fALwJSGlFKUaBVLMmgWR0Cmroibc45tdX2UKGgGaAloD0MIk6rtJvgmE8CUhpRSlGgVSzJoFkdApq5O3QUpNXV9lChoBmgJaA9DCNAPI4RHSxDAlIaUUpRoFUsyaBZHQKauFSEUTL51fZQoaAZoCWgPQwgROBJosIkEwJSGlFKUaBVLMmgWR0Cmrdt9QXQ/dX2UKGgGaAloD0MImtAksaR8BcCUhpRSlGgVSzJoFkdApq9rSXt0FXV9lChoBmgJaA9DCF/ObFfowwnAlIaUUpRoFUsyaBZHQKavMa5wwTN1fZQoaAZoCWgPQwi70cd8QOAewJSGlFKUaBVLMmgWR0CmrvgoXsPbdX2UKGgGaAloD0MICWzOwTMh/7+UhpRSlGgVSzJoFkdApq6+lwcYInV9lChoBmgJaA9DCFAZ/z7jkhTAlIaUUpRoFUsyaBZHQKawTZg5R0l1fZQoaAZoCWgPQwgq499nXCgcwJSGlFKUaBVLMmgWR0CmsBPQ4S6EdX2UKGgGaAloD0MIgv5Cjxi9CcCUhpRSlGgVSzJoFkdApq/aJTER8XV9lChoBmgJaA9DCN20Gach6gLAlIaUUpRoFUsyaBZHQKavoIWxhUl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79813078b400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x798130790600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690444924278807641, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/R03pPrlsSDwZzQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/5VLPf3NNL9rII2/mwU3vlYnoj/VHi8/doVYvxCaqb/awra/r36Rv5VCXj8rUwq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT1HTek+uWxIPBnNDz9ufYM95j+Lu+VEgT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]\n [0.4556677 0.01223295 0.5617233 ]]", "desired_goal": "[[ 0.04970359 -0.70626813 -1.1025518 ]\n [-0.17873232 1.2668254 0.6840642 ]\n [-0.84578645 -1.3250141 -1.4278214 ]\n [-1.1366786 0.86820346 -0.54033154]]", "observation": "[[ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]\n [ 0.4556677 0.01223295 0.5617233 0.06420408 -0.00424956 0.06311969]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzh4Gvq/YPL3nk3c+wxkSvtXdw7wtUnM9J87ovdgoC76u/MQ9kcEnu1FQAD41Qqs7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13097689 -0.04610508 0.24177514]\n [-0.1426764 -0.02390949 0.05940454]\n [-0.11367445 -0.135898 0.09618507]\n [-0.00255976 0.12530638 0.0052264 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINQhzu5f76b+UhpRSlIwBbJRLMowBdJRHQKY6dp8neBR1fZQoaAZoCWgPQwjmIVM+BFXPv5SGlFKUaBVLMmgWR0CmOh1clgMMdX2UKGgGaAloD0MIpp2ayw2G1L+UhpRSlGgVSzJoFkdApjnGB19v0nV9lChoBmgJaA9DCIGXGTbK+t2/lIaUUpRoFUsyaBZHQKY5cHObAk91fZQoaAZoCWgPQwi5qBYRxeTpv5SGlFKUaBVLMmgWR0CmO3re67NCdX2UKGgGaAloD0MI3EduTbqt4r+UhpRSlGgVSzJoFkdApjsh7Z39rHV9lChoBmgJaA9DCCSX/5B++9G/lIaUUpRoFUsyaBZHQKY6yojv/ip1fZQoaAZoCWgPQwgr+64I/jfqv5SGlFKUaBVLMmgWR0CmOnVHFxXGdX2UKGgGaAloD0MIML39uWjI6b+UhpRSlGgVSzJoFkdApjySbH6uXHV9lChoBmgJaA9DCMjShy6ob+W/lIaUUpRoFUsyaBZHQKY8OX2M85l1fZQoaAZoCWgPQwjAlleut03mv5SGlFKUaBVLMmgWR0CmO+IwmE5AdX2UKGgGaAloD0MI1c4wtaUO4r+UhpRSlGgVSzJoFkdApjuMuOCGvnV9lChoBmgJaA9DCFgfD313K92/lIaUUpRoFUsyaBZHQKY9nmgam411fZQoaAZoCWgPQwgpQup29hXpv5SGlFKUaBVLMmgWR0CmPUVPWQOndX2UKGgGaAloD0MIBtfc0f/y6L+UhpRSlGgVSzJoFkdApjztqHoHLXV9lChoBmgJaA9DCIveqYB7nt6/lIaUUpRoFUsyaBZHQKY8mDXe3x51fZQoaAZoCWgPQwhZUYNpGD7dv5SGlFKUaBVLMmgWR0CmPqY6GQCCdX2UKGgGaAloD0MIaM76lGOy4L+UhpRSlGgVSzJoFkdApj5NUKiPAHV9lChoBmgJaA9DCBg/jXvzG+u/lIaUUpRoFUsyaBZHQKY99pTMqz91fZQoaAZoCWgPQwifkJ23sdnZv5SGlFKUaBVLMmgWR0CmPaGCyyD7dX2UKGgGaAloD0MIf6KyYU1l5r+UhpRSlGgVSzJoFkdApkBtKujh1nV9lChoBmgJaA9DCOlGWFTE6e2/lIaUUpRoFUsyaBZHQKZAFPmgam51fZQoaAZoCWgPQwgVrHE2HYHrv5SGlFKUaBVLMmgWR0CmP75eAuqWdX2UKGgGaAloD0MIQYAMHTso6r+UhpRSlGgVSzJoFkdApj9pwuM+/3V9lChoBmgJaA9DCJChYweVuN+/lIaUUpRoFUsyaBZHQKZCGl2vB8B1fZQoaAZoCWgPQwji5H6HokDlv5SGlFKUaBVLMmgWR0CmQcIatLcsdX2UKGgGaAloD0MIExCTcCGP47+UhpRSlGgVSzJoFkdApkFrdcjZ+XV9lChoBmgJaA9DCCF1O/vKg+2/lIaUUpRoFUsyaBZHQKZBFo5ggHN1fZQoaAZoCWgPQwgnhA66hEPkv5SGlFKUaBVLMmgWR0CmQ8Qx33YddX2UKGgGaAloD0MInnsPlxx35L+UhpRSlGgVSzJoFkdApkNrkwN9Y3V9lChoBmgJaA9DCHb7rDJTWuS/lIaUUpRoFUsyaBZHQKZDFQVsUIt1fZQoaAZoCWgPQwjEsMOY9Pf2v5SGlFKUaBVLMmgWR0CmQsAKWszVdX2UKGgGaAloD0MI4BCq1OwB8r+UhpRSlGgVSzJoFkdApkWmdZq20HV9lChoBmgJaA9DCOLIA5FFGua/lIaUUpRoFUsyaBZHQKZFTjbSJCV1fZQoaAZoCWgPQwg+yogLQKPev5SGlFKUaBVLMmgWR0CmRPdoN/e+dX2UKGgGaAloD0MIIcoXtJCA7r+UhpRSlGgVSzJoFkdApkSj7j1f3XV9lChoBmgJaA9DCKCH2jaMAuC/lIaUUpRoFUsyaBZHQKZGwQf6oEV1fZQoaAZoCWgPQwg5l+Kqsm/jv5SGlFKUaBVLMmgWR0CmRmhHTZxrdX2UKGgGaAloD0MIH/ZCAdvB4r+UhpRSlGgVSzJoFkdApkYQ2Q4jr3V9lChoBmgJaA9DCNWvdD48S++/lIaUUpRoFUsyaBZHQKZFu3vQWvd1fZQoaAZoCWgPQwhXlX1XBH/jv5SGlFKUaBVLMmgWR0CmR8OPeYUndX2UKGgGaAloD0MIKLuZ0Y8G7b+UhpRSlGgVSzJoFkdApkdqe/YapHV9lChoBmgJaA9DCMfUXdkFQ/C/lIaUUpRoFUsyaBZHQKZHEu/UONJ1fZQoaAZoCWgPQwivP4nPneDhv5SGlFKUaBVLMmgWR0CmRr1x0dR0dX2UKGgGaAloD0MIfSHkvP8P87+UhpRSlGgVSzJoFkdApkjBf4REnnV9lChoBmgJaA9DCAyVfy2v3Oa/lIaUUpRoFUsyaBZHQKZIaInBtUJ1fZQoaAZoCWgPQwhORpVh3A3lv5SGlFKUaBVLMmgWR0CmSBEi+tbLdX2UKGgGaAloD0MI9WkV/aGZ37+UhpRSlGgVSzJoFkdApke7x7RfGHV9lChoBmgJaA9DCLwEpz6QPOG/lIaUUpRoFUsyaBZHQKZJ0vEjxCp1fZQoaAZoCWgPQwgke4SaIVXev5SGlFKUaBVLMmgWR0CmSXmZE2HddX2UKGgGaAloD0MI/Wt55Xrb4b+UhpRSlGgVSzJoFkdApkkiAz544nV9lChoBmgJaA9DCFuzlZf8T+m/lIaUUpRoFUsyaBZHQKZIzGWD6Fd1fZQoaAZoCWgPQwhmhSLdz6nqv5SGlFKUaBVLMmgWR0CmSs41YQrddX2UKGgGaAloD0MI8yA9RQ4R4L+UhpRSlGgVSzJoFkdApkp1Muez2XV9lChoBmgJaA9DCHwm++dpwO+/lIaUUpRoFUsyaBZHQKZKHc+qzZ91fZQoaAZoCWgPQwhPP6iLFErvv5SGlFKUaBVLMmgWR0CmSchtk4FSdX2UKGgGaAloD0MIJ77aUZyj37+UhpRSlGgVSzJoFkdApkvSm/FirnV9lChoBmgJaA9DCHBCIQIOIeC/lIaUUpRoFUsyaBZHQKZLeWuX/o91fZQoaAZoCWgPQwj2tMNfk7Xiv5SGlFKUaBVLMmgWR0CmSyHo5ggHdX2UKGgGaAloD0MIJEIj2Lj+5r+UhpRSlGgVSzJoFkdApkrMidJ8OXV9lChoBmgJaA9DCLAApgwc0Oa/lIaUUpRoFUsyaBZHQKZM5m4iHIp1fZQoaAZoCWgPQwgfZcQFoNHnv5SGlFKUaBVLMmgWR0CmTI4YixFBdX2UKGgGaAloD0MILC6Oyk1U4b+UhpRSlGgVSzJoFkdApkw2hRIjGHV9lChoBmgJaA9DCNqM0xBV+Nq/lIaUUpRoFUsyaBZHQKZL4SYgJTl1fZQoaAZoCWgPQwjR60/ic6fnv5SGlFKUaBVLMmgWR0CmTexlxwQ2dX2UKGgGaAloD0MIKq2/JQB/5b+UhpRSlGgVSzJoFkdApk2TIq9XcXV9lChoBmgJaA9DCBSuR+F6VPO/lIaUUpRoFUsyaBZHQKZNO3PzFuN1fZQoaAZoCWgPQwhiwJKrWHzhv5SGlFKUaBVLMmgWR0CmTOYMvyskdX2UKGgGaAloD0MIUfhsHRzs17+UhpRSlGgVSzJoFkdApk7jIaLn93V9lChoBmgJaA9DCCcxCKwcWuG/lIaUUpRoFUsyaBZHQKZOiinpB5Z1fZQoaAZoCWgPQwjV7ewrD9Lrv5SGlFKUaBVLMmgWR0CmTjLBsQ/YdX2UKGgGaAloD0MI4gLQKF068L+UhpRSlGgVSzJoFkdApk3dW+49YHV9lChoBmgJaA9DCDkoYabt3+C/lIaUUpRoFUsyaBZHQKZP4fhddE91fZQoaAZoCWgPQwjiOsYVF0fwv5SGlFKUaBVLMmgWR0CmT4jUNKAbdX2UKGgGaAloD0MIx549l6lJ5L+UhpRSlGgVSzJoFkdApk8xKODJ2nV9lChoBmgJaA9DCJYEqKllK/K/lIaUUpRoFUsyaBZHQKZO25aNdZ91fZQoaAZoCWgPQwi9VGzM64jlv5SGlFKUaBVLMmgWR0CmUQXzlLezdX2UKGgGaAloD0MI2QbuQJ1y4b+UhpRSlGgVSzJoFkdAplCstdzGP3V9lChoBmgJaA9DCHNIaqFk8uC/lIaUUpRoFUsyaBZHQKZQVSx7iQ11fZQoaAZoCWgPQwha1v1jIbrpv5SGlFKUaBVLMmgWR0CmUABnrY5DdX2UKGgGaAloD0MIvAUSFD9G5L+UhpRSlGgVSzJoFkdAplIHKr7wa3V9lChoBmgJaA9DCCF4fHvXoPC/lIaUUpRoFUsyaBZHQKZRrdkauOl1fZQoaAZoCWgPQwjtDFNb6iDev5SGlFKUaBVLMmgWR0CmUVYmb9ZSdX2UKGgGaAloD0MI66f/rPnx2b+UhpRSlGgVSzJoFkdAplEAy44IbHV9lChoBmgJaA9DCIBgjh6/N+W/lIaUUpRoFUsyaBZHQKZTEOMERrd1fZQoaAZoCWgPQwgN4gM7/gvav5SGlFKUaBVLMmgWR0CmUrerMkhSdX2UKGgGaAloD0MI1As+zcmL1L+UhpRSlGgVSzJoFkdAplJgOrhisnV9lChoBmgJaA9DCONuEK0V7ey/lIaUUpRoFUsyaBZHQKZSCuXeFcp1fZQoaAZoCWgPQwhoXaPlQI/pv5SGlFKUaBVLMmgWR0CmVBvTXrdFdX2UKGgGaAloD0MI662BrRIs2L+UhpRSlGgVSzJoFkdAplPC08eS0XV9lChoBmgJaA9DCETbMXVXduO/lIaUUpRoFUsyaBZHQKZTa1WsA/91fZQoaAZoCWgPQwh4uB0aFqPcv5SGlFKUaBVLMmgWR0CmUxYetCAudX2UKGgGaAloD0MIUz4EVaPX5L+UhpRSlGgVSzJoFkdAplUWaBqbjXV9lChoBmgJaA9DCFHAdjBiH+q/lIaUUpRoFUsyaBZHQKZUvY3eenR1fZQoaAZoCWgPQwg/H2XEBSDpv5SGlFKUaBVLMmgWR0CmVGXnZCfIdX2UKGgGaAloD0MI6gYKvJNP4r+UhpRSlGgVSzJoFkdAplQQzYVZcXV9lChoBmgJaA9DCJZ31QPmIeq/lIaUUpRoFUsyaBZHQKZWEIhyKel1fZQoaAZoCWgPQwj1hZDz/j/Rv5SGlFKUaBVLMmgWR0CmVbfI0ZWJdX2UKGgGaAloD0MIxw2/m25Z47+UhpRSlGgVSzJoFkdAplVgjps41nV9lChoBmgJaA9DCE/rNqj91sC/lIaUUpRoFUsyaBZHQKZVC35N47l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.5794925554655492, "std_reward": 0.15514318451064257, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T08:49:46.160813"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2387
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf7b69727f95291ba657c2d58f1daa66de1c02e4f4b9959032fbe3008b0e8af
|
3 |
size 2387
|