Edit model card

ethiopic-asr-characters

This model is a fine-tuned version of Samuael/ethiopic-asr-characters on the alffa_amharic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4428
  • Wer: 0.2996
  • Phoneme Cer: 0.1421

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Wer Phoneme Cer
0.1559 0.2312 200 0.5540 0.3212 0.1475
0.1228 0.4624 400 0.5394 0.3142 0.1466
0.069 0.6936 600 0.5525 0.3139 0.1466
0.0997 0.9249 800 0.5531 0.3118 0.1462
0.0732 1.1561 1000 0.5644 0.3196 0.1465
0.1637 1.3873 1200 0.5367 0.3185 0.1468
0.1145 1.6185 1400 0.5215 0.3180 0.1468
0.1499 1.8497 1600 0.4985 0.3141 0.1455
0.1975 2.0809 1800 0.4814 0.3114 0.1446
0.2116 2.3121 2000 0.4855 0.3085 0.1446
0.2384 2.5434 2200 0.4702 0.3083 0.1441
0.4346 2.7746 2400 0.4762 0.3063 0.1435
0.3156 3.0058 2600 0.4677 0.3044 0.1432
0.5558 3.2370 2800 0.4574 0.2993 0.1425
0.2787 3.4682 3000 0.4478 0.2989 0.1420
0.3268 3.6994 3200 0.4466 0.2978 0.1418
0.3461 3.9306 3400 0.4428 0.2996 0.1421

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
83
Safetensors
Model size
316M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Samuael/ethiopic-asr-characters

Unable to build the model tree, the base model loops to the model itself. Learn more.

Evaluation results