--- language: - hi license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - Samyak29/synthetic-speaker-diarization-dataset-hindi-large model-index: - name: speaker-segmentation-fine-tuned-hindi results: [] --- # speaker-segmentation-fine-tuned-hindi This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the synthetic hindi dataset (https://huggingface.co/datasets/Samyak29/synthetic-speaker-diarization-dataset-hindi-large). It achieves the following results on the evaluation set: - Loss: 0.4442 - Der: 0.1448 - False Alarm: 0.0243 - Missed Detection: 0.0280 - Confusion: 0.0925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.477 | 1.0 | 194 | 0.4877 | 0.1651 | 0.0259 | 0.0320 | 0.1072 | | 0.3908 | 2.0 | 388 | 0.4562 | 0.1526 | 0.0231 | 0.0315 | 0.0980 | | 0.3708 | 3.0 | 582 | 0.4356 | 0.1451 | 0.0242 | 0.0284 | 0.0924 | | 0.3567 | 4.0 | 776 | 0.4461 | 0.1441 | 0.0244 | 0.0280 | 0.0917 | | 0.3447 | 5.0 | 970 | 0.4442 | 0.1448 | 0.0243 | 0.0280 | 0.0925 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1