File size: 1,960 Bytes
45ea4a5
 
 
77e5520
45ea4a5
 
 
77e5520
45ea4a5
 
 
 
 
 
 
 
 
 
77e5520
f9b552c
 
 
45ea4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e5520
 
 
45ea4a5
f9b552c
 
45ea4a5
77e5520
f9b552c
45ea4a5
 
f9b552c
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea4a5
 
 
 
f9b552c
45ea4a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
language:
- multilingual
base_model: /kaggle/input/mistral-7b/Mistral-7B-v0.1
tags:
- generated_from_trainer
datasets:
- STEM
model-index:
- name: mistral-7b-llm-science-exam
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral-7b-llm-science-exam

This model is a fine-tuned version of [/kaggle/input/mistral-7b/Mistral-7B-v0.1](https://huggingface.co//kaggle/input/mistral-7b/Mistral-7B-v0.1) on the llm-science-exam dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3951
- Map@3: 0.8976

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map@3  |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3769        | 0.11  | 50   | 1.8621          | 0.9238 |
| 1.5772        | 0.23  | 100  | 0.5619          | 0.9119 |
| 0.9202        | 0.34  | 150  | 0.3942          | 0.9095 |
| 0.9485        | 0.45  | 200  | 0.4117          | 0.8976 |
| 0.9698        | 0.56  | 250  | 0.4145          | 0.9048 |
| 0.8731        | 0.68  | 300  | 0.4054          | 0.9048 |
| 0.8929        | 0.79  | 350  | 0.3967          | 0.8976 |
| 0.9737        | 0.9   | 400  | 0.3951          | 0.8976 |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.14.0