File size: 85,986 Bytes
c63f439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "24884304-ab6c-462a-bf6b-2a8abf74c9cc",
   "metadata": {},
   "source": [
    "# SARIMAX for the prediction of energy consumption data over 48 hours"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "05f2b198-d2f4-484b-8d63-5e590e3223b2",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Install all required packages with 'conda install NAME' or with pip install NAME'\n",
    "# pandas\n",
    "# numpy\n",
    "# matplotlib\n",
    "# scikit-learn\n",
    "# statsmodels\n",
    "# pmdarima\n",
    "# psutil"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ca3f47bb-e6ef-4a33-a60d-77c500a9c6ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Import all required libraries\n",
    "import sys  # Provides access to some variables used or maintained by the interpreter\n",
    "import pandas as pd # Library for data manipulation and analysis, ideal for working with structured data like tables\n",
    "import numpy as np # For scientific computing, support for large, multi-dimensional arrays and matrices\n",
    "import matplotlib.pyplot as plt # For creating static, interactive, and animated visualizations\n",
    "import matplotlib.dates as mdates # Provides matplotlib with date-specific plotting tools\n",
    "from sklearn.preprocessing import MinMaxScaler # For scaling and normalizing features, often useful in data preprocessing\n",
    "from sklearn.metrics import mean_squared_error, mean_absolute_error # For calculating common statistical error metrics\n",
    "import pmdarima as pm # For ARIMA modeling in Python, which simplifies the process of building ARIMA models\n",
    "from pmdarima.model_selection import train_test_split # Provides model selection capabilities like train/test splits\n",
    "import statsmodels.api as sm # Provides many statistical models and functions\n",
    "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # For plotting autocorrelation and partial autocorrelation charts\n",
    "import psutil # For accessing system details and process utilities, helpful for monitoring system performance\n",
    "from pathlib import Path  # Used for filesystem path manipulation in an object-oriented way"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "88b3929e-0b04-4036-b43e-5738f74b2bc9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/sarah/anaconda3/envs/BT2024SARIMAModel/bin/python\n"
     ]
    }
   ],
   "source": [
    "#To display the current environment\n",
    "print(sys.executable)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ad3b8a68-11be-4cf0-9d33-dfcea476d122",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Erste und letzte Zeilen aus dfClimaAll:\n",
      "   dy  Globalstrahlung_15Min  Sonnenhöhe  ExtraterrestrischeStrahlung  \\\n",
      "0   1                      0       -65.0                            0   \n",
      "1   1                      0       -65.0                            0   \n",
      "2   1                      0       -65.4                            0   \n",
      "3   1                      0       -65.5                            0   \n",
      "4   1                      0       -65.2                            0   \n",
      "\n",
      "   StundenwertStrahlung  Diffusstrahlung  StrahlungGeneigteFläche  \\\n",
      "0                     0                0                        0   \n",
      "1                     0                0                        0   \n",
      "2                     0                0                        0   \n",
      "3                     0                0                        0   \n",
      "4                     0                0                        0   \n",
      "\n",
      "   DiffusstrahlungGeneigteFläche  Direktnormalstrahlung  Lufttemperatur  \\\n",
      "0                              0                      0             9.2   \n",
      "1                              0                      0             9.2   \n",
      "2                              0                      0             9.2   \n",
      "3                              0                      0             9.2   \n",
      "4                              0                      0             9.1   \n",
      "\n",
      "   Windgeschwindigkeit  Schönwetterstrahlung  Taupunkttemperatur  TheorPVProd  \\\n",
      "0                  1.8                     0                 7.9            0   \n",
      "1                  1.8                     0                 7.9            0   \n",
      "2                  1.8                     0                 7.9            0   \n",
      "3                  1.8                     0                 7.9            0   \n",
      "4                  1.8                     0                 7.8            0   \n",
      "\n",
      "     TimestampWeather  \n",
      "0 2023-01-01 00:00:00  \n",
      "1 2023-01-01 00:15:00  \n",
      "2 2023-01-01 00:30:00  \n",
      "3 2023-01-01 00:45:00  \n",
      "4 2023-01-01 01:00:00  \n",
      "        dy  Globalstrahlung_15Min  Sonnenhöhe  ExtraterrestrischeStrahlung  \\\n",
      "35035  365                      0       -56.5                            0   \n",
      "35036  365                      0       -58.5                            0   \n",
      "35037  365                      0       -60.3                            0   \n",
      "35038  365                      0       -61.9                            0   \n",
      "35039  365                      0       -63.3                            0   \n",
      "\n",
      "       StundenwertStrahlung  Diffusstrahlung  StrahlungGeneigteFläche  \\\n",
      "35035                     0                0                        0   \n",
      "35036                     0                0                        0   \n",
      "35037                     0                0                        0   \n",
      "35038                     0                0                        0   \n",
      "35039                     0                0                        0   \n",
      "\n",
      "       DiffusstrahlungGeneigteFläche  Direktnormalstrahlung  Lufttemperatur  \\\n",
      "35035                              0                      0             5.5   \n",
      "35036                              0                      0             5.5   \n",
      "35037                              0                      0             5.5   \n",
      "35038                              0                      0             5.5   \n",
      "35039                              0                      0             4.9   \n",
      "\n",
      "       Windgeschwindigkeit  Schönwetterstrahlung  Taupunkttemperatur  \\\n",
      "35035                  2.4                     0               -18.2   \n",
      "35036                  2.4                     0               -18.2   \n",
      "35037                  2.4                     0               -18.2   \n",
      "35038                  2.4                     0               -18.2   \n",
      "35039                  1.8                     0               -14.0   \n",
      "\n",
      "       TheorPVProd    TimestampWeather  \n",
      "35035            0 2023-12-31 22:45:00  \n",
      "35036            0 2023-12-31 23:00:00  \n",
      "35037            0 2023-12-31 23:15:00  \n",
      "35038            0 2023-12-31 23:30:00  \n",
      "35039            0 2023-12-31 23:45:00  \n",
      "Anzahl fehlender Werte pro Spalte:\n",
      "dy                               0\n",
      "Globalstrahlung_15Min            0\n",
      "Sonnenhöhe                       0\n",
      "ExtraterrestrischeStrahlung      0\n",
      "StundenwertStrahlung             0\n",
      "Diffusstrahlung                  0\n",
      "StrahlungGeneigteFläche          0\n",
      "DiffusstrahlungGeneigteFläche    0\n",
      "Direktnormalstrahlung            0\n",
      "Lufttemperatur                   0\n",
      "Windgeschwindigkeit              0\n",
      "Schönwetterstrahlung             0\n",
      "Taupunkttemperatur               0\n",
      "TheorPVProd                      0\n",
      "TimestampWeather                 0\n",
      "dtype: int64\n",
      "Anzahl der Zeilen in dfClimaAll: 35040\n"
     ]
    }
   ],
   "source": [
    "# Step 1 - Reading Data\n",
    "\n",
    "## dfClimaAll: Data from 2021-2023\n",
    "## dfEnergyAll: All data from the transformer station from 2021-2023\n",
    "\n",
    "# Load data for 2021\n",
    "dfClima21 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2021TimeWeather.xlsx')\n",
    "\n",
    "# Load data for 2022\n",
    "dfClima22 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2022TimeWeather.xlsx')\n",
    "\n",
    "# Load data for 2023\n",
    "dfClima23 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2023TimeWeather.xlsx')\n",
    "\n",
    "# Merge the DataFrames\n",
    "#Only DF23\n",
    "dfClimaAll = dfClima23.copy()\n",
    "#All DFs:\n",
    "#dfClimaAll = pd.concat([dfClima21, dfClima22, dfClima23])\n",
    "\n",
    "# Check the resulting DataFrame\n",
    "print(\"First and last rows from dfClimaAll:\")\n",
    "print(dfClimaAll.head())\n",
    "print(dfClimaAll.tail())\n",
    "\n",
    "# Check for missing values in each column\n",
    "## .isnull(): Returns DF where values with NaN are replaced by True & values without NaN are replaced by False\n",
    "## sum(): Sums up the number of True values\n",
    "print(\"Number of missing values per column:\")\n",
    "print(dfClimaAll.isnull().sum())\n",
    "\n",
    "# Convert 'Timestamp' into a Datetime object and set it as index, if not already set\n",
    "if 'TimestampWeather' in dfClimaAll.columns:\n",
    "    ## pd.to_datetime: Converts values into Datetime objects —> Pandas can then treat these as timestamps\n",
    "    dfClimaAll['TimestampWeather'] = pd.to_datetime(dfClimaAll['TimestampWeather'])\n",
    "    ## set_index: Sets index for the Timestamp column to facilitate access to data based on time points\n",
    "    dfClimaAll = dfClimaAll.set_index('TimestampWeather')\n",
    "\n",
    "# Number of rows in dfClimaAll\n",
    "print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0a4710d5-06ed-4ab1-b396-66797786f0fa",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Erste und letzte Zeilen aus dfEnergyAll:\n",
      "                     Lastgang\n",
      "Timestamp                    \n",
      "2023-01-01 00:00:00    657.35\n",
      "2023-01-01 00:15:00    677.68\n",
      "2023-01-01 00:30:00    644.91\n",
      "2023-01-01 00:45:00    656.67\n",
      "2023-01-01 01:00:00    660.77\n",
      "                     Lastgang\n",
      "Timestamp                    \n",
      "2023-12-31 22:45:00    833.17\n",
      "2023-12-31 23:00:00    767.89\n",
      "2023-12-31 23:15:00    770.04\n",
      "2023-12-31 23:30:00    730.45\n",
      "2023-12-31 23:45:00    744.21\n",
      "Anzahl der Zeilen in dfEnergyAll: 35036\n"
     ]
    }
   ],
   "source": [
    "# Step 1 - Reading Data\n",
    "\n",
    "## dfClimaAll: Data from 2021-2023\n",
    "## dfEnergyAll: All data from the transformer station from 2021-2023\n",
    "\n",
    "# Path to the directory containing the Excel files\n",
    "directory_path = Path('/home/sarah/Documents/BT2024/2023')\n",
    "\n",
    "# Create a list of all Excel files in the directory\n",
    "file_paths = list(directory_path.glob('*.xlsx'))\n",
    "\n",
    "# List to store the individual DataFrames\n",
    "dfs = []\n",
    "\n",
    "# Loop over all file paths\n",
    "for file_path in file_paths:\n",
    "    # Read the Excel file\n",
    "    df = pd.read_excel(file_path)\n",
    "    \n",
    "    # Convert the 'Timestamp' column into a datetime\n",
    "    df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n",
    "    \n",
    "    # Convert the 'Lastgang' column into a numeric data type, treating errors as NaN\n",
    "    df['Lastgang'] = pd.to_numeric(df['Lastgang'], errors='coerce')\n",
    "    \n",
    "    # Sort the DataFrame by the 'Timestamp'\n",
    "    df = df.sort_values(by='Timestamp')\n",
    "    \n",
    "    # Perform linear interpolation for the 'Lastgang' on the individual DataFrame\n",
    "    df['Lastgang'] = df['Lastgang'].interpolate(method='linear')\n",
    "    \n",
    "    # Add the DataFrame to the list\n",
    "    dfs.append(df)\n",
    "\n",
    "# Merge all DataFrames in the list\n",
    "dfEnergyAll = pd.concat(dfs).set_index('Timestamp')\n",
    "\n",
    "# Sum the Lastgang values for identical timestamps\n",
    "dfEnergyAll = dfEnergyAll.groupby('Timestamp').sum()\n",
    "\n",
    "# Check the resulting DataFrame\n",
    "print(\"First and last rows from dfEnergyAll:\")\n",
    "print(dfEnergyAll.head())\n",
    "print(dfEnergyAll.tail())\n",
    "\n",
    "# Display the number of rows in dfEnergyAll\n",
    "print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "dda00bbf-4a50-45f8-8c98-c29eff6bf793",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fehlende Zeitstempel in dfEnergyAll:\n",
      "DatetimeIndex(['2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
      "               '2023-03-26 02:30:00', '2023-03-26 02:45:00'],\n",
      "              dtype='datetime64[ns]', name='Timestamp', freq=None)\n",
      "Überprüfen nach dem Ergänzen der fehlenden Zeitstempel:\n",
      "                     Lastgang\n",
      "2023-03-26 02:00:00    520.34\n",
      "2023-03-26 02:15:00    520.34\n",
      "2023-03-26 02:30:00    520.34\n",
      "2023-03-26 02:45:00    520.34\n",
      "Anzahl der Zeilen in dfClima21: 35040\n",
      "Anzahl der Zeilen in dfEnergyAll: 35040\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_1561988/424088960.py:29: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
      "  dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# Create a complete timestamp index for the years 2023 in 15-minute intervals\n",
    "all_timestamps = pd.date_range(start='2023-01-01 00:00:00', end='2023-12-31 23:45:00', freq='15T')\n",
    "\n",
    "# Convert this into a DataFrame\n",
    "df_all_timestamps = pd.DataFrame(all_timestamps, columns=['Timestamp'])\n",
    "df_all_timestamps = df_all_timestamps.set_index('Timestamp')\n",
    "\n",
    "# Compare the complete timestamp index with dfEnergyAll\n",
    "missing_timestamps = df_all_timestamps.index.difference(dfEnergyAll.index)\n",
    "\n",
    "print(\"Missing timestamps in dfEnergyAll:\")\n",
    "print(missing_timestamps)\n",
    "\n",
    "\n",
    "# Missing timestamps\n",
    "missing_timestamps = pd.DatetimeIndex(['2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
    "                                       '2023-03-26 02:30:00', '2023-03-26 02:45:00'])\n",
    "\n",
    "# Create a DataFrame with the missing timestamps\n",
    "df_missing = pd.DataFrame(index=missing_timestamps)\n",
    "\n",
    "# Merge this DataFrame with the original DataFrame\n",
    "dfEnergyAll = dfEnergyAll.combine_first(df_missing)\n",
    "\n",
    "# Fill the missing values. Use 'ffill' for forward fill.\n",
    "dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n",
    "\n",
    "print(\"Check after adding the missing timestamps:\")\n",
    "print(dfEnergyAll.loc[missing_timestamps])\n",
    "\n",
    "# Number of rows in dfClima21\n",
    "# Ensure dfClima21 is already defined before executing this line.\n",
    "print(\"Number of rows in dfClima21:\", dfClimaAll.shape[0])\n",
    "\n",
    "# Number of rows in dfEnergyAll\n",
    "print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "d7e1513e-2337-45c7-92b9-82db88714c50",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Anzahl fehlender Werte pro Spalte:\n",
      "Lastgang                   0\n",
      "StundenwertStrahlung       0\n",
      "Globalstrahlung_15Min      0\n",
      "StrahlungGeneigteFläche    0\n",
      "TheorPVProd                0\n",
      "Direktnormalstrahlung      0\n",
      "Schönwetterstrahlung       0\n",
      "Lufttemperatur             0\n",
      "dtype: int64\n",
      "Erste Zeilen aus dfEnergyAll-Bearbeitet:\n",
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2023-01-01 00:00:00    657.35                     0                      0   \n",
      "2023-01-01 00:15:00    677.68                     0                      0   \n",
      "2023-01-01 00:30:00    644.91                     0                      0   \n",
      "2023-01-01 00:45:00    656.67                     0                      0   \n",
      "2023-01-01 01:00:00    660.77                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2023-01-01 00:00:00                        0            0   \n",
      "2023-01-01 00:15:00                        0            0   \n",
      "2023-01-01 00:30:00                        0            0   \n",
      "2023-01-01 00:45:00                        0            0   \n",
      "2023-01-01 01:00:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2023-01-01 00:00:00                      0                     0   \n",
      "2023-01-01 00:15:00                      0                     0   \n",
      "2023-01-01 00:30:00                      0                     0   \n",
      "2023-01-01 00:45:00                      0                     0   \n",
      "2023-01-01 01:00:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  \n",
      "2023-01-01 00:00:00             9.2  \n",
      "2023-01-01 00:15:00             9.2  \n",
      "2023-01-01 00:30:00             9.2  \n",
      "2023-01-01 00:45:00             9.2  \n",
      "2023-01-01 01:00:00             9.1  \n",
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2023-12-31 22:45:00    833.17                     0                      0   \n",
      "2023-12-31 23:00:00    767.89                     0                      0   \n",
      "2023-12-31 23:15:00    770.04                     0                      0   \n",
      "2023-12-31 23:30:00    730.45                     0                      0   \n",
      "2023-12-31 23:45:00    744.21                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2023-12-31 22:45:00                        0            0   \n",
      "2023-12-31 23:00:00                        0            0   \n",
      "2023-12-31 23:15:00                        0            0   \n",
      "2023-12-31 23:30:00                        0            0   \n",
      "2023-12-31 23:45:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2023-12-31 22:45:00                      0                     0   \n",
      "2023-12-31 23:00:00                      0                     0   \n",
      "2023-12-31 23:15:00                      0                     0   \n",
      "2023-12-31 23:30:00                      0                     0   \n",
      "2023-12-31 23:45:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  \n",
      "2023-12-31 22:45:00             5.5  \n",
      "2023-12-31 23:00:00             5.5  \n",
      "2023-12-31 23:15:00             5.5  \n",
      "2023-12-31 23:30:00             5.5  \n",
      "2023-12-31 23:45:00             4.9  \n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# To check if the indexes in both DataFrames are set equally\n",
    "dfClimaAll.index.equals(dfEnergyAll.index)\n",
    "\n",
    "# Adding the columns from dfClima21 to dfEnergyAll\n",
    "dfEnergyAll = dfEnergyAll.join(dfClimaAll[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur']])\n",
    "\n",
    "# Checking for missing values in each column\n",
    "print(\"Number of missing values per column:\")\n",
    "print(dfEnergyAll.isnull().sum())\n",
    "\n",
    "# Printing the first and last rows from the dataframe\n",
    "print(\"First and last rows from dfEnergyAll-Edited:\")\n",
    "print(dfEnergyAll.head())\n",
    "print(dfEnergyAll.tail())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "e33a35b4-0b2d-41d0-9be7-5ed46491538b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2023-01-01 00:00:00    657.35                     0                      0   \n",
      "2023-01-01 00:15:00    677.68                     0                      0   \n",
      "2023-01-01 00:30:00    644.91                     0                      0   \n",
      "2023-01-01 00:45:00    656.67                     0                      0   \n",
      "2023-01-01 01:00:00    660.77                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2023-01-01 00:00:00                        0            0   \n",
      "2023-01-01 00:15:00                        0            0   \n",
      "2023-01-01 00:30:00                        0            0   \n",
      "2023-01-01 00:45:00                        0            0   \n",
      "2023-01-01 01:00:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2023-01-01 00:00:00                      0                     0   \n",
      "2023-01-01 00:15:00                      0                     0   \n",
      "2023-01-01 00:30:00                      0                     0   \n",
      "2023-01-01 00:45:00                      0                     0   \n",
      "2023-01-01 01:00:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  Lastgang_Moving_Average  \\\n",
      "2023-01-01 00:00:00             9.2               707.704792   \n",
      "2023-01-01 00:15:00             9.2               707.704792   \n",
      "2023-01-01 00:30:00             9.2               707.704792   \n",
      "2023-01-01 00:45:00             9.2               707.704792   \n",
      "2023-01-01 01:00:00             9.1               707.704792   \n",
      "\n",
      "                     Lastgang_First_Difference  \n",
      "2023-01-01 00:00:00                      20.33  \n",
      "2023-01-01 00:15:00                      20.33  \n",
      "2023-01-01 00:30:00                     -32.77  \n",
      "2023-01-01 00:45:00                      11.76  \n",
      "2023-01-01 01:00:00                       4.10  \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_1561988/3400565057.py:13: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
      "  dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# Calculating the moving average for 'Lastgang'\n",
    "window_size = 96  # This corresponds to 24 hours at 15-minute intervals\n",
    "dfEnergyAll['Lastgang_Moving_Average'] = dfEnergyAll['Lastgang'].rolling(window=window_size).mean()\n",
    "\n",
    "# Calculating the first differences for 'Lastgang'\n",
    "dfEnergyAll['Lastgang_First_Difference'] = dfEnergyAll['Lastgang'].diff()\n",
    "\n",
    "# Since the first `window_size - 1` values of the moving average will be NaN and the first value of the first difference will be NaN, fill these values.\n",
    "dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n",
    "\n",
    "# To check the first few rows to ensure the new features look as expected.\n",
    "print(dfEnergyAll.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "326e34ca-5066-464d-9e84-b1da0b22f755",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNt0lEQVR4nOzdeXwM5x8H8M8kks1BViRySSShriCKVIQqSkIcRRHaSlHVQ1tVPdDL0V8btHW2qJYGVaIN6iaulAoVZymKOhISR+QSOSR5fn+kO7LZI7uy2Rw+79drX8nOPjP7zOzOzHe++8zzSEIIASIiIiIiIiIiIjOyqOgKEBERERERERHRo4dJKSIiIiIiIiIiMjsmpYiIiIiIiIiIyOyYlCIiIiIiIiIiIrNjUoqIiIiIiIiIiMyOSSkiIiIiIiIiIjI7JqWIiIiIiIiIiMjsmJQiIiIiIiIiIiKzY1KKiIiIiIiIiIjMjkkpMql58+ZBkiS0aNGizMvasmULpkyZUqZl+Pj4oE+fPmWuS3m7fPkyJElCZGSk0fNev34dU6ZMwfHjxzVemzJlCiRJKnsFTSAqKgrNmzeHra0tJEnSWl9TGDFiBGrWrFlquQULFmjd3mX5LEzlpZdeQs+ePbW+9tdff0GSJFhZWSEpKUnnMjIyMvD5558jICAADg4OUCgU8PHxwUsvvYSjR4/K5SIjIyFJktbHe++9BwC4f/8+GjZsiDlz5pRpvfbu3QtJkrB3794yLccYqvWLj483y/vp2x+JyHxKHttq1KgBT09PjBw5EteuXTPpe33xxRdYv369xvSyHPO0zVue5/QNGzZAkiQ4OTkhNze3TMs6cOAApkyZgrS0tIdeRpcuXUwSS5qDJEkPFa/eu3cPU6ZM0fr9UH1/L1++XOb6ldWuXbsQEBAAe3t7SJKk9btuCqrv9+3bt/WW+/nnn3XGIw/7WZjKtGnT4Ofnh8LCQrU6FX8olUp06dIFmzdv1pj/9u3bUCgUpcYtubm5+Oabb/Dkk0/C0dER1tbWqFevHsLCwhAbGyuXUx1HtD0GDRokl3vqqacwbty4Mq17RcTPqvX79ddfzfJ++vZZKhsmpcikli5dCgA4ffo0Dh06VKZlbdmyBVOnTjVFtaq169evY+rUqVovgl9++WXExcWZv1Il3Lp1C+Hh4WjYsCG2bduGuLg4NG7cuELrpCsp5e7ujri4OPTu3dv8lQJw7NgxLFu2DP/73/+0vv7DDz8AAPLz87F8+XKtZS5evIjWrVtj+vTp6Nq1K1atWoUdO3Zg6tSpuHHjBtq2bYv09HS1eX788UfExcWpPcaOHQsAsLKywqeffopp06YhJSXFhGtb/ejbH4nI/FTHtpiYGIwePRqrVq1Cp06dkJWVZbL30JWUatOmDeLi4tCmTRuTvVd5WbJkCQDgzp07ZU46HDhwAFOnTi1TUupRcO/ePUydOlXrBW7v3r0RFxcHd3d381esGCEEwsLCYGVlhQ0bNiAuLg6dO3eu0DrpS0rFxcXh5ZdfNm+F/nP9+nXMnDkT06ZNg4WF+iX2oEGDEBcXhz/++APffvstkpOT0bdvX43E1IoVK5CXlwfgwT5Z0u3bt9GxY0eMHz8eLVq0QGRkJHbt2oWvv/4alpaW6NatG06cOKE2zxdffKER40VERMivf/bZZ1iwYAHOnTtnik1RbenbZ6lsalR0Baj6iI+Px4kTJ9C7d29s3rwZS5YsQWBgYEVXq1zdu3cPdnZ2GtOFEMjJyYGtrW0F1OoBT09PeHp6VmgdAOCff/7B/fv3MWzYsAoPZkqjUCjQvn37Cnv/6dOno127dggICNB4LTc3FytXrkSrVq1w+/ZtLF26FBMmTFArU1BQgAEDBuD27duIi4tT+6W5c+fOGD58OLZu3QorKyu1+Vq0aKH1PVWee+45jB8/Ht999x0+/PDDMq4lEZF5FD+2de3aFQUFBfjss8+wfv16vPDCC2VadnZ2tt7zvIODQ4WeTwyVnJyMLVu24Omnn8aBAwewZMkSDBkypKKrVa50xW9A6Z+rOdStWxd169at0DoARYmWO3fuYMCAAejWrVtFV6dUFbm/zZ07F7Vr18azzz6r8Zqrq6tctw4dOiAoKAiPPfYY5syZo/Yj6NKlS+Hi4gJvb2+sWrUKs2bN0vguvvjiizhx4gS2b9+Op59+Wu21oUOHYvz48XB0dFSb3qhRI73bpnPnzmjSpAm+/vprLF682Oh1JyortpQik1Fl9KdPn44OHTpg9erVuHfvnloZXU3ZSzb5HDFiBL799lsA6s1eVc2Yc3JyMGnSJPj6+spNVt944w2DfpVbsGABatSogcmTJ8vTli5dilatWsHGxgZ16tTBgAEDcObMGbX5VLeF/fXXXwgJCUGtWrXkE7QkSXjzzTexaNEiNGvWDAqFAsuWLQMAnD9/Hs8//zxcXFygUCjQrFkzed30uXDhAkaOHIlGjRrBzs4O9erVQ9++ffHXX3+pbc8nnngCADBy5Eh5O6maLmtr6l9YWIiZM2eiadOmUCgUcHFxwYsvvojExES1cqqm84cPH0anTp1gZ2eHBg0aYPr06WrNkgsLC/G///0PTZo0ga2tLWrXrg1/f3/MnTtX3m5PPvkkAGDIkCGQJAldunSR30P1f8lt7ePjIz9XfT+++uorzJo1C76+vqhZsyaCgoJw8ODBUrflH3/8AWdnZ/Tp0wdZWVnw8fHB6dOnERsbK28z1fvpan68f/9+dOvWDbVq1YKdnR06dOig8QuXqrn9nj178Prrr8PZ2RlOTk549tlncf369VLreePGDaxbtw7h4eFaX1+/fj1SUlLw8ssvY/jw4fjnn3+wf/9+jTJ//fUXJk2apPPWh9DQUJ3BuC7W1tYYMmQIFi9eDCFEqeXPnj2Lnj17ws7ODs7OznjttdeQmZmptezOnTvRrVs3ODg4wM7ODh07dsSuXbvUyty6dQuvvPIKvLy8oFAoULduXXTs2BE7d+40aj20ycnJwbvvvovHH38cSqUSderUQVBQEH777TeNsr/88gsCAwOhVCrlfeKll14CUPr+CADff/89GjduDIVCAT8/P/z8888a33cAmDp1KgIDA1GnTh04ODigTZs2WLJkica2V92ivG3bNrRp0wa2trZo2rSp3Gq1uP379yMoKAg2NjaoV68ePvnkE/zwww8at4js3r0bXbp0gZOTE2xtbVG/fn0MHDhQ43hOVBWpLsyuXLkCwPh9be3atWjdujVsbGwwdepUSJKErKwsLFu2TN7nVec1XTFPfHw8nnnmGdSpUwc2NjZo3bo11qxZ89DrFBUVhaCgINjb26NmzZro0aMHjh07ZvD8y5YtQ35+Pt555x08++yz2LVrl7x9VPTdmlMy7nj//fcBAL6+vvI2UW0DQ2MQbdatWwc7Ozu8/PLLyM/PB1B022FQUBDs7OxQq1YtBAcHa7QQV8VCR48exaBBg+Do6IiGDRsC0P25AkXJuldffRWenp6wtraGr68vpk6dKr+3Lrdu3cKYMWPg5+eHmjVrwsXFBU8//TT27duntj1VSSfV90iSJIwYMQKA7tv3jIlXL1y4gF69eqFmzZrw8vLCu+++q3Fr5sKFC9GqVSvUrFkTtWrVQtOmTeUfnqZMmSL/sDlhwgS1WEnbeav4ti5OFSOvWLECzZo1g52dHVq1aoVNmzbp3Y5AUSzRoEEDBAYG4ubNm/Jtb1euXFG7Pij+XiVv3zt16hT69esHR0dH2NjY4PHHH5djdBXVvrpq1Sp89NFH8PDwgIODA7p3725Q66G8vDwsWbIEzz//vEYrKW0aNmyIunXrqu1nhw4dwqlTpxAeHo7Ro0cjPT0d0dHRavMdOXIEW7duxahRozQSUipPPPEE6tevX2odSgoPD8fPP/+sM1Yr7vr16wgLC0OtWrWgVCoxZMgQJCcnay1ryPHu3r17eO+99+Dr6yt/twMCArBq1Sqj10MbQ4/z+uKf0vZZAPjtt9/g7+8PhUKBBg0aYO7cuVr3iW+//RZPPfUUXFxcYG9vj5YtW2LmzJm4f/++WjlDr8WAoruUQkJCYGdnh7p16+KNN97A5s2bNc5Bx44dQ58+feTrUg8PD/Tu3dugY3C5EkQmcO/ePaFUKsUTTzwhhBDihx9+EABEZGSkWrk9e/YIAGLPnj1q0y9duiQAiB9//FEIIcSFCxfEoEGDBAARFxcnP3JyckRhYaHo0aOHqFGjhvjkk0/Ejh07xFdffSXs7e1F69atRU5Ojrxcb29v0bt3byGEEIWFheLdd98VVlZW8vsIIcQXX3whAIjnnntObN68WSxfvlw0aNBAKJVK8c8//8jlhg8fLqysrISPj4+IiIgQu3btEtu3bxdCCAFA1KtXT/j7+4uff/5Z7N69W5w6dUqcPn1aKJVK0bJlS7F8+XKxY8cO8e677woLCwsxZcoUnesvhBCxsbHi3XffFb/++quIjY0V69atE/379xe2trbi7NmzQggh0tPTxY8//igAiI8//ljeTgkJCUIIISZPnixK7uavvPKKACDefPNNsW3bNrFo0SJRt25d4eXlJW7duiWX69y5s3BychKNGjUSixYtEjExMWLMmDECgFi2bJlcLiIiQlhaWorJkyeLXbt2iW3btok5c+bI63fhwgXx7bffCgDiiy++EHFxceL06dPye3Tu3Fnj+zR8+HDh7e2tsX18fHxEz549xfr168X69etFy5YthaOjo0hLS1Ob197eXn4eFRUlFAqFeP3110V+fr4QQoijR4+KBg0aiNatW8vb7OjRozo/i7179worKyvRtm1bERUVJdavXy9CQkKEJEli9erVcjnVZ9GgQQPx1ltvie3bt4sffvhBODo6iq5du2qsZ0nLly8XAMTff/+t9fXg4GChUCjEnTt3xIULF4QkSWLEiBFqZVSf75kzZ0p9v+J1PnjwoLh//77ao6SoqCgBQJw8eVLvMpOTk4WLi4uoV6+e+PHHH8WWLVvECy+8IOrXr6+x/69YsUJIkiT69+8v1q5dKzZu3Cj69OkjLC0txc6dO+VyPXr0EHXr1hWLFy8We/fuFevXrxeffvqp2vbXt36HDx/WWSYtLU2MGDFCrFixQuzevVts27ZNvPfee8LCwkLtu37gwAEhSZIYOnSo2LJli9i9e7f48ccfRXh4uBCi9P3xu+++EwDEwIEDxaZNm8TKlStF48aNhbe3t9r3XQghRowYIZYsWSJiYmJETEyM+Oyzz4Stra2YOnWqWjlvb2/h6ekp/Pz8xPLly8X27dvF4MGDBQARGxsrlztx4oSwsbER/v7+YvXq1WLDhg2iV69ewsfHRwAQly5dEkIUff9tbGxEcHCwWL9+vdi7d69YuXKlCA8PF6mpqXq3NVFlomvfnzt3rgAgFi9eLIQwbl9zd3cXDRo0EEuXLhV79uwRf/75p4iLixO2traiV69e8j6vOsdpi3l2794trK2tRadOnURUVJTYtm2bGDFihMZ5R9u82s7pn3/+uZAkSbz00kti06ZNYu3atSIoKEjY29vL9ShN48aNhbu7u8jPzxc7d+4UANRiFCG0nxtVAIjJkycLIYRISEgQb731lgAg1q5dK2+T9PR0IYRxMUjz5s3l57NmzRKWlpbis88+k6etXLlSABAhISFi/fr1IioqSrRt21ZYW1uLffv2aWw3b29vMWHCBBETEyPWr18vhND9uSYlJQkvLy/h7e0tvvvuO7Fz507x2WefCYVCoXHeLb7+Qghx9uxZ8frrr4vVq1eLvXv3ik2bNolRo0YJCwsL+fPMyckR27ZtEwDEqFGj5O104cIFIcSD76/q2CyEcfGqtbW1aNasmfjqq6/Ezp07xaeffiokSVL7Xq9atUoAEG+99ZbYsWOH2Llzp1i0aJEYO3as/FmuXbtWLlM8VioZp5Xc1iW3j4+Pj2jXrp1Ys2aN2LJli+jSpYuoUaOGuHjxosa8qu/B3r17haOjo+jXr5/IysoSQghx+vRp0bFjR+Hm5qZ2faDvs6hVq5Zo2LChWL58udi8ebN47rnnBAAxY8YMuZxqf/Px8REvvPCC2Lx5s1i1apWoX7++aNSokRw/6vL7778LAGLLli0arwEQb7zxhtq0O3fuCAsLC9GhQwd52ujRowUAcfr0aZGRkSHs7OxEly5d1OZTfQe2bt2qtz4l1ysqKqrUGO/QoUMCgNiwYYPeZd67d080a9ZMKJVKMX/+fLF9+3YxduxYOcYrfoww9Hj36quvCjs7OzFr1iyxZ88esWnTJjF9+nQxf/58g9bvl19+0VvOkON8afFPafvs1q1bhYWFhejSpYtYt26d+OWXX0RgYKAcZxX3zjvviIULF4pt27aJ3bt3i9mzZwtnZ2cxcuRItXKGXotdv35dODk5ifr164vIyEixZcsWER4eLr+36rhz9+5d4eTkJAICAsSaNWtEbGysiIqKEq+99prOaw9zYVKKTEJ1Mb1o0SIhhBCZmZmiZs2aolOnTmrlDE1KCSHEG2+8obETCyHkA8LMmTPVpqsumFWBphAPklL37t0TAwcOFEqlUu1CNzU1VQ4mi7t69apQKBTi+eefl6cNHz5cABBLly7VqBMAoVQqxZ07d9Sm9+jRQ3h6esrBmMqbb74pbGxs5PL6gj2V/Px8kZeXJxo1aiTeeecdefrhw4d1zlsyODhz5owAIMaMGaNWTnUi+vDDD+VpnTt3FgDEoUOH1Mr6+fmJHj16yM/79OkjHn/8cZ31FkL3ScPYpFTLli3VAoM///xTABCrVq1Sm1eVlJo+fbqwtLRUCzxUmjdvrvW9tX0W7du3Fy4uLiIzM1Oelp+fL1q0aCE8PT1FYWGhEOJBEFly+86cOVMAEElJSZobp5jXX39d2Nrayssr7vLly8LCwkIMHTpUnta5c2dhb28vMjIy5Gk9e/YUANSSs/qo6qztUTJoOX/+vAAgFi5cqHeZEyZMEJIkiePHj6tNDw4OVtv/s7KyRJ06dUTfvn3VyhUUFIhWrVqJdu3aydNq1qwpxo0bZ9A6aVs/fUmpkvLz88X9+/fFqFGjROvWreXpX331lQCglgQtSdf+WFBQINzc3ERgYKDa9CtXrggrKyutwX3xee/fvy+mTZsmnJyc1L4f3t7ewsbGRly5ckWelp2dLerUqSNeffVVedrgwYOFvb292kVfQUGB8PPzU7vw+fXXXwUAjc+OqKopmXDPzMwUmzZtEnXr1hW1atUSycnJGvOUtq9ZWlqKc+fOacxnb28vhg8frjFdW8zTtGlT0bp1a43ja58+fYS7u7soKCjQOW/Jc/rVq1dFjRo1xFtvvaW2rMzMTOHm5ibCwsL0biMhHlxMT5w4UQhR9AOer6+v8Pb2Vlt/Q5NSQgjx5ZdfaiRUhDA+BmnevLkoKCgQb775prC2thY//fST/HpBQYHw8PAQLVu2lLeZat1dXFzULvZV2+3TTz/VqLuuz/XVV18VNWvWVDu2CvHgPFA84Vdy/UtSnVO6desmBgwYIE+/deuWznlLJqUeJl5ds2aNWtlevXqJJk2ayM/ffPNNUbt2bZ31FuLB5/7ll1+qTTc2KeXq6qoWqyQnJwsLCwsRERGhMe+tW7fEihUrhLW1tRg7dqza5yuEEL1799Z5ziy5PYcOHSoUCoW4evWqWrnQ0FBhZ2cnn89V+1vJ7btmzRr5B3J9ZsyYIQBoPa6ovvP3798XeXl54syZMyI0NFQAEN9++60QoigecnBwEO3bt5fnGz58uJAkSU56CCHEa6+9JgDIP06XRrVe2h7nz59XK5uXlyckSRITJkzQu8yFCxcKAOK3335Tm65KqhU/Rhh6vGvRooXo37+/Qeukbf1KS0oVp+s4b0j8o2+ffeKJJ4SXl5fIzc2Vp2VmZgonJyet17Ml67N8+XJhaWmpdi1p6LXY+++/LyRJ0vghokePHmrnkfj4eAFATspXJrx9j0xiyZIlsLW1xdChQwEANWvWxODBg7Fv3z6cP3/epO+1e/duAFBrLgkAgwcPhr29vcZtPykpKXj66afx559/yrdgqcTFxSE7O1tjWV5eXnj66ac1lgUAAwcO1Fqvp59+Wu0e7pycHOzatQsDBgyAnZ0d8vPz5UevXr2Qk5Oj99az/Px8fPHFF/Dz84O1tTVq1KgBa2trnD9/XqOptqH27NkDQHPbtWvXDs2aNdNYXzc3N7Rr105tmr+/v1pz43bt2uHEiRMYM2YMtm/fjoyMjIeqmyF69+4NS0tLtboA0LjNQAiBV199FZMnT8bPP/+MDz744KHfMysrC4cOHcKgQYPURvWztLREeHg4EhMTNZp2P/PMM2rPddWzpOvXr6Nu3bpaR1f68ccfUVhYKN8qBhSN0peVlYWoqCij16uk5cuX4/Dhw2qPGjXUux10cXEBgFJHrtqzZw+aN2+OVq1aqU1//vnn1Z4fOHAAd+7cwfDhw9X2j8LCQvTs2ROHDx+WOyNu164dIiMj8b///Q8HDx7UaOJcVr/88gs6duyImjVrokaNGrCyssKSJUvU9jXVrXlhYWFYs2aNUSN4nTt3DsnJyQgLC1ObXr9+fXTs2FGj/O7du9G9e3colUpYWlrKnc2npKTg5s2bamUff/xxtab6NjY2aNy4sdr3LTY2Fk8//TScnZ3laRYWFhr1efzxx2FtbY1XXnkFy5Ytw7///mvwOhJVRu3bt4eVlRVq1aqFPn36wM3NDVu3boWrqysA4/Y1f3//Mg3SceHCBZw9e1buy6pkXJCUlGRUR8Pbt29Hfn4+XnzxRbVl2djYoHPnzgZ1xqvqekF1blHdjnLlyhWtMVBZGBuD5OTkoH///li5ciV27Nih1gfYuXPncP36dYSHh6vdLlWzZk0MHDgQBw8e1LjlWFf8pu1z3bRpE7p27QoPDw+1bRsaGgoAaiOcabNo0SK0adMGNjY28jll165dDx2/GRuvSpKEvn37aqxnyfgtLS0Nzz33HH777bdSR70ri65du6JWrVryc1dXV7i4uGiNiz7//HOMGDEC06dPx9y5cw26HU6X3bt3o1u3bvDy8lKbPmLECNy7d0/jVs+yxG+SJKmdY4tbsGABrKysYG1tjWbNmuHAgQOYNm0axowZAwBYs2YNMjIyNGI8IQR+/PFHw1ZWjxkzZmjEeCW3iZWVFWrXrm1QjFerVi2NbVUyxjPmeNeuXTts3boVEydOxN69e5GdnV3WVVZjyHG+LPFPVlYW4uPj0b9/f1hbW8vTa9asqbEfAkW30D3zzDNwcnKS6/Piiy+ioKAA//zzj1pZQ67FYmNj0aJFC/j5+amVe+6559SeP/bYY3B0dMSECROwaNEi/P333wavY3ljUorK7MKFC/j999/Ru3dvCCGQlpaGtLQ0eahRbX2blEVKSgpq1Kih0QGkJElwc3PTGB3sn3/+waFDhxAaGqrRx46qrLbRTTw8PDSWZWdnBwcHB631KrmMlJQU5OfnY/78+bCyslJ79OrVCwD0BgDjx4/HJ598gv79+2Pjxo04dOgQDh8+jFatWj30wdrY9XVyctIop1Ao1N5/0qRJ+Oqrr3Dw4EGEhobCyckJ3bp10zuU7cMqWR+FQgEAGtsjLy8PUVFRaN68uRxAPqzU1FQIIXRuMwClbjdd9SwpOzsbNjY2GtMLCwsRGRkJDw8PtG3bVt7HunfvDnt7e7URWlTJiUuXLhmwdg80a9YMAQEBao+SVHUrbT1SUlLg5uamMb3ktBs3bgAoGpWm5D4yY8YMCCFw584dAEV9pgwfPhw//PADgoKCUKdOHbz44os6+zAwxtq1axEWFoZ69erhp59+QlxcHA4fPoyXXnoJOTk5crmnnnoK69evly8CPT090aJFC4P6PFB9R1QXwsWVnPbnn38iJCQEQFEfVH/88QcOHz6Mjz76CIDm9jdkP01JSTHovRs2bIidO3fCxcUFb7zxBho2bIiGDRvKfcQRVTWqhPuxY8dw/fp1nDx5Uk4EG7uvlXUkNNUx77333tM45qkuTo1JDKiW98QTT2gsLyoqqtRlZWZm4pdffkG7du1Qt25d+dwyYMAASJKkc/Svh2VsDHLz5k1s374dQUFB6NChg1HLKiwsRGpqqtp0XZ+ftuk3btzAxo0bNbZr8+bNAej/nGbNmoXXX38dgYGBiI6OxsGDB3H48GH07NnTbPGbnZ2dRjyhUCjUzmnh4eFYunQprly5goEDB8LFxQWBgYGIiYl5qDrqY8h5SuWnn35CvXr15B+6yyIlJcVs8ZuVlZXaD6fFhYWF4fDhw4iPj8e5c+eQkpKCTz75RH59yZIlsLGxQc+ePeX90N/fHz4+PoiMjERBQQGAh4/xGjRooBHjqdatOBsbG4NiPG3xhK4Yz5Dj3bx58zBhwgSsX78eXbt2RZ06ddC/f3+TNGww9DhflvhHda1gSJx19epVdOrUCdeuXcPcuXOxb98+HD58WO5vuDxjPKVSidjYWDz++OP48MMP0bx5c3h4eGDy5Mkm/7HXWBx9j8ps6dKlEELg119/xa+//qrxump4e0tLS/kEWbKjRWOCMCcnJ+Tn5+PWrVtqiSkhBJKTk+XWDCpBQUEYPHgwRo0aBaCoU0fVry6qHT0pKUnjfa5fv67xi4e2Fiy6XnN0dJRb07zxxhta5/H19dW5vJ9++gkvvvgivvjiC7Xpt2/fRu3atXXOp0/x9S05Kp+29TVEjRo1MH78eIwfPx5paWnYuXMnPvzwQ/To0QMJCQl6O9S2sbFBenq6xvSy/lqnUCiwZ88e9OjRA927d8e2bds0RiIxlKOjIywsLHR+RwA81HbTxtnZGUePHtWYvnPnTvkXEW0np4MHD+Lvv/+Gn58fevTogcWLF2P9+vWYOHGiSeqlokoQlba+Tk5OWpNFJaepljN//nydo8KoTqjOzs6YM2cO5syZg6tXr2LDhg2YOHEibt68iW3bthm9LsX99NNP8PX1RVRUlNp+XPI4BQD9+vVDv379kJubi4MHDyIiIgLPP/88fHx8EBQUpPM9VJ+bKkgrruR2Wb16NaysrLBp0ya1i4qyDNPu5ORk0HsDQKdOndCpUycUFBQgPj4e8+fPx7hx4+Dq6mqSiwQic1Il3LUxdl/TFwMYQnXMmzRpktYRugCgSZMmRi/v119/hbe3t9H1WbVqFe7du4c///xT6zly3bp1SE1NlTuIBjSPiyUv6vUxNgapX78+Zs2ahQEDBuDZZ5/FL7/8ItejtPjNwsJCY510fX7apjs7O8Pf3x+ff/651nlUSQ1tfvrpJ3Tp0gULFy5Um25IB9K6GBuvGmrkyJEYOXIksrKy8Pvvv2Py5Mno06cP/vnnH73fKRsbG63nSFO0ttq2bRuGDBmCTp06YdeuXQ/13VZxcnIyW/yWl5eHrKws2Nvba7xet25dnceh4oPW6OqgfPv27ejVqxd69OiBDz/8EOvXr0fPnj1NUvfiUlNTDYrx/vzzT43pumI8Q4539vb2mDp1KqZOnYobN27Irab69u2Ls2fPPsyqyIw5zj9s/OPo6AhJkgyKs9avX4+srCysXbtW7bt9/Phx41fuP8bEeC1btsTq1ashhMDJkycRGRmJadOmwdbW1uTXDcZgSykqk4KCAixbtgwNGzbEnj17NB7vvvsukpKSsHXrVgCQR+o4efKk2nI2bNigsWxdv06obr/76aef1KZHR0cjKytL65C1w4cPx+rVq/Hjjz/KzSOBooSVra2txrISExPlJr8Py87ODl27dsWxY8fg7++v8QtFQECA1gSDiiRJGr9ibN68WaNZraG/4gCQR+ooub6HDx/GmTNnyjzcb+3atTFo0CC88cYbuHPnjsaoMSX5+Pjgn3/+UQtsUlJScODAgTLVAwBat26N2NhYJCYmokuXLhq3Yej6ha4ke3t7BAYGYu3atWrlCwsL8dNPP8HT07NMt3MU17RpU6SkpGgk6pYsWQILCwusX79eYx9bsWIFgActEvv164eWLVsiIiICp06d0vo+27dvf6iR1FRNmUs2Dy6pa9euOH36NE6cOKE2/eeff1Z73rFjR9SuXRt///231v0jICBArRm0Sv369fHmm28iODhYaxLPWJIkwdraWu3CJDk5WevoeyoKhQKdO3fGjBkzAEAe6UrX/tikSRO4ublpjDhz9epVje+7JEmoUaOG2i+u2dnZ8mf9MDp37ozdu3erXTAUFhbil19+0TmPpaUlAgMD5V/vTLGtiSoTU+1rhp5PmjRpgkaNGuHEiRM6j3nFb3EqTY8ePVCjRg1cvHhR5/L0WbJkCWrVqoVdu3ZpnFu+/PJL5ObmYuXKlQCKfiCwsbHRiN+0HSd1HQcfJgYJCQnB9u3b8fvvv8sj6AJF27JevXr4+eef1UbQysrKQnR0tDwi38Pq06cPTp06hYYNG2rdrvqSUtrit5MnT2rcKmZM/Fae8SpQFOuEhobio48+Ql5eHk6fPq23vI+PD27evKl2IZyXl4ft27eXqR4A4O3tjX379kGhUKBTp04arWUM3d+AomuG3bt3a4yAvHz5ctjZ2en8QcxYTZs2BQBcvHjR6HlVLRK///57jf1wy5YtsLKykmO8Nm3aIDQ0FEuWLJG7MykpPj4eV69eNboe169fR05OjkExXmZmpsa1W8kY72GPd66urhgxYgSee+45nDt3rswj/z7McV5X/KNrn7W3t0dAQADWr1+PvLw8efrdu3c1RplUxZrFjxFCCHz//fcPs3oAimK8U6dOadyOt3r1ap3zSJKEVq1aYfbs2ahdu3aFx3hsKUVlsnXrVly/fh0zZsyQh0AurkWLFvjmm2+wZMkSuS+H7t27IyIiAo6OjvD29sauXbuwdu1ajXlbtmwJoOg+6NDQUFhaWsLf3x/BwcHo0aMHJkyYgIyMDHTs2BEnT57E5MmT0bp1a4SHh2ut66BBg2BnZ4dBgwYhOzsbq1atQu3atfHJJ5/gww8/xIsvvojnnnsOKSkpmDp1KmxsbDB58uQybZ+5c+fiySefRKdOnfD666/Dx8cHmZmZuHDhAjZu3KjzhAIUBUSRkZFo2rQp/P39ceTIEXz55Zcavy42bNgQtra2WLlyJZo1a4aaNWvCw8NDa8DUpEkTvPLKK5g/fz4sLCwQGhqKy5cv45NPPoGXlxfeeecdo9exb9++aNGiBQICAuThbefMmQNvb280atRI77zh4eH47rvvMGzYMIwePRopKSmYOXOmzlskjdWsWTPs27cP3bt3x1NPPYWdO3fK20/1S0FUVBQaNGgAGxsb+TtXUkREBIKDg9G1a1e89957sLa2xoIFC3Dq1CmsWrWqzL+eq3Tp0gVCCBw6dEhuapySkoLffvsNPXr0QL9+/bTON3v2bCxfvhwRERGwsrLCunXrEBISgqCgILz++uvo2rUr7O3tceXKFfz666/YuHGjxm0Nhjh48CAsLS3x1FNP6S03btw4LF26FL1798b//vc/uLq6YuXKlRq/dtWsWRPz58/H8OHDcefOHQwaNAguLi64desWTpw4gVu3bmHhwoVIT09H165d8fzzz6Np06aoVasWDh8+jG3btun89a2k3bt3a02S9urVSx4OfMyYMRg0aBASEhLw2Wefwd3dXS0Y/vTTT5GYmIhu3brB09MTaWlpmDt3LqysrNC5c2cA+vfHqVOn4tVXX8WgQYPw0ksvIS0tDVOnToW7u7tanxm9e/fGrFmz8Pzzz+OVV15BSkoKvvrqK61N7Q310UcfYePGjejWrRs++ugj2NraYtGiRfIFnur9Fy1ahN27d6N3796oX78+cnJy5GC4e/fuD/3+RJWRqfa1li1bYu/evdi4cSPc3d1Rq1YtnS2evvvuO4SGhqJHjx4YMWIE6tWrhzt37uDMmTM4evSo3kRxST4+Ppg2bRo++ugj/Pvvv+jZsyccHR1x48YN/Pnnn3LrA21OnTqFP//8E6+//rrWoeU7duyIr7/+GkuWLMGbb74JSZIwbNgwLF26FA0bNkSrVq3w559/alyIqrYHUBQDDR8+HFZWVmjSpMlDxyBPPvkkdu3ahZ49eyIkJARbtmyBUqnEzJkz8cILL6BPnz549dVXkZubiy+//BJpaWmYPn26wdtRm2nTpiEmJgYdOnTA2LFj0aRJE+Tk5ODy5cvYsmULFi1apBGPqfTp0wefffYZJk+ejM6dO+PcuXOYNm0afH19kZ+fL5erVasWvL298dtvv6Fbt26oU6cOnJ2d5R9wiyuPeHX06NGwtbVFx44d4e7ujuTkZERERECpVGrcdVDSkCFD8Omnn2Lo0KF4//33kZOTg3nz5sk/+paVu7s7YmNj0aNHDzz11FOIiYmRu+Bo2bIl1q5di4ULF6Jt27awsLDQmYCdPHmy3D/Yp59+ijp16mDlypXYvHkzZs6cCaVSaZL6qq6BDh48KPdDZYj8/HwsX74czZo1w8svv6y1TN++fbFhwwb5DpHly5ejZ8+eCA0NxUsvvYTQ0FA4OjoiKSkJGzduxKpVq3DkyBGdra50UfVz27VrV73lXnzxRcyePRsvvvgiPv/8czRq1AhbtmzRmpA09HgXGBiIPn36wN/fH46Ojjhz5gxWrFhhcHJZVx+9nTt3Nvg4b0j8o2+fnTZtGnr37o0ePXrg7bffRkFBAb788kvUrFlTvtMAAIKDg2FtbY3nnnsOH3zwAXJycrBw4cKHistVVHF3aGgopk2bBldXV/z8889y3K2K8TZt2oQFCxagf//+aNCgAYQQWLt2LdLS0hAcHPzQ728SFdK9OlUb/fv3F9bW1uLmzZs6ywwdOlTUqFFDHpEiKSlJDBo0SNSpU0colUoxbNgweTSA4iM25ObmipdfflnUrVtXSJKkNgpJdna2mDBhgvD29hZWVlbC3d1dvP766xpDlqtG3ytuz549ombNmqJnz57i3r17QgghfvjhB+Hv7y+sra2FUqkU/fr10xjBoPiobiVBy3CvKpcuXRIvvfSSqFevnrCyshJ169YVHTp0EP/73//UypRc/9TUVDFq1Cjh4uIi7OzsxJNPPin27dundcS6VatWiaZNmworKyu1USG0jYJSUFAgZsyYIRo3biysrKyEs7OzGDZsmDxsvUrJ4ZiLb4fio558/fXXokOHDsLZ2VlYW1uL+vXri1GjRonLly/LZfSNjrFs2TLRrFkzYWNjI/z8/ERUVJTO0fdKjv4ihOZIK9o+p8TERNG0aVPh4+MjDz98+fJlERISImrVqiXw31DRxd+r5AhD+/btE08//bSwt7cXtra2on379mLjxo1qZXSN9KZr1MmSCgoKhI+Pj9rIRHPmzCl1pIxFixYJACI6OlqelpaWJj777DPRpk0bUbNmTWFlZSXq168vhg0bJv74449S66xNp06dNEbK0+Xvv/8WwcHBwsbGRtSpU0eMGjVK/Pbbb1q3Q2xsrOjdu7eoU6eOsLKyEvXq1RO9e/eWvy85OTnitddeE/7+/sLBwUHY2tqKJk2aiMmTJ8vDROuib3TB4seU6dOnCx8fH6FQKESzZs3E999/r7H/bNq0SYSGhop69eoJa2tr4eLiInr16qU29LgQuvdHIYRYvHixeOyxx4S1tbVo3LixWLp0qejXr5/aKH9CCLF06VLRpEkToVAoRIMGDURERIRYsmSJxohW2o5xQmgf2XLfvn0iMDBQKBQK4ebmJt5//315xCDVCERxcXFiwIABwtvbWygUCuHk5CQ6d+5c6hDRRJWNoce2su5rQghx/Phx0bFjR2FnZycAyPuermP/iRMnRFhYmHBxcRFWVlbCzc1NPP300/IIxrrm1XZOF0KI9evXi65duwoHBwehUCiEt7e3GDRokNpowyWNGzeu1JGmJk6cKACII0eOCCGESE9PFy+//LJwdXUV9vb2om/fvuLy5ctaR6OaNGmS8PDwEBYWFmrrUZYY5NSpU8LNzU20adNGHkl0/fr1IjAwUNjY2Ah7e3vRrVs3tXNc8e1WfPRRFX2f661bt8TYsWOFr6+vsLKyEnXq1BFt27YVH330kbh7965cruT65+bmivfee0/Uq1dP2NjYiDZt2oj169drHbFu586donXr1kKhUAgA8iiOJUffUylLvFry+7Ns2TLRtWtX4erqKqytrYWHh4cICwsTJ0+elMvoi7+2bNkiHn/8cWFraysaNGggvvnmG52j72mLkb29vdVGrdT2OaWlpYmOHTuKOnXqyPvynTt3xKBBg0Tt2rXl64Pi71Xyu/jXX3+Jvn37CqVSKaytrUWrVq00Yjxdcaoho2OrdOrUSWP0Pn3rL0TR9xeAmDNnjs7lqkYd//rrr+Vp2dnZYt68eSIoKEg4ODiIGjVqCA8PD/Hss8+KzZs3l7pe2oSHh4uWLVuWWk6Iorh64MCBombNmqJWrVpi4MCB4sCBA1q3lSHHu4kTJ4qAgADh6OgoH4vfeecdcfv2bb310De6YPHjjiHHeUPjH137rBBCrFu3TrRs2VK+Hpo+fboYO3ascHR0VFvGxo0bRatWrYSNjY2oV6+eeP/998XWrVs1jvmGXosJUXR87N69u1rcvWzZMgFAnDhxQgghxNmzZ8Vzzz0nGjZsKGxtbYVSqRTt2rUTkZGRerezOUhCFGvzSkREFerrr7/G559/jmvXrsHW1raiqyO7ePEiGjVqhO3bt1f8rynVSFpaGho3boz+/ftj8eLFZn//kJAQXL58WWO0FyIiIjJcdHQ0hgwZgitXrqBevXoVXR2jZGRkwMPDA7Nnz8bo0aMrujrVxv379/H444+jXr162LFjh9nf/5VXXsGqVauQkpKitTuMyoRJKSKiSiQnJwfNmjXDG2+8gffee6+iqyMbOXIkEhMTy2VUnkdFcnIyPv/8c3Tt2hVOTk64cuUKZs+ejbNnzyI+Pl4e1am8jB8/Hq1bt4aXlxfu3LmDlStXYu3atViyZInaMNRERERkHCEEOnTogLZt2+Kbb76p6OoYZerUqYiKisLJkydRowZ793lYo0aNQnBwsHw77KJFixAbG4sdO3aUexcI06ZNg4eHBxo0aCD3ZfXDDz/g448/xrRp08r1vU2B3zoiokrExsYGK1askDvOrgzy8/PRsGFDTJo0qaKrUqUpFApcvnwZY8aMwZ07d+ROVhctWlTuCSmgaGCKTz/9FMnJyZAkCX5+flixYgWGDRtW7u9NRERUnUmShO+//x4bNmxAYWGhWl+RlZ2DgwMiIyOZkCqjzMxMvPfee7h16xasrKzQpk0bbNmyxSx9clpZWeHLL79EYmIi8vPz0ahRI8yaNQtvv/12ub+3KbClFBERERERERERmV3VSeEC+P3339G3b194eHhAkiSsX7++1HliY2PRtm1b2NjYoEGDBli0aJFGmejoaPj5+UGhUMDPzw/r1q0rh9oTERERmR/jJyIiIqqsqlRSKisrC61atTL4Pt1Lly6hV69e6NSpE44dO4YPP/wQY8eORXR0tFwmLi4OQ4YMQXh4OE6cOIHw8HCEhYXh0KFD5bUaRERERGbD+ImIiIgqqyp7+54kSVi3bh369++vs8yECROwYcMGnDlzRp722muv4cSJE4iLiwMADBkyBBkZGdi6datcpmfPnnB0dMSqVavKrf5ERERE5sb4iYiIiCqTat2bWVxcHEJCQtSm9ejRA0uWLMH9+/dhZWWFuLg4vPPOOxpl5syZo3O5ubm5yM3NlZ8XFhbizp07cHJygiRJJl0HIiIiqjhCCGRmZsLDw6NKdVxbFoyfiIiIqKwMjaGqdVIqOTkZrq6uatNcXV2Rn5+P27dvy8M1aiuTnJysc7kRERGYOnVqudSZiIiIKp+EhAR4enpWdDXMgvETERERmUppMVS1TkoB0PjlTXW3YvHp2sro+8Vu0qRJGD9+vPw8PT0d9evXR0JCAhwcHMpc59kx/yDywGUUFGreWWlpIWFEBx+8E9wYa48mYsqG05AkSa6zEAJTn2mOAW0ejcCZiIioPGVkZMDLywu1atWq6KqYFeMnIiIiKgtDY6hqnZRyc3PT+MXu5s2bqFGjBpycnPSWKfnrX3EKhQIKhUJjuoODg0mCqhc7N8Oy+Buw0NLblyQBwzs3Q0oeMG37JcDaDqpiqr9Tt19C5xbe8HG2L3NdiIiISDMBU50xfmL8REREZCqlxVDVunOEoKAgxMTEqE3bsWMHAgICYGVlpbdMhw4dzFbPknyd7TFjoD8sin12lpIECwmYMdAfPs72WBOfoPPDlSQJUfEJZqotERERVSeMn4iIiMhcqlRLqbt37+LChQvy80uXLuH48eOoU6cO6tevj0mTJuHatWtYvnw5gKKRYr755huMHz8eo0ePRlxcHJYsWaI2Kszbb7+Np556CjNmzEC/fv3w22+/YefOndi/f7/Z16+4wQFeaFHPAaFzi+ox8kkfDAt88OtdYmo2dA2cKIRAYmq2/PzS7SysiU9AYmo2PB1tERbgBV/+CkhERPRIYPz0cPETERERlb8qlZSKj49H165d5eeqfgmGDx+OyMhIJCUl4erVq/Lrvr6+2LJlC9555x18++238PDwwLx58zBw4EC5TIcOHbB69Wp8/PHH+OSTT9CwYUNERUUhMDDQfCumg7fTg8TR+ODGsLN+8HF5OtoW/dKnJbCSJAmejrYAgDXxCZgYfVKt34TvYi9ixkB/DA7wKv+VICIiogrF+Mn4+ImIiIjMQxK6fi4ig2VkZECpVCI9Pd0kfSKo3MvLh9+n2wEAf0/roRZUXbqdhW5f74WWvjxhIQG73+0CAZRahv0mEBER6VZe53iqvPETYyMiIqKyM/Q8X637lKrO2G8CERERkXEMiZ+IiIjIfKrU7Xukjv1OERERERmntPiJiIiIzIdJqSqO/U4RERERGUdf/ERERETmw9v3qrGwAC+9LaWGBHjh0u0sTIw+iUIBFBQKtb8Tok/i8u0sM9eaiIiIiIiIiB4FTEpVY+x3ioiIiIiIiIgqK7ZVrubY7xQRERERERERVUZMSj0C2O8UEREREREREVU2vH3vEcd+p4iIiIiIiIioIjAp9Yhjv1NEREREREREVBF4+x6x3ykiIiIiIiIiMjsmpQgA+50iIiIiIiIiIvPi7XtUKvY7RURERERERESmxqQUlYr9ThERERERERGRqfH2PTKIKfudIiIiIiIiIiJiUooMZop+p4iIiIiIiIiIACalyETCArzwXexFra+p+p1S4Qh9RERERERERMSkFJmEqt+pCf91dg4U9TslIOR+pwCO0EdERERERERERdjROZnM4AAvbB77pPx85JM+2P1uFznZxBH6iIiIiIiIiEiFSSkyqZL9TvkUuy2PI/QRERERERERkQqTUmQ2HKGPiIiIiIiIiFSYlCKzkUfo04Ij9BERERERERE9WtjROZmNMSP0ARylj4iIiIiIiKg6Y1KKzMbQEfoAjtJHREREREREVN3x9j0yq9JG6AM4Sh8RERERERHRo4BJKTI7fSP0ARylj4iIiIiIiOhRwKQUVTocpY+IiIiIiIio+mNSiiodjtJHREREREREVP1VuaTUggUL4OvrCxsbG7Rt2xb79u3TWXbEiBGQJEnj0bx5c7lMZGSk1jI5OTnmWB3SIizAS29LqZKj9BEREVHpGEMRERFRZVOlklJRUVEYN24cPvroIxw7dgydOnVCaGgorl69qrX83LlzkZSUJD8SEhJQp04dDB48WK2cg4ODWrmkpCTY2NiYY5VIC9UofRbFGktZShIsJGiM0nfpdhZmbDuLt1Ydw4xtZ3GJnaATERFpYAxFRERElVGNiq6AMWbNmoVRo0bh5ZdfBgDMmTMH27dvx8KFCxEREaFRXqlUQqlUys/Xr1+P1NRUjBw5Uq2cJElwc3Mr38qTUQYHeKFFPQeEzt0PoGiUvmGB3moJqTXxCZgYfRKSJEEIAUmS8F3sRcwY6K82mh8REdGjjjEUERERVUZVpqVUXl4ejhw5gpCQELXpISEhOHDggEHLWLJkCbp37w5vb2+16Xfv3oW3tzc8PT3Rp08fHDt2zGT1poenb5S+S7ezMDH6JAoFUFAo1P5OiD6Jy2wxRUREBIAxFBEREVVeVSYpdfv2bRQUFMDV1VVtuqurK5KTk0udPykpCVu3bpV/IVRp2rQpIiMjsWHDBqxatQo2Njbo2LEjzp8/r3NZubm5yMjIUHuQea2JT9DbGXpUfIKZa0RERFQ5VZYYivETERERlVRlklIqJRMRqtu2ShMZGYnatWujf//+atPbt2+PYcOGoVWrVujUqRPWrFmDxo0bY/78+TqXFRERITdrVyqV8PLirWLmlpiarbcz9MTUbDPXiIiIqHKr6BiK8RMRERGVVGWSUs7OzrC0tNT4Re/mzZsav/yVJITA0qVLER4eDmtra71lLSws8MQTT+htKTVp0iSkp6fLj4QEtsoxN09HW70tpTwdbc1cIyIiosqpssRQjJ+IiIiopCqTlLK2tkbbtm0RExOjNj0mJgYdOnTQO29sbCwuXLiAUaNGlfo+QggcP34c7u7uOssoFAo4ODioPci8wgK89LaUGsKOzomIiABUnhiK8RMRERGVVKVG3xs/fjzCw8MREBCAoKAgLF68GFevXsVrr70GoOgXuGvXrmH58uVq8y1ZsgSBgYFo0aKFxjKnTp2K9u3bo1GjRsjIyMC8efNw/PhxfPvtt2ZZJ3o4vs72mDHQHxP+6+wcACwlCQICMwb6a3SKviY+AYmp2fB0tEVYgBd8i71ORERU3TGGIiIiosqoSiWlhgwZgpSUFEybNg1JSUlo0aIFtmzZIo8Ek5SUhKtXr6rNk56ejujoaMydO1frMtPS0vDKK68gOTkZSqUSrVu3xu+//4527dqV+/pQ2QwO8EKLeg4InbsfADDySR8MC/RWS0itiU/AxOiTkCRJ7jvju9iLmDHQH4PZmoqIiB4RjKGIiIioMqpSSSkAGDNmDMaMGaP1tcjISI1pSqUS9+7d07m82bNnY/bs2aaqHpmZt9ODBNT44Maws37wlb50OwsTVS2pVLf6/fd3QvRJPOFTRy2BRUREVJ0xhiIiIqLKpsr0KUVkrDXxCXo7Q4+KZwerRERERERERBWFSSmqthJTs/V2hp6Ymm3mGhERERERERGRCpNSVG15OtrqbSnl6Whr5hoRERERERERkQqTUlRthQV46W0pNYQdnRMRERERERFVmCrX0TmRoXyd7TFjoD8mqDo7B2ApSRAQmDHQX62T80u3s7AmPgGJqdnwdLRFWIAXfNkJOhEREREREVG5YVKKqrXBAV5oUc8BoXP3AwBGPumDYYHeagmpNfEJmBh9EpIkQQgBSZLwXexFzBjoj8FsTUVERERERERULnj7HlV73k4PElDjgxtrtJCa+F9LqoJCofZ3QvRJXL6dVRFVJiIiIiIiIqr2mJSiR9qa+AS9naFHxSeYuUZEREREREREjwYmpeiRlpiarbcz9MTUbDPXiIiIiIiIiOjRwKQUPdI8HW31tpTydLQ1c42IiIiIiIiIHg1MStEjLSzAS29LqSHs6JyIiIiIiIioXDApRY80X2d7zBjoD4tijaUsJQkWEjBjoL9ap+hEREREREREZDo1KroCRBVtcIAXWtRzQOjc/QCAkU/6YFigt0ZC6tLtLKyJT0BiajY8HW0RFuAFXyatiIiIiIiIiB4Kk1JEALydHiSXxgc3hp21+q6xJj4BE6NPQpIkCCEgSRK+i72IGQP9MZi3+BEREREREREZjbfvEZXi0u0sTIw+iUIBFBQKtb8Tok/i8u2siq4iERERERERUZXDpBRRKdbEJ+gdoS8qPsHMNSIiIiIiIiKq+piUIipFYmq23hH6ElOzzVwjIiIiIiIioqqPSSmiUng62uptKeXpaGvmGhERERERERFVfUxKEZUiLMBLb0upIezonIiIiIiIiMhoHH2PqBS+zvaYMdAfE/7r7BwALCUJAgIzBvrDx/nByH2XbmdhTXwCElOz4eloi7AAL/gWe52IiIiIiIiIijApRWSAwQFeaFHPAaFz9wMARj7pg2GB3moJqTXxCZgYfRKSJEEIAUmS8F3sRcwY6I/BbE1FREREREREpIa37xEZyNvpQQJqfHBjjRZSE/9rSVVQKNT+Tog+icu3syqiykRERERERESVFpNSRCawJj5Bb2foUfEJZq4RERERERERUeXGpBSRCSSmZuvtDD0xNdvMNSIiIiIiIiKq3JiUIjIBT0dbvS2lPB1tzVwjIiIiIiIiosqNSSkiEwgL8NLbUmoIOzonIiIiIiIiUsOkFJEJ+DrbY8ZAf1gUayxlKUmwkIAZA/3VOkUnIiIiIiIioiqYlFqwYAF8fX1hY2ODtm3bYt++fTrL7t27F5IkaTzOnj2rVi46Ohp+fn5QKBTw8/PDunXryns1qBoaHOCFzWOflJ+PfNIHu9/tgsElWkldup2FGdvO4q1VxzBj21lc4sh8RERkBoyhiIiIqLKpUkmpqKgojBs3Dh999BGOHTuGTp06ITQ0FFevXtU737lz55CUlCQ/GjVqJL8WFxeHIUOGIDw8HCdOnEB4eDjCwsJw6NCh8l4dqoa8nR60iBof3FijhdSa+AR0+3ovFv/+LzafvI7Fv/+Lbl/vxS8cnY+IiMoRYygiIiKqjKpUUmrWrFkYNWoUXn75ZTRr1gxz5syBl5cXFi5cqHc+FxcXuLm5yQ9LS0v5tTlz5iA4OBiTJk1C06ZNMWnSJHTr1g1z5swp57WhR82l21mYGH0ShQIoKBRqfydEn8RltpgiIqJywhiKiIiIKqMqk5TKy8vDkSNHEBISojY9JCQEBw4c0Dtv69at4e7ujm7dumHPnj1qr8XFxWkss0ePHqUuk8hYa+IT9I7QF8XWUkREVA4YQxEREVFlVaOiK2Co27dvo6CgAK6urmrTXV1dkZycrHUed3d3LF68GG3btkVubi5WrFiBbt26Ye/evXjqqacAAMnJyUYtEwByc3ORm5srP8/IyHjY1aJHSGJqtt4R+hJTs81cIyIiehRUlhiK8RMRERGVVGWSUiolW5oIIXS2PmnSpAmaNGkiPw8KCkJCQgK++uorOaAydpkAEBERgalTpz5M9ekR5uloW/S90pKYkiQJno62FVArIiJ6VFR0DMX4iYiIiEqqMrfvOTs7w9LSUuPXt5s3b2r8SqdP+/btcf78efm5m5ub0cucNGkS0tPT5UdCAm+7otKFBXjpbSk1pMQofURERKZQWWIoxk9ERERUUpVJSllbW6Nt27aIiYlRmx4TE4MOHToYvJxjx47B3d1dfh4UFKSxzB07duhdpkKhgIODg9qDqDS+zvaYMdAfFsV+QLaUJFhIwIyB/moj9V26nYUZ287irVXHMGPbWVxiJ+hERPSQKksMxfiJiIiISqpSt++NHz8e4eHhCAgIQFBQEBYvXoyrV6/itddeA1D0C9y1a9ewfPlyAEWjwvj4+KB58+bIy8vDTz/9hOjoaERHR8vLfPvtt/HUU09hxowZ6NevH3777Tfs3LkT+/fvr5B1pOptcIAXWtRzQOjcou/XyCd9MCzQWy0htSY+AROjT0KSJPk2iO9iL2LGQH8MZmsqIiJ6CIyhiIiIqDKqUkmpIUOGICUlBdOmTUNSUhJatGiBLVu2wNvbGwCQlJSEq1evyuXz8vLw3nvv4dq1a7C1tUXz5s2xefNm9OrVSy7ToUMHrF69Gh9//DE++eQTNGzYEFFRUQgMDDT7+tGjwdvpQQJqfHBj2Fk/2A0v3c7CxOiTKBR40PfUf38nRJ/EEz511BJYREREhmAMRURERJVRlUpKAcCYMWMwZswYra9FRkaqPf/ggw/wwQcflLrMQYMGYdCgQaaoHlGZrIlP0NsZelR8Aib0bFoBNSMioqqOMRQRERFVNlWmTymiR0FiarbeztATU7PNXCMiIiIiIiKi8sGkFFEl4uloq3MobUmS4Oloa+YaEREREREREZUPJqWIKpGwAC+9LaWGsKNzIiIiIiIiqiaYlCKqRHyd7TFjoD8sijWWspQkWEjAjIH+7OSciIiIiIiIqo0q19E5UXU3OMALLeo5IHRu0ZDaI5/0wbBAb42E1KXbWVgTn4DE1Gx4OtoiLMALvkxaERERERERURXBpBRRJeTt9CC5ND64Meys1XfVNfEJmBh9EpIkQQgBSZLwXexFzBjoj8G8xY+IiIiIiIiqAN6+R1TFXLqdhYnRJ1EogIJCofZ3QvRJXL6dVdFVJCIiIiIiIioVk1JEVcya+AS9I/RFxSeYuUZERERERERExmNSiqiKSUzN1jtCX2JqtplrRERERERERGQ8JqWIqhhPR1u9LaU8HW3NXCMiIiIiIiIi4zEpRVTFhAV46W0pNYQdnRMREREREVEVwNH3iKoYX2d7zBjojwn/dXYOAJaSBAGBGQP94eNsr1b+0u0srIlPQGJqNjwdbREW4AXfEmWIiIiIiIiIzI1JKaIqaHCAF1rUc0Do3P0AgJFP+mBYoLdGQmpNfAImRp+EJEkQQkCSJHwXexEzBvpjMFtUERERERERUQXi7XtEVZS304ME1PjgxlpbSE38rzVVQaFQ+zsh+iQu384yd5WJiIiIiIiIZExKEVVTa+IT9HaIHhWfYOYaERERERERET3ApBRRNZWYmq23Q/TE1Gwz14iIiIiIiIjoASaliKopT0dbvS2lPB1tzVwjIiIiIiIiogeYlCKqpsICvPS2lBrCjs6JiIiIiIioAnH0PaJqytfZHjMG+mPCf52dA4ClJEFAYMZAf7WO0S/dzsKa+AQkpmbD09EWYQFe8C3RcToRERERERGRKTEpRVSNDQ7wQot6Dgidux8AMPJJHwwL9FZLSK2JT8DE6JOQJAlCCEiShO9iL2LGQH8MZmsqIiIiIiIiKidGJ6WysrIwffp07Nq1Czdv3kRhYaHa6//++6/JKkdEZeft9CABNT64MeysH+z2l25nYaKqJZXqVr///k6IPoknfOqoJbCIiOjhMYYiIiIiUmd0Uurll19GbGwswsPD4e7urrMjZSKq/NbEJxTtw1r6npIkCVHxCZjQs2kF1IyIqPphDEVERESkzuik1NatW7F582Z07NixPOpDRGaUmJqttzP0xNRsM9eIiKj6YgxFREREpM7o0fccHR1Rp06d8qgLEZmZp6Otzl/qJUmCp6OtmWtERFR9MYYiIiIiUmd0Uuqzzz7Dp59+inv37pVHfYjIjMICvPS2lBpSrKPzS7ezMGPbWby16hhmbDuLS7ezzFVNIqJqgTEUERERkTqjb9/7+uuvcfHiRbi6usLHxwdWVlZqrx89etRklSOi8uXrbI8ZA/0xQdXZOQBLSYKAwIyB/nIn5xyhj4io7BhDEREREakzOinVv3//cqgGEVWUwQFeaFHPAaFz9wMARj7pg2GB3nJCiiP0ERGZBmMoIiIiInVGJ6UmT55cHvUgogrk7fQgqTQ+uDHsrB8cGjhCHxGRaTCGIiIiIlJndJ9SKkeOHMFPP/2ElStX4tixY6ask14LFiyAr68vbGxs0LZtW+zbt09n2bVr1yI4OBh169aFg4MDgoKCsH37drUykZGRkCRJ45GTk1Peq0JUJXCEPiIi02IMRURERFTE6JZSN2/exNChQ7F3717Url0bQgikp6eja9euWL16NerWrVse9QQAREVFYdy4cViwYAE6duyI7777DqGhofj7779Rv359jfK///47goOD8cUXX6B27dr48ccf0bdvXxw6dAitW7eWyzk4OODcuXNq89rY2JTbehBVJfIIfTpaSnGEPiIiwzCGIiIiIlJndEupt956CxkZGTh9+jTu3LmD1NRUnDp1ChkZGRg7dmx51FE2a9YsjBo1Ci+//DKaNWuGOXPmwMvLCwsXLtRafs6cOfjggw/wxBNPoFGjRvjiiy/QqFEjbNy4Ua2cJElwc3NTexBREY7QR0RkGoyhiIiIiNQZnZTatm0bFi5ciGbNmsnT/Pz88O2332Lr1q0mrVxxeXl5OHLkCEJCQtSmh4SE4MCBAwYto7CwEJmZmahTp47a9Lt378Lb2xuenp7o06dPqU3pc3NzkZGRofYgqq5UI/RZSA+mWUoSLCRojNDX7eu9WPz7v9h88joW//4vun29F7/EJ1RQzYmIKpdHPYZi/EREREQlGZ2UKiws1BjCGACsrKxQWFhokkppc/v2bRQUFMDV1VVtuqurK5KTkw1axtdff42srCyEhYXJ05o2bYrIyEhs2LABq1atgo2NDTp27Ijz58/rXE5ERASUSqX88PLy0lmWqDoYHOCFzWOflJ+PfNIHu9/tgsH/tZIqPkJfQaFQ+zsh+iQus8UUEdEjH0MxfiIiIqKSjE5KPf3003j77bdx/fp1edq1a9fwzjvvoFu3biatnDaSJKk9F0JoTNNm1apVmDJlCqKiouDi4iJPb9++PYYNG4ZWrVqhU6dOWLNmDRo3boz58+frXNakSZOQnp4uPxIS2BKEqr+SI/SpWkgBxUbo00I1Qh8R0aPuUY+hGD8RERFRSUZ3dP7NN9+gX79+8PHxgZeXFyRJwtWrV9GyZUv89NNP5VFHAICzszMsLS01ftG7efOmxi9/JUVFRWHUqFH45Zdf0L17d71lLSws8MQTT+htKaVQKKBQKAyvPFE1xxH6iIhK96jHUIyfiIiIqCSjk1JeXl44evQoYmJicPbsWQgh4OfnV2qgUlbW1tZo27YtYmJiMGDAAHl6TEwM+vXrp3O+VatW4aWXXsKqVavQu3fvUt9HCIHjx4+jZcuWJqk30aOAI/QREZWOMRQRERGROqOTUirBwcEIDg42ZV1KNX78eISHhyMgIABBQUFYvHgxrl69itdeew1AUbPwa9euYfny5QCKgqkXX3wRc+fORfv27eVfCG1tbaFUKgEAU6dORfv27dGoUSNkZGRg3rx5OH78OL799luzrhtRVRYW4IXvYi9qfU3bCH1r4hOQmJoNT0dbhAV4wbfYrYBERNUdYygiIiKiIgYlpebNm4dXXnkFNjY2mDdvnt6y5Tmk8ZAhQ5CSkoJp06YhKSkJLVq0wJYtW+Dt7Q0ASEpKwtWrV+Xy3333HfLz8/HGG2/gjTfekKcPHz4ckZGRAIC0tDS88sorSE5OhlKpROvWrfH777+jXbt25bYeRNWNaoS+Cf91dg4UjdAnIDRG6JsYfRKSJMl9mXwXexEzBvrLnaYTEVUnjKGIiIiIdDMoKTV79my88MILsLGxwezZs3WWkySpXAMqABgzZgzGjBmj9TVVkKSyd+/eUpc3e/ZsvetERIYZHOCFFvUcEDp3P4CiEfqGBXrLCaniI/TJt/n993dC9Ek84VNHrfN0IqLqgDEUERERkW4GJaUuXbqk9X8iouJKjtBnZ/3gECOP0Kej36mo+ARM6NnULPUkIjIXxlBEREREulkYO8O0adNw7949jenZ2dmYNm2aSSpFRNUPR+gjokcdYygiIiIidUYnpaZOnYq7d+9qTL937x6mTp1qkkoRUfUjj9CnBUfoI6JHAWMoIiIiInVGj76n6py4pBMnTqBOnTomqRQRVT8coY+oajJkf6xsZSorxlBERERE6gxOSjk6OkKSJEiShMaNG6sFVQUFBbh79648rDARUUkcoY+ocjEkuWPI/ljZylRGjKGIiIiItDM4KTVnzhwIIfDSSy9h6tSpUCqV8mvW1tbw8fFBUFBQuVSSiKoHjtBHZB6lJZwMSe4Ysj8KoFKVqazHB8ZQRERERNoZnJQaPnw4AMDX1xcdOnSAlZVVuVWKiKovjtBHVDZlTTgZmvw1ZH9U/V9ZylTW4wNjKCIiIiLtjO5TqnPnzvL/2dnZuH//vtrrDg4OZa8VET2SjBmhryr3K0OkizkSToYmfw3dHytbmcqMMRQRERGROqOTUvfu3cMHH3yANWvWICUlReP1goICk1SMiB498gh9Oi6WVSP0VdV+ZYj0MVfCydBkk6H7Y2UrU5kxhiIiIiJSZ2HsDO+//z52796NBQsWQKFQ4IcffsDUqVPh4eGB5cuXl0cdiegRERbgpfdieUiJC/OCQqH2d0L0SVy+nWXmWhMZ5tLtLMzYdhZvrTqGGdvO4lKx76oh32s54aSFMQknOdmkYzmq5I4h+2NlK1PZMYYiIiIiUmd0Umrjxo1YsGABBg0ahBo1aqBTp074+OOP8cUXX2DlypXlUUciekSoRuizKHa9bClJsJAgj9BnyIU5UWWzJj4B3b7ei8W//4vNJ69j8e//otvXe/HLf99XcyacDE3uGLI/VrYylR1jKCIiIiJ1Rt++d+fOHfj6+gIo6vvgzp07AIAnn3wSr7/+umlrR0SPnNJG6DOm3ykic9HXF5Qht90ZlXDSc/taWIAXvou9qHM5QwK84PNfcmeCqk4oSu4ICI3kTmn7Y2UsU5kxhiIiIiJSZ3RLqQYNGuDy5csAAD8/P6xZswZA0a9/tWvXNmXdiOgRVXKEvuIXnIbeegTov12KyFRM0QrKVC2cDG1NNDjAC5vHPimXGfmkD3a/20Vrn2z69sfKWqayYgxFREREpM7opNTIkSNx4sQJAMCkSZPkfhHeeecdvP/++yavIBFRcYbeelRaooDIUGXtC8qQVlAVkXCqysmdqooxFBEREZE6o2/fe+edd+T/u3btirNnzyI+Ph4NGzZEq1atTFo5IqKSfA249ciQ26V4AU6GKG1EPENGuzPktjtDvteA4bevlUw42VkbfbqncsAYioiIiEhdmaPU+vXro379+qaoCxGRQUq7MDckUTChZ1MA+vsCourPHH1BjQ9uXGo/TwATTo8ixlBERET0qDMokp03b57BCxw7duxDV4aIyFD6LswN7Qy9tFYwVL1VtlZQABNO1RFjKCIiIiLdDIp2Z8+ebdDCJEliQEVEFc6QRAFv8av+qmIrKKp+GENVf2xxS0RE9PAMSkpdunSpvOtBRGQyYQFepSYKoniLX5VW2mfCVlBUWTCGqt7Y4paIiKhsjB59TyUvLw/nzp1Dfn6+KetDRFRmhoxSZswtfhzFr3Ip7TMx54h4gOGj3RGpMIaqHgw51hAREZF+Riel7t27h1GjRsHOzg7NmzfH1atXART1gzB9+nSTV5CI6GGUliiQW8Fooe0WP15wmMel21mYse0s3lp1DDO2ncWlEtvYkM9EbgWlhUYrKB1lireC0pfcVCnZCoq35ZE2jKGqF0OONURERKSf0UmpSZMm4cSJE9i7dy9sbGzk6d27d0dUVJRJK0dEVBb6EgWGtIIx9oKjtIQK6WdIqzRDPhO2gqLKijFU9WJoi1si0o/xE9GjzegOLdavX4+oqCi0b99e7cLAz88PFy9q78OFiKiyMaQvIGMuONivSOnK2vG4oZ8J+4KiyooxVPViyLGGqDozRZ+bjJ+IyOjI+tatW3BxcdGYnpWVpfPXayKiyqi0EdEMveAwZiS/6tppujk6Hp/Qs6lBn4khHd0DHBGPzI8xVPVi6LGGqCoq63nd0Pd41OMnInqIpNQTTzyBzZs346233gIAOYj6/vvvERQUZNraET0CVK0+hADEf8/zCwrl1/PyC2FpUaBxDZ6dVyD/fy8v/8G5vMRys/IedKSbnn0f9wtKFPxvfpW0rPvIvf/g/VXFir/fnbt5yLYuKLkYtTK3M/Nga12AkoqXuZWZC1trzY5+s3OLlcnQUabYcm6WoYyt1YPD4LBAb9haW+JGRg4A4OmmLnovOLo1dcGNjBz8+MclSJCgvjWKSACW/nEJb3R9DBtPXMcXW85AQlGLHAlFAdxHvZuhj7+HPM/VO/ew8cR1JKXnwF1pg76tPFC/jp3WephDafUpbb2u3rmnN+j0dbbHhZt39baAunDzLm5k5Bj0mdhZW+Kj3s3w+eYzcisoVb9QH/ZqBhsrSySnF33GNjUefP4vtPNWe02l+PfoRnrp3zVDyiSn58DW2tLkZVSbsHiZpLTSl6OtjLZ9/7oBy1KVKfl5Fi9zLTW71OUk3jGujIONFZR2VhrlKxPGUNWLMS0uqXoyJFFSGZMpZU04GZNM0sfQH6QMTYBVxm1NRKUzOikVERGBnj174u+//0Z+fj7mzp2L06dPIy4uDrGxseVRRyKdCgsfnMRy7hfIF8WFAigUAqJQPeFyOzMPNlb5EPjv9f/K3SuWBLly+x5srC3l14Giv/eKXQidTcqEwspC7TxcKASy7z8oczwhDYoalvL8qvN2drH6HPr3DmysNC+6coot59jVtFLL/JWYobVMyXJnkzJLXda5G6WXOX/zbqllLt4qvcy/t7JKL3O79DKXyrHMK081wHe//yt/1hZS0Wf5ylMNcL9A4N9bWTh/8y4KtSSkAKAQRdvrjwu38fmWM/J3qkjR3/9tPoM6dgq4KW2w99xNLN73r5zikgCsOHgFrz7VAJ0bP2hhkZSejb3nbuHW3VzUralAlyZ14a5Uv1XEFGVKq09Senap67Xn3E2t20ZledwV2Or4/qrYWlni31tFfUwY8pn4uSvxxYCWmLj2LwBAzxZuCG7mBjeljVpfFcU//8sppX9HTFXmSso9s5W5eufhy5Qsl2DAsgwpk5iaXWqZa2nGlfF0RKVPSjGGqn7Y4vLRZUiixJS3phmacDFHwsnQZFJp9THklnxDE2AVkbiqqklJqloehe+Q0UmpDh064MCBA/jyyy/RsGFD7NixA23atEFcXBxatmxZHnWkKiq/oBC5+QUoLAQKhCgaIatQ4G7ug6TM9bQcKGpYoFA8GEVLCIGCEomik4npsK5hAfFfucL/RtsqfnFyIiHdJImS5IycUsukZ9+HTb7+Mrn3C/9rPaOuUPu5lyqpzo1d4ONkrzW5oVK3pkJHO6miJE7dmgrsPXdLb5k9526iS5O6WLzvXzmJiWLlv/v9XzRxddCZuNp48rpa4soUZZLSs0utjyHrdeturo6UXdF8t+7mYnBbT2w8eV1nma5NHiTkDPlMAMDV4cHzwW29dCZdiMyFMVT1xH7nqp6yJhMMSZQIwGS3phmacDFXwsnQPjdLq48ht+QbUp+wAC+zJ67MnZSk6skct8ka+l4VyajR9+7fv4+RI0fCzs4Oy5Ytw6lTp/D333/jp59+MlswtWDBAvj6+sLGxgZt27bFvn379JaPjY1F27ZtYWNjgwYNGmDRokUaZaKjo+Hn5weFQgE/Pz+sW7euvKpfJRQWCuTlF+JeXj4ycu4jNSsPtzJzcSM9Vy5z6XYWzt/IxNnkDJy6lo6TiWk4djUVR6+kymWOXEnD0StpOJ6Qhr8S0/H39QycTc7EhZt35TIJd+4hMTUb19NykJyeg1uZubh9Nw+pWfeRnn1fLpedV4Dc+4XIyxfILxBM7JBZlUxulEx+dGlSV2/SpWsTF4MSM6oEjzaqBE/xRFGhgNrf737/F8npOSYrY0h9DFkvVdJO13Lq1lTAXWmLV59qgOLd6lhIgCQBrz7VoNSEU8nXiSobxlBElYOhI73qK2PISLCGjuBb2nsVTyQVFAq1vxOiT+Lyf61/DSlnqhFs5WSSjuV4OtoaVB9DRsI1pD6GrJeh29GQ74chyzL0/VTL4+iDjx5T7fumeK+KZlRSysrKqkKDjaioKIwbNw4fffQRjh07hk6dOiE0NBRXr17VWv7SpUvo1asXOnXqhGPHjuHDDz/E2LFjER0dLZeJi4vDkCFDEB4ejhMnTiA8PBxhYWE4dOiQuVar3N0v1j/Rnbt5uJGRg8TUe7j8X2Lp7+tFiSWVw5dTceRKKk4kpOP0tQeJpMspD774NzMeJI8yc/KRlVuAnPuFD/orInqEGJJQMSQxY6rElanKmCrhZEjSDihqARUx4MHFec8Wbpg1+HG12xaJqirGUEQVz1TJBEMSJcbemlaWRBJgWKLMVAknQ5JJhtRH1S+bRbFilpIECwlyv2yG1KciElfmSkqqVMXElSF1NnS9qtv6m3LfN6QepkpulRej2xcPGDAA69evx/jx48ujPnrNmjULo0aNwssvvwwAmDNnDrZv346FCxciIiJCo/yiRYtQv359zJkzBwDQrFkzxMfH46uvvsLAgQPlZQQHB2PSpEkAgEmTJiE2NhZz5szBqlWrzLNiRsovKEReQVECKLNYa6LLt+/BylJCXkEh8gsE8guLyhTvFNaQvoCIyHil3VLWpUndUm9P23PuZqm3ARqSKFL9X9YyhtyWaMh6uSlt8KqOfqBKtoLiLXdUnTGGouqmMt4Ooq9OhtwKpvpfXxlDR+c1xa1pht4qZ1TCqYwj2PoY0Mm/ofUurV82Q+oTVcp2NDpxVUpfWYauW1XuL6usTHl7Y2W8DdIco04b+j0rjTF9wFUUo5NSjz32GD777DMcOHAAbdu2hb29+hd97NixJqtccXl5eThy5AgmTpyoNj0kJAQHDhzQOk9cXBxCQkLUpvXo0QNLlizB/fv3YWVlhbi4OLzzzjsaZVRBmDHu5eWjRp7miEsPq3gH3cX/v3L7HpL/Gx0st3hHtSlZUGi5gMtV6+dIe/KpspWpjHWqimUqY52qaxkAqG37oJPlZ/w9oLCylBO+jnbWeKmDL5b+cUlO8qgSMy918EVtOysENXTSm+Dp0NAJv5/X34eT438dPZuijCH1MWS9cu4XINDXCR5KG3y64W8AQHAzV3Rt6gJXB5sSfbHxe12ZylTGOukqk51XoHauNBVTLpMxlHbmip+AogFGAPXvzu/nbmmNnwxlymVVJfvO38KPBy6r9Uu4KPYiXurgiycbOZfLeyZn5GDf+VtIuZsHp5rW6NSoLtyK/ZhRWp2OXklFoY6LvEIh5G4oSivTv3U9vWW869jJg+roK7Pu2LVS38upprXW11UKCgux5+xNFBQWllqufh27Uut0+XYWRuo4r4/s4ItL/7Umc66pwJS+fvJ5vXszF3Rt6gLnmgqD67PnbNFAKMX3oYD6jvJ7qJRWH0PW60qK/tYgBYWFBn0/DF230hQUFuLL7Wf1lpm5/Sw6NaqLD9f9VZRPKJG4+iD6JAoKBVwdbAzeH0vbh0xRJjkjp9Q6C8Cg9TJkWa7F3re0eptCadvakDob8l0zdN8vjSHvVR7xE2B4DCUJXek3HXx9fXUvTJLw77//GrM4g12/fh316tXDH3/8gQ4dOsjTv/jiCyxbtgznzp3TmKdx48YYMWIEPvzwQ3nagQMH0LFjR1y/fh3u7u6wtrZGZGQknn/+ebnMzz//jJEjRyI3N1djmQCQm5ur9lpGRga8vLzgNW4NLBQVN2w7ERERmVZh7j0kzAlDeno6HBwcyrSsRz2GYvxERET06DA0hjKqpZQQAnv27IGLiwvs7ComeCh5X6WqOZwx5UtON3aZERERmDp1qsF1JiIiokcbYyjGT0RERKTJ6KRU48aNcfr0aTRq1Ki86qSVs7MzLC0tkZycrDb95s2bcHV11TqPm5ub1vI1atSAk5OT3jK6lgkU9ZlQvD8I1S99f37Urcy/ohoiL78QufkFKCgo6sT8fqFAfkEh7hf+15dUgcD9wkLczy/kKHVE1dSNjBz8XqyJ8lON6qr1x2TKMkRVQb3atvCsY2vy5WZkZMB9TtmXwxiq4uOnh3EvLx8B/9sFAIj/uBvsrI3u+cLg5VSlMu/9cgLbTiVrjTMtpKJ+Fb8a3EqedjY5A88uiAMAjOjgjbAnvODj9OD21bVHr+HT305p9E/0Wf8WGNC6HmbF/IMf919GgZYbPCwlCSOf9MH1tGyD6rTu2DV8sv4UJBS9h+qv6r0AGFTGVAx9ryspWYg+eg3X07LhUdsWA9vUg7eTZn9BhpYzl6pWH2M+e0PWTV+ZyylZ6DNvv87v7OaxTyL66DWTfPc9atuWuhwAlarM+ODGBu37hi4LKPuxyJBjnyHbenxwY5Ps+4Z8h7yd7M16TCvO0BjKqDOrhYUFGjVqhJSUFLMHVNbW1mjbti1iYmIwYMAAeXpMTAz69eundZ6goCBs3LhRbdqOHTsQEBAAKysruUxMTIxanwg7duxQa95ekkKhgEKh0JhuZ13joYMVY9jpv71UTUGhKEpc/df5efHEVV5BIfL/e37/v47TC5jFIqoSvJ3sEV5KUGeqMkRVga21Zbmcg/NNtEzGUBUfP5WVqeppyHIqexlvJ3u9Hed6O9nL5VUd/qqsiLuK5XFX5A5/L93OUrsIBCBfzH2y/hQ6NnTGjYxcCB3DcwgI3MjINbhOLwR6o2NDZ7kjYU9HW7nzbhVDypiKoe/VzF2Jj3srS12eoeXMparVx5jP3pB101fGz10pdxhfvENsIYo6jG/mrsQLgTWwdP8lrfMLCAwL9C61o3dvp/86ni9lH1L9X9Yy44Mbl1pnAZRaRrW/llbu65h/Sq2TnXUNkxyLDDnOhAV4GbxuZd33N55I0lufDSeSMKFnU7Me04ozNIYy+sw6c+ZMvP/++1i4cCFatGhhdMXKYvz48QgPD0dAQACCgoKwePFiXL16Fa+99hqAol/grl27huXLlwMAXnvtNXzzzTcYP348Ro8ejbi4OCxZskRtRJi3334bTz31FGbMmIF+/frht99+w86dO7F//36zrlt5sbSQYGlhafAIVoWFAvmFRcmp/MLC//6KB38LHkwvEEXJrUJR9LrqwbwWERGRJsZQVF0YMiIaoD4UuYrqIk81upghI0OZatQ4FR9n+1JHmzKkjKmY872odOb8PAYHeOEJnzo6kwW+xUY61Ja48nG2N9kIhar/y1rGkDoDMKiMIcsy5PhgqmORsaNT6ls3oOzfNWNG6KvMxxmjk1LDhg3DvXv30KpVK1hbW8PWVr2p/J07d0xWuZKGDBmClJQUTJs2DUlJSWjRogW2bNkCb29vAEBSUhKuXr0ql/f19cWWLVvwzjvv4Ntvv4WHhwfmzZsnD2UMAB06dMDq1avx8ccf45NPPkHDhg0RFRWFwMDAcluPyszCQoK1haoviIcbPUaIB4msQlGUpCooFCj8L5Gl+ltQKCBUr4kHZQu1vla0XNXrxnXPT0REVPEYQ1F1YehFp6mGPR8f3NikF4JElUlpyQJzJa4EYJIyhtTZ0DKGlDNFUs7QY5Ghxz5D162sDEnIVQVGJ6WMHebX1MaMGYMxY8ZofS0yMlJjWufOnXH06FG9yxw0aBAGDRpkiuoRinYAK0sJ5TkisiiRwAKgltQSWpJYqucCRc8fTC+apkp8if+WXzQd6mWhPs+DMkIuC6jPqzq4FR8VlIiIHj2Moaqey8WGkZ8V8w9eCPSG70NcVJhqOeZUWp0Nuegy5CLPkIuqynYhSGRu5khcAYa1XjJlKyBDW+/oK2fIupnqWAQYfpwxR8skY1qIVmZGJ6WGDx9eHvUgMookSbCUAEuUb/KrPBRPeMnP5f8fJLtQbBrw4P7tkvMWvaZetvjE4vOVeEltGSWna86j5UBu2CTNumnMY3y2rqISfMwrkj66Ap7yez+zvl2pHrY+D3MMKKmWTeXvk4gxVNVSsv+RH/dfxtL9l+T+R8y9HHMytM6lXXSZ8ra7ynQhSFQZlTVxZcoy5lZanSriFmBzMDTZWNk9VARXUFCA9evX48yZM5AkCX5+fnjmmWdgaVnFsgNEFUCSJKiPlq17OG4iIqpeGENVDYb0P2JIsG+q5ZiTKetc2fpfIXrUmar1UmXcF/XVydTHosqkMiYJjWV0UurChQvo1asXrl27hiZNmkAIgX/++QdeXl7YvHkzGjZsWB71JCIiIqrSGENVHYb0hWTIBZmplmNOpqwzb7sjosqguh+LKmOS0BhGJ6XGjh2Lhg0b4uDBg6hTpw4AICUlBcOGDcPYsWOxefNmk1eSiIiIqKpjDFV1GDOikTmWY06mrjNvuyOiyoDHosrL6KRUbGysWjAFAE5OTpg+fTo6duxo0soRERERVReMoaoOU41oZMxyzNkZur73Ko/RnHiRR0SVAY9FlZOFsTMoFApkZmZqTL979y6sra1NUikiIiKi6oYxVNURFuClt7WQoSMaGbqcNfEJ6DNvv/zaj/svo9vXe/FLfIKRNS9dae9lqnUnIiIyhNFJqT59+uCVV17BoUOH/htFTODgwYN47bXX8Mwzz5RHHYmIiIiqPMZQVYeq/xELCbC0kNT+GtPhrSHL0dWxeKEo6lj88u0s3W9gJEPey1TrTkREZAijb9+bN28ehg8fjqCgIFhZWQEA8vPz8cwzz2DOnDmmrh8RERFRtcAYqmoxVYe3pS3HnJ2hG/peVbWzXyIiqnqMTkrVrl0bv/32Gy5cuIAzZ85ACAE/Pz889thjyM6ufJ01EhEREVUGjKGqHlP1P6JvOebsDN2Y92LfK0REZA5G3773xhtvAAAee+wx9O3bF8888wwee+wxZGVlITQ01OQVJCIiIqoOGEORNnLH4lo8bMfileG9iIiIDGF0UmrHjh34+OOP1aZlZWWhZ8+eKCgoMFnFiIiIiKoTxlCkjTEdi5ccNe+Skf1NsRNzIiKqbB4qKfXjjz9i9uzZAIDMzEwEBwdDkiRs27bN5BUkIiIiqg4YQ5E2hnYsbooR+tiJORERVTZG9ynl6+uL7du3o0uXLrCwsMDq1auhUCiwefNm2NvzREZERESkDWMo0qW0jsV1jZoHFI2a94RPHYMTSuzEnIiIKhOjk1IA0KJFC2zatAndu3dHYGAgNm3aBFtb3oNOREREpA9jKNJFX8fixozQV/IWvxcCveFbIuHETsyJiKiyMCgp1bp1a62dIioUCly/fh0dO3aUpx09etR0tSMiIiKqwhhDkSkYOmremvgETIw+Kb/24/7LWLr/EmYM9Mdg9hdFRESVkEFJqf79+5dzNYiIiIiqH8ZQZAryqHk6Wkp5Otqa9BY/IiIiczEoKTV58uTyrgcRERFRtcMYikwhLMAL38Ve1PqaatS8KCNu8SMiIqosHqpPKQA4cuQIzpw5A0mS4Ofnh9atW5uyXkRERETVEmMoMpZq1LwJ0SchSRKEEPJf1ah5ht7iR0REVJkYnZS6efMmhg4dir1796J27doQQiA9PR1du3bF6tWrUbdu3fKoJxEREVGVxhiKyqK0UfMMucWPiIiosrEwdoa33noLGRkZOH36NO7cuYPU1FScOnUKGRkZGDt2bHnUkYiIiKjKYwxFZaUaNW/+c60xoWdTtT6iwgK89LaUGsKOzomIqBKShK6zlw5KpRI7d+7EE088oTb9zz//REhICNLS0kxZvyohIyMDSqUS6enpcHBwqOjqEBERkYmY8hzPGEod4yfT+yU+Qectfhx9j4iIzMnQ87zRt+8VFhbCyspKY7qVlRUKCwuNXRwRERHRI4ExFJW30m7xIyIiqmyMbinVr18/pKWlYdWqVfDw8AAAXLt2DS+88AIcHR2xbt26cqloZcZf+oiIiKonU57jGUOpY/xERERUfRl6nje6T6lvvvkGmZmZ8PHxQcOGDfHYY4/B19cXmZmZmD9/fpkqTURERFRdMYYiIiIiUmf07XteXl44evQoYmJicPbsWQgh4Ofnh+7du5dH/YiIiIiqBcZQREREROqMvn1v+fLlGDJkCBQKhdr0vLw8rF69Gi+++KJJK1gVsPk5ERFR9WTKczxjKHWMn4iIiKovQ8/zRielLC0tkZSUBBcXF7XpKSkpcHFxQUFBwcPVuApjUEVERFQ9mfIczxhKHeMnIiKi6qvc+pRSDS9bUmJiIpRKpbGLM1hqairCw8OhVCqhVCoRHh6ud+jk+/fvY8KECWjZsiXs7e3h4eGBF198EdevX1cr16VLF0iSpPYYOnRoua0HERERPZoYQxERERGpM7hPqdatW8sBR7du3VCjxoNZCwoKcOnSJfTs2bNcKgkAzz//PBITE7Ft2zYAwCuvvILw8HBs3LhRa/l79+7h6NGj+OSTT9CqVSukpqZi3LhxeOaZZxAfH69WdvTo0Zg2bZr83NbWttzWg4iIiB4tjKGIiIiItDM4KdW/f38AwPHjx9GjRw/UrFlTfs3a2ho+Pj4YOHCgySsIAGfOnMG2bdtw8OBBBAYGAgC+//57BAUF4dy5c2jSpInGPEqlEjExMWrT5s+fj3bt2uHq1auoX7++PN3Ozg5ubm7lUnciIiJ6tDGGIiIiItLO4KTU5MmTAQA+Pj4YMmQIbGxsyq1SJcXFxUGpVMrBFAC0b98eSqUSBw4c0BpQaZOeng5JklC7dm216StXrsRPP/0EV1dXhIaGYvLkyahVq5YpV4GIiIgeUYyhiIiIiLQzOCmlMnz48PKoh17JyckanYICgIuLC5KTkw1aRk5ODiZOnIjnn39erZOtF154Ab6+vnBzc8OpU6cwadIknDhxQuMXwuJyc3ORm5srP8/IyDBibYiIiOhR9KjHUIyfiIiIqCSjk1IWFhZaO+lUMWbkmClTpmDq1Kl6yxw+fBgAtL6nrg5DS7p//z6GDh2KwsJCLFiwQO210aNHy/+3aNECjRo1QkBAAI4ePYo2bdpoXV5ERESp9SYiIiIq7lGPoRg/ERERUUlGJ6XWrl2rFsTcv38fx44dw7Jly4wONN58881SR2nx8fHByZMncePGDY3Xbt26BVdXV73z379/H2FhYbh06RJ2795d6pDDbdq0gZWVFc6fP68zKTVp0iSMHz9efp6RkQEvLy+9yyUiIqJH26MeQzF+IiIiopKMTkqpOussbtCgQWjevDmioqIwatQog5fl7OwMZ2fnUssFBQUhPT0df/75J9q1awcAOHToENLT09GhQwed86mCqfPnz2PPnj1wcnIq9b1Onz6N+/fvw93dXWcZhUIBhUJR6rKIiIiIVB71GIrxExEREZUkCSGEKRZ08eJF+Pv7IysryxSL0xAaGorr16/ju+++A1A0nLG3t7facMZNmzZFREQEBgwYgPz8fAwcOBBHjx7Fpk2b1H4NrFOnDqytrXHx4kWsXLkSvXr1grOzM/7++2+8++67sLW1xeHDh2FpaWlQ3TIyMqBUKpGenl7qr4hERERUdZjjHP+oxlCMn4iIiKovQ8/zFqZ4s+zsbMyfPx+enp6mWJxWK1euRMuWLRESEoKQkBD4+/tjxYoVamXOnTuH9PR0AEBiYiI2bNiAxMREPP7443B3d5cfBw4cAFA0DPOuXbvQo0cPNGnSBGPHjkVISAh27txpcEKKiIiI6GExhiIiIqJHmdEtpRwdHdX6QxBCIDMzE7a2tli5ciWeeeYZk1eysuMvfURERNWTKc/xjKHUMX4iIiKqvgw9zxvdp9ScOXPUnltYWKBu3boIDAzElStXjK4oERER0aOAMRQRERGRujL3KZWeno6VK1diyZIlOH78uFHDGVcX/KWPiIioeirPc/yjHkMxfiIiIqq+yr1Pqd27d2PYsGFwd3fH/PnzERoaivj4+IddHBEREdEjgTEUERERURGjbt9LTExEZGQkli5diqysLISFheH+/fuIjo6Gn59fedWRiIiIqEpjDEVERESkyeCWUr169YKfnx/+/vtvzJ8/H9evX8f8+fPLs25EREREVR5jKCIiIiLtDG4ptWPHDowdOxavv/46GjVqVJ51IiIiIqo2GEMRERERaWdwS6l9+/YhMzMTAQEBCAwMxDfffINbt26VZ92IiIiIqjzGUERERETaGZyUCgoKwvfff4+kpCS8+uqrWL16NerVq4fCwkLExMQgMzOzPOtJREREVCUxhiIiIiLSThJCiIed+dy5c1iyZAlWrFiBtLQ0BAcHY8OGDaasX5XAIY2JiIiqp/I6xzOGYvxERERUnRl6nje4pZQ2TZo0wcyZM5GYmIhVq1aVZVFEREREjwzGUERERERlbClFRfhLHxERUfXEc3z54bYlIiKqvszSUoqIiIiIiIiIiOhhMClFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2VWZpFRqairCw8OhVCqhVCoRHh6OtLQ0vfOMGDECkiSpPdq3b69WJjc3F2+99RacnZ1hb2+PZ555BomJieW4JkRERETmwxiKiIiIKqsqk5R6/vnncfz4cWzbtg3btm3D8ePHER4eXup8PXv2RFJSkvzYsmWL2uvjxo3DunXrsHr1auzfvx93795Fnz59UFBQUF6rQkRERGQ2jKGIiIiosqpR0RUwxJkzZ7Bt2zYcPHgQgYGBAIDvv/8eQUFBOHfuHJo0aaJzXoVCATc3N62vpaenY8mSJVixYgW6d+8OAPjpp5/g5eWFnTt3okePHqZfGSIiIiIzYQxFRERElVmVaCkVFxcHpVIpB1MA0L59eyiVShw4cEDvvHv37oWLiwsaN26M0aNH4+bNm/JrR44cwf379xESEiJP8/DwQIsWLfQuNzc3FxkZGWoPIiIiosqmMsVQjJ+IiIiopCqRlEpOToaLi4vGdBcXFyQnJ+ucLzQ0FCtXrsTu3bvx9ddf4/Dhw3j66aeRm5srL9fa2hqOjo5q87m6uupdbkREhNwvg1KphJeX10OuGREREVH5qUwxFOMnIiIiKqlCk1JTpkzR6ESz5CM+Ph4AIEmSxvxCCK3TVYYMGYLevXujRYsW6Nu3L7Zu3Yp//vkHmzdv1luv0pY7adIkpKeny4+EhAQD15iIiIio7KpiDMX4iYiIiEqq0D6l3nzzTQwdOlRvGR8fH5w8eRI3btzQeO3WrVtwdXU1+P3c3d3h7e2N8+fPAwDc3NyQl5eH1NRUtV/6bt68iQ4dOuhcjkKhgEKhMPh9iYiIiEypKsZQjJ+IiIiopApNSjk7O8PZ2bnUckFBQUhPT8eff/6Jdu3aAQAOHTqE9PR0vcmjklJSUpCQkAB3d3cAQNu2bWFlZYWYmBiEhYUBAJKSknDq1CnMnDnzIdaIiIiIqPwxhiIiIqLqoEr0KdWsWTP07NkTo0ePxsGDB3Hw4EGMHj0affr0URs1pmnTpli3bh0A4O7du3jvvfcQFxeHy5cvY+/evejbty+cnZ0xYMAAAIBSqcSoUaPw7rvvYteuXTh27BiGDRuGli1byiPJEBEREVVVjKGIiIioMqvQllLGWLlyJcaOHSuP8vLMM8/gm2++UStz7tw5pKenAwAsLS3x119/Yfny5UhLS4O7uzu6du2KqKgo1KpVS55n9uzZqFGjBsLCwpCdnY1u3bohMjISlpaW5ls5IiIionLCGIqIiIgqK0kIISq6ElVdRkYGlEol0tPT4eDgUNHVISIiIhPhOb78cNsSERFVX4ae56vE7XtERERERERERFS9MClFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZXZVJSqWmpiI8PBxKpRJKpRLh4eFIS0vTO48kSVofX375pVymS5cuGq8PHTq0nNeGiIiIyDwYQxEREVFlVaOiK2Co559/HomJidi2bRsA4JVXXkF4eDg2btyoc56kpCS151u3bsWoUaMwcOBAtemjR4/GtGnT5Oe2trYmrDkRERFRxWEMRURERJVVlUhKnTlzBtu2bcPBgwcRGBgIAPj+++8RFBSEc+fOoUmTJlrnc3NzU3v+22+/oWvXrmjQoIHadDs7O42yRERERFUdYygiIiKqzKrE7XtxcXFQKpVyMAUA7du3h1KpxIEDBwxaxo0bN7B582aMGjVK47WVK1fC2dkZzZs3x3vvvYfMzEy9y8rNzUVGRobag4iIiKiyqUwxFOMnIiIiKqlKtJRKTk6Gi4uLxnQXFxckJycbtIxly5ahVq1aePbZZ9Wmv/DCC/D19YWbmxtOnTqFSZMm4cSJE4iJidG5rIiICEydOtW4lSAiIiIys8oUQzF+IiIiopIqtKXUlClTdHakqXrEx8cDKOpwsyQhhNbp2ixduhQvvPACbGxs1KaPHj0a3bt3R4sWLTB06FD8+uuv2LlzJ44ePapzWZMmTUJ6err8SEhIMGKtiYiIiMqmKsZQjJ+IiIiopAptKfXmm2+WOkqLj48PTp48iRs3bmi8duvWLbi6upb6Pvv27cO5c+cQFRVVatk2bdrAysoK58+fR5s2bbSWUSgUUCgUpS6LiIiIqDxUxRiK8RMRERGVVKFJKWdnZzg7O5daLigoCOnp6fjzzz/Rrl07AMChQ4eQnp6ODh06lDr/kiVL0LZtW7Rq1arUsqdPn8b9+/fh7u5e+goQERERVQDGUERERFQdVImOzps1a4aePXti9OjROHjwIA4ePIjRo0ejT58+aqPGNG3aFOvWrVObNyMjA7/88gtefvlljeVevHgR06ZNQ3x8PC5fvowtW7Zg8ODBaN26NTp27Fju60VERERUnhhDERERUWVWJZJSQNHoLi1btkRISAhCQkLg7++PFStWqJU5d+4c0tPT1aatXr0aQgg899xzGsu0trbGrl270KNHDzRp0gRjx45FSEgIdu7cCUtLy3JdHyIiIiJzYAxFRERElZUkhBAVXYmqLiMjA0qlEunp6XBwcKjo6hAREZGJ8BxffrhtiYiIqi9Dz/NVpqUUERERERERERFVH0xKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZldlklKff/45OnToADs7O9SuXdugeYQQmDJlCjw8PGBra4suXbrg9OnTamVyc3Px1ltvwdnZGfb29njmmWeQmJhYDmtAREREZH6MoYiIiKiyqjJJqby8PAwePBivv/66wfPMnDkTs2bNwjfffIPDhw/Dzc0NwcHByMzMlMuMGzcO69atw+rVq7F//37cvXsXffr0QUFBQXmsBhEREZFZMYYiIiKiykoSQoiKroQxIiMjMW7cOKSlpektJ4SAh4cHxo0bhwkTJgAo+kXP1dUVM2bMwKuvvor09HTUrVsXK1aswJAhQwAA169fh5eXF7Zs2YIePXoYVKeMjAwolUqkp6fDwcGhTOtHRERElUd1OsdXthiqOm1bIiIiUmfoeb7KtJQy1qVLl5CcnIyQkBB5mkKhQOfOnXHgwAEAwJEjR3D//n21Mh4eHmjRooVchoiIiOhRwhiKiIiIzKVGRVegvCQnJwMAXF1d1aa7urriypUrchlra2s4OjpqlFHNr01ubi5yc3Pl5+np6QCKMoFERERUfajO7VWsYXmZlFcMxfiJiIjo0WFoDFWhSakpU6Zg6tSpesscPnwYAQEBD/0ekiSpPRdCaEwrqbQyERERWuvt5eX1cJUkIiKiSi0zMxNKpbKiqyGrijEU4yciIqJHT2kxVIUmpd58800MHTpUbxkfH5+HWrabmxuAol/y3N3d5ek3b96Uf/lzc3NDXl4eUlNT1X7pu3nzJjp06KBz2ZMmTcL48ePl54WFhbhz5w6cnJxKDdaMlZGRAS8vLyQkJLC/hXLGbW0+3Nbmw21tPtzW5mPObS2EQGZmJjw8PMr1fYxVFWMoxk/VE7e1+XBbmw+3tflwW5uPube1oTFUhSalnJ2d4ezsXC7L9vX1hZubG2JiYtC6dWsARaPPxMbGYsaMGQCAtm3bwsrKCjExMQgLCwMAJCUl4dSpU5g5c6bOZSsUCigUCrVphg6x/LAcHBy4k5oJt7X5cFubD7e1+XBbm4+5tnVlaiGlUhVjKMZP1Ru3tflwW5sPt7X5cFubjzm3tSExVJXpU+rq1au4c+cOrl69ioKCAhw/fhwA8Nhjj6FmzZoAgKZNmyIiIgIDBgyAJEkYN24cvvjiCzRq1AiNGjXCF198ATs7Ozz//PMAijbQqFGj8O6778LJyQl16tTBe++9h5YtW6J79+4VtapEREREJsMYioiIiCqrKpOU+vTTT7Fs2TL5ueqXuz179qBLly4AgHPnzsmdZgLABx98gOzsbIwZMwapqakIDAzEjh07UKtWLbnM7NmzUaNGDYSFhSE7OxvdunVDZGQkLC0tzbNiREREROWIMRQRERFVVlUmKRUZGYnIyEi9ZUr26i5JEqZMmYIpU6bonMfGxgbz58/H/PnzTVBL01MoFJg8ebJGc3cyPW5r8+G2Nh9ua/PhtjYfbmvjPIoxFL8j5sNtbT7c1ubDbW0+3NbmU1m3tSQepTGOiYiIiIiIiIioUrCo6AoQEREREREREdGjh0kpIiIiIiIiIiIyOyaliIiIiIiIiIjI7JiUqsQWLFgAX19f2NjYoG3btti3b19FV6la+P3339G3b194eHhAkiSsX79e7XUhBKZMmQIPDw/Y2tqiS5cuOH36dMVUtgqLiIjAE088gVq1asHFxQX9+/fHuXPn1MpwW5vGwoUL4e/vDwcHBzg4OCAoKAhbt26VX+d2Lj8RERGQJAnjxo2Tp3F7m8aUKVMgSZLaw83NTX6d25n0YQxleoyfzIcxlPkwhqoYjJ/KV1WLoZiUqqSioqIwbtw4fPTRRzh27Bg6deqE0NBQXL16taKrVuVlZWWhVatW+Oabb7S+PnPmTMyaNQvffPMNDh8+DDc3NwQHByMzM9PMNa3aYmNj8cYbb+DgwYOIiYlBfn4+QkJCkJWVJZfhtjYNT09PTJ8+HfHx8YiPj8fTTz+Nfv36yScXbufycfjwYSxevBj+/v5q07m9Tad58+ZISkqSH3/99Zf8Grcz6cIYqnwwfjIfxlDmwxjK/Bg/mUeViqEEVUrt2rUTr732mtq0pk2biokTJ1ZQjaonAGLdunXy88LCQuHm5iamT58uT8vJyRFKpVIsWrSoAmpYfdy8eVMAELGxsUIIbuvy5ujoKH744Qdu53KSmZkpGjVqJGJiYkTnzp3F22+/LYTg99qUJk+eLFq1aqX1NW5n0ocxVPlj/GRejKHMizFU+WH8ZB5VLYZiS6lKKC8vD0eOHEFISIja9JCQEBw4cKCCavVouHTpEpKTk9W2vUKhQOfOnbntyyg9PR0AUKdOHQDc1uWloKAAq1evRlZWFoKCgridy8kbb7yB3r17o3v37mrTub1N6/z58/Dw8ICvry+GDh2Kf//9FwC3M+nGGKpicJ8sX4yhzIMxVPlj/GQ+VSmGqlEh70p63b59GwUFBXB1dVWb7urqiuTk5Aqq1aNBtX21bfsrV65URJWqBSEExo8fjyeffBItWrQAwG1tan/99ReCgoKQk5ODmjVrYt26dfDz85NPLtzOprN69WocPXoUhw8f1niN32vTCQwMxPLly9G4cWPcuHED//vf/9ChQwecPn2a25l0YgxVMbhPlh/GUOWPMZR5MH4yn6oWQzEpVYlJkqT2XAihMY3KB7e9ab355ps4efIk9u/fr/Eat7VpNGnSBMePH0daWhqio6MxfPhwxMbGyq9zO5tGQkIC3n77bezYsQM2NjY6y3F7l11oaKj8f8uWLREUFISGDRti2bJlaN++PQBuZ9KN342Kwe1ueoyhyh9jqPLH+Mm8qloMxdv3KiFnZ2dYWlpq/KJ38+ZNjYwmmZZqVAJue9N56623sGHDBuzZsweenp7ydG5r07K2tsZjjz2GgIAAREREoFWrVpg7dy63s4kdOXIEN2/eRNu2bVGjRg3UqFEDsbGxmDdvHmrUqCFvU25v07O3t0fLli1x/vx5fq9JJ8ZQFYP7ZPlgDGUejKHKH+OnilXZYygmpSoha2trtG3bFjExMWrTY2Ji0KFDhwqq1aPB19cXbm5uats+Ly8PsbGx3PZGEkLgzTffxNq1a7F79274+vqqvc5tXb6EEMjNzeV2NrFu3brhr7/+wvHjx+VHQEAAXnjhBRw/fhwNGjTg9i4nubm5OHPmDNzd3fm9Jp0YQ1UM7pOmxRiqYjGGMj3GTxWr0sdQ5u5ZnQyzevVqYWVlJZYsWSL+/vtvMW7cOGFvby8uX75c0VWr8jIzM8WxY8fEsWPHBAAxa9YscezYMXHlyhUhhBDTp08XSqVSrF27Vvz111/iueeeE+7u7iIjI6OCa161vP7660KpVIq9e/eKpKQk+XHv3j25DLe1aUyaNEn8/vvv4tKlS+LkyZPiww8/FBYWFmLHjh1CCG7n8lZ89BghuL1N5d133xV79+4V//77rzh48KDo06ePqFWrlnwe5HYmXRhDlQ/GT+bDGMp8GENVHMZP5aeqxVBMSlVi3377rfD29hbW1taiTZs28jCwVDZ79uwRADQew4cPF0IUDZM5efJk4ebmJhQKhXjqqafEX3/9VbGVroK0bWMA4scff5TLcFubxksvvSQfK+rWrSu6desmB1NCcDuXt5JBFbe3aQwZMkS4u7sLKysr4eHhIZ599llx+vRp+XVuZ9KHMZTpMX4yH8ZQ5sMYquIwfio/VS2GkoQQwnztsoiIiIiIiIiIiNinFBERERERERERVQAmpYiIiIiIiIiIyOyYlCIiIiIiIiIiIrNjUoqIiIiIiIiIiMyOSSkiIiIiIiIiIjI7JqWIiIiIiIiIiMjsmJQiIiIiIiIiIiKzY1KKiIiIiIiIiIjMjkkpIiIiIiIiIiIyOyaliOiRNWLECPTv37+iq0FERERUZTB+IiJTYlKKiIiIiIiIiIjMjkkpIiItZs2ahZYtW8Le3h5eXl4YM2YM7t69q1bm+++/h5eXF+zs7DBgwADMmjULtWvXll8/ceIEunbtilq1asHBwQFt27ZFfHy8mdeEiIiIyDwYPxGRsZiUIiLSwsLCAvPmzcOpU6ewbNky7N69Gx988IH8+h9//IHXXnsNb7/9No4fP47g4GB8/vnnast44YUX4OnpicOHD+PIkSOYOHEirKyszL0qRERERGbB+ImIjCUJIURFV4KIqCKMGDECaWlpWL9+fallf/nlF7z++uu4ffs2AGDo0KG4e/cuNm3aJJcZNmwYNm3ahLS0NACAg4MD5s+fj+HDh5dH9YmIiIjMjvETEZkSW0oREWnx//bunSWuNYwC8PKQIiDptLLSYpAQsAliZeUQSJjGSJrAmCKCjYWCvXaClyYXhBTBHyCWAxYTQabJBdIIprAISEIKb4gIccDThWiqI2ZPDnmebm/2B+/XLda+vXnzJuVyOV1dXbl161aq1Wr29vZycnKSJPn06VP6+/svrLl8PDU1ladPn2ZoaChzc3PZ2dkpbH4AgKLJT8B/pZQCuOTz58+5f/9+7ty5k9XV1Xz48CEvXrxIkpydnSVJzs/P09bWdmHd5QdPZ2ZmsrW1lQcPHqRer+f27dtZW1srZhMAAAWSn4CrUEoBXPL+/fs0m80sLi5mYGAgpVIpX758uXBNb29v3r59+8u6y0qlUiYnJ7O+vp7h4eG8fv36t84OANAK8hNwFTdaPQBAKx0dHeXjx48XznV2dqbZbObZs2epVCppNBpZXl6+cM3ExEQGBweztLSUSqWSer2eWq324+7f6elppqenMzIyku7u7uzu7ubdu3d5+PBhUVsDAPgt5CfguvjQOfDXevLkSVZWVn45Pzo6mr6+vszPz+fw8DCDg4N5/PhxqtVqDg4Ofvy2+NWrV5mdnc3+/n7u3buXu3fv5vnz5/n69Wu+f/+e0dHRNBqNfPv2LR0dHRkeHs78/Hxu3rxZ8E4BAK6H/ARcJ6UUwDUZGxvL9vZ2Njc3Wz0KAMD/gvwEfzev7wFc0cLCQsrlctrb21Or1bKyspKXL1+2eiwAgD+W/AT8zJNSAFf06NGjbGxs5Pj4OD09PZmYmMj4+HirxwIA+GPJT8DPlFIAAAAAFO6fVg8AAAAAwN9HKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABTuX0Et0uA0wLvBAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 1200x400 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# Create a figure with two subplots side by side\n",
    "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))  # 1 row, 2 columns, and an optional size specification\n",
    "\n",
    "# ACF plot in the first subplot\n",
    "plot_acf(dfEnergyAll['Lastgang'].dropna(), lags=50, ax=ax1)  # Autocorrelation plot for 'Lastgang' with 50 lags\n",
    "ax1.set_title('Autocorrelation Function (ACF) of Lastgang')  # Set title for the first subplot\n",
    "ax1.set_xlabel('Lags')  # Set x-label as 'Lags'\n",
    "ax1.set_ylabel('Autocorrelation')  # Set y-label as 'Autocorrelation'\n",
    "\n",
    "# PACF plot in the second subplot\n",
    "plot_pacf(dfEnergyAll['Lastgang'].dropna(), lags=50, ax=ax2)  # Partial autocorrelation plot for 'Lastgang' with 50 lags\n",
    "ax2.set_title('Partial Autocorrelation Function (PACF) of Lastgang')  # Set title for the second subplot\n",
    "ax2.set_xlabel('Lags')  # Set x-label as 'Lags'\n",
    "ax2.set_ylabel('Autocorrelation')  # Set y-label as 'Autocorrelation'\n",
    "\n",
    "# Adjust spacing between the plots\n",
    "plt.tight_layout()\n",
    "\n",
    "# Display the plots\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "a8e697f0-54a3-4854-82dd-2334582538a5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 3 - Data Scaling\n",
    "\n",
    "# Initialize the scalers\n",
    "lastgang_scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "features_scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "\n",
    "# Apply the scaler to the corresponding columns\n",
    "dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1))\n",
    "dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a436b9a-88ca-4642-9a8f-5e4f61d69c7e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 3 - Check the scaled values\n",
    "\n",
    "print(dfEnergyAll.describe())\n",
    "\n",
    "print(\"Skalierparameter für Lastgang:\", lastgang_scaler.scale_, lastgang_scaler.min_)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7c33eb1a-a633-499d-96cf-a5a5a6aa33b5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "CPU before model training:\n",
      "CPU Utilization: 98.6%\n",
      "RAM before model training:\n",
      "Total memory: 146.88 GB\n",
      "Available memory: 109.45 GB\n",
      "Used memory: 35.63 GB\n",
      "Memory usage: 25.5%\n"
     ]
    }
   ],
   "source": [
    "# Step 3 - Show GPU Utilization and Memory Usage before Model Training\n",
    "\n",
    "#def print_gpu_utilization():\n",
    "    # Retrieve and print GPU utilization and memory stats\n",
    " #   GPUs = GPUtil.getGPUs()\n",
    "  #  for GPU in GPUs:\n",
    "   #     print(f\"GPU: {GPU.name}, GPU RAM Free: {GPU.memoryFree}MB, Used: {GPU.memoryUsed}MB, Utilization: {GPU.load*100}%\")\n",
    "\n",
    "#print(\"GPU before model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n",
    "#print_gpu_utilization()\n",
    "\n",
    "# Function to print CPU utilization\n",
    "def print_cpu_utilization():\n",
    "    # Retrieve and print the percentage of CPU utilization\n",
    "    print(f\"CPU Utilization: {psutil.cpu_percent(interval=1)}%\")\n",
    "\n",
    "print(\"CPU before model training:\")\n",
    "print_cpu_utilization()\n",
    "\n",
    "def print_memory_usage():\n",
    "    # Retrieve and print memory statistics\n",
    "    memory = psutil.virtual_memory()\n",
    "    print(f\"Total memory: {memory.total / (1024**3):.2f} GB\")\n",
    "    print(f\"Available memory: {memory.available / (1024**3):.2f} GB\")\n",
    "    print(f\"Used memory: {memory.used / (1024**3):.2f} GB\")\n",
    "    print(f\"Memory usage: {memory.percent}%\")\n",
    "\n",
    "print(\"RAM before model training:\")\n",
    "print_memory_usage()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c181460f-7248-4672-b8a0-516e6e09fed7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RUNNING THE L-BFGS-B CODE\n",
      "\n",
      "           * * *\n",
      "\n",
      "Machine precision = 2.220D-16\n",
      " N =           12     M =           10\n",
      "\n",
      "At X0         0 variables are exactly at the bounds\n",
      "\n",
      "At iterate    0    f= -2.08057D+00    |proj g|=  1.19631D+03\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " This problem is unconstrained.\n"
     ]
    }
   ],
   "source": [
    "# Step 4 - Creating the SARIMAX model and generating predictions\n",
    "\n",
    "# Ensure the index is set as DatetimeIndex and has the correct frequency\n",
    "dfEnergyAll.index = pd.to_datetime(dfEnergyAll.index)  # Convert the index to datetime type\n",
    "dfEnergyAll = dfEnergyAll.asfreq('15T')  # Set the frequency of the DataFrame to every 15 minutes\n",
    "\n",
    "# Split the data into training and testing sets\n",
    "# Since you want to forecast 48 hours ahead (192 fifteen-minute intervals), take this into account when splitting\n",
    "train, test = train_test_split(dfEnergyAll, train_size=len(dfEnergyAll)-192)\n",
    "\n",
    "# Separate the target variable (Lastgang) and the exogenous variables\n",
    "y_train = train['Lastgang']  # Target variable for training\n",
    "X_train = train[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']]  # Exogenous variables for training\n",
    "# Only 1 external variable: , 'Lufttemperatur'\n",
    "\n",
    "y_test = test['Lastgang']  # Target variable for testing, used later for evaluation\n",
    "X_test = test[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']]  # Exogenous variables for testing, used for predictions\n",
    "# Only 1 external variable: , 'Lufttemperatur'\n",
    "\n",
    "# Define and fit the SARIMAX model\n",
    "# SARIMAX model with ARIMA(1,0,0) and seasonal order (1,0,0,96)\n",
    "model = sm.tsa.SARIMAX(y_train, exog=X_train, order=(1,0,0), seasonal_order=(1,0,0,96), enforce_stationarity=False, enforce_invertibility=False)\n",
    "results = model.fit()\n",
    "\n",
    "# Display the model summary\n",
    "print(results.summary())\n",
    "\n",
    "# Use the model for predictions\n",
    "predictions = results.get_forecast(steps=192, exog=X_test).predicted_mean  # Forecasting using the model\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ecc374bc-c312-4400-915d-96707c87ae49",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 5 - Rescaling, error metrics and visualization\n",
    "\n",
    "# Rescale predictions and review\n",
    "predictions_original_scale = lastgang_scaler.inverse_transform(predictions.to_numpy().reshape(-1, 1))  # Rescale the predictions to the original scale\n",
    "print(\"After rescaling (first 5 values):\", predictions_original_scale[:5])  # Print the first 5 rescaled prediction values\n",
    "\n",
    "# Rescale actual values and review\n",
    "y_test_original_scale = lastgang_scaler.inverse_transform(y_test.to_numpy().reshape(-1, 1))  # Rescale the actual values to the original scale\n",
    "print(\"Actual values after rescaling (first 5 values):\", y_test_original_scale[:5])  # Print the first 5 rescaled actual values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d272a1e2-4f7e-4840-81ed-0a1f5a462d46",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 5 - Rescaling, error metrics and visualization\n",
    "\n",
    "# Create a series for SARIMAX forecast results with timestamps\n",
    "sarimax_forecast_series = pd.Series(predictions, index=y_test.index)  # Initially store predictions in a series with the test set's timestamps\n",
    "\n",
    "# Create a series for SARIMAX forecast results with timestamps using rescaled predictions\n",
    "sarimax_forecast_series = pd.Series(predictions_original_scale.ravel(), index=y_test.index)  # Use rescaled predictions for the series\n",
    "\n",
    "# Calculate error metrics for SARIMAX model predictions\n",
    "mse = mean_squared_error(y_test_original_scale, sarimax_forecast_series)  # Calculate mean squared error\n",
    "mae = mean_absolute_error(y_test_original_scale, sarimax_forecast_series)  # Calculate mean absolute error\n",
    "rmse = np.sqrt(mse)  # Calculate root mean square error\n",
    "mape = np.mean(np.abs((y_test_original_scale.ravel() - sarimax_forecast_series) / y_test_original_scale.ravel())) * 100  # Calculate mean absolute percentage error\n",
    "\n",
    "# Output error metrics for SARIMAX model predictions\n",
    "print(f\"Mean Squared Error (MSE) for the last 2 days: {mse}\")\n",
    "print(f\"Mean Absolute Error (MAE) for the last 2 days: {mae}\")\n",
    "print(f\"Root Mean Square Error (RMSE) for the last 2 days: {rmse}\")\n",
    "print(f\"Mean Absolute Percentage Error (MAPE) for the last 2 days: {mape}%\")\n",
    "\n",
    "# Visualization\n",
    "plt.figure(figsize=(12, 6))\n",
    "plt.plot(y_test.index, y_test_original_scale, label='Actual Values', color='#3E7A6F')  # Plot actual values\n",
    "plt.plot(sarimax_forecast_series.index, sarimax_forecast_series, label='Predicted Values', color='#7DFFE7')  # Plot predicted values\n",
    "plt.legend()\n",
    "plt.title('Comparison of Actual and Predicted Values: SARIMAX over 48 Hours')\n",
    "plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H:%M'))  # Format the x-axis labels to show month-day and time\n",
    "plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3))  # Set major tick intervals on the x-axis\n",
    "plt.gcf().autofmt_xdate()  # Auto-format date labels for better readability\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40da38a3-6473-4dc2-9690-dcfa5ae27415",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 7 - Show GPU Utilization and Memory Usage after Model Training\n",
    "\n",
    "#print(\"GPU after model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")) # Print GPU utilization after model training\n",
    "#print_gpu_utilization() # Call function to print GPU utilization\n",
    "\n",
    "print(\"CPU after model training:\") # Print CPU utilization after model training\n",
    "print_cpu_utilization() # Call function to print CPU utilization\n",
    "\n",
    "print(\"RAM after model training:\") # Print RAM usage after model training\n",
    "print_memory_usage() # Call function to print RAM usage"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}