File size: 85,986 Bytes
c63f439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 |
{
"cells": [
{
"cell_type": "markdown",
"id": "24884304-ab6c-462a-bf6b-2a8abf74c9cc",
"metadata": {},
"source": [
"# SARIMAX for the prediction of energy consumption data over 48 hours"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05f2b198-d2f4-484b-8d63-5e590e3223b2",
"metadata": {},
"outputs": [],
"source": [
"#Install all required packages with 'conda install NAME' or with pip install NAME'\n",
"# pandas\n",
"# numpy\n",
"# matplotlib\n",
"# scikit-learn\n",
"# statsmodels\n",
"# pmdarima\n",
"# psutil"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ca3f47bb-e6ef-4a33-a60d-77c500a9c6ab",
"metadata": {},
"outputs": [],
"source": [
"#Import all required libraries\n",
"import sys # Provides access to some variables used or maintained by the interpreter\n",
"import pandas as pd # Library for data manipulation and analysis, ideal for working with structured data like tables\n",
"import numpy as np # For scientific computing, support for large, multi-dimensional arrays and matrices\n",
"import matplotlib.pyplot as plt # For creating static, interactive, and animated visualizations\n",
"import matplotlib.dates as mdates # Provides matplotlib with date-specific plotting tools\n",
"from sklearn.preprocessing import MinMaxScaler # For scaling and normalizing features, often useful in data preprocessing\n",
"from sklearn.metrics import mean_squared_error, mean_absolute_error # For calculating common statistical error metrics\n",
"import pmdarima as pm # For ARIMA modeling in Python, which simplifies the process of building ARIMA models\n",
"from pmdarima.model_selection import train_test_split # Provides model selection capabilities like train/test splits\n",
"import statsmodels.api as sm # Provides many statistical models and functions\n",
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # For plotting autocorrelation and partial autocorrelation charts\n",
"import psutil # For accessing system details and process utilities, helpful for monitoring system performance\n",
"from pathlib import Path # Used for filesystem path manipulation in an object-oriented way"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "88b3929e-0b04-4036-b43e-5738f74b2bc9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/sarah/anaconda3/envs/BT2024SARIMAModel/bin/python\n"
]
}
],
"source": [
"#To display the current environment\n",
"print(sys.executable)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ad3b8a68-11be-4cf0-9d33-dfcea476d122",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Erste und letzte Zeilen aus dfClimaAll:\n",
" dy Globalstrahlung_15Min Sonnenhöhe ExtraterrestrischeStrahlung \\\n",
"0 1 0 -65.0 0 \n",
"1 1 0 -65.0 0 \n",
"2 1 0 -65.4 0 \n",
"3 1 0 -65.5 0 \n",
"4 1 0 -65.2 0 \n",
"\n",
" StundenwertStrahlung Diffusstrahlung StrahlungGeneigteFläche \\\n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"2 0 0 0 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"\n",
" DiffusstrahlungGeneigteFläche Direktnormalstrahlung Lufttemperatur \\\n",
"0 0 0 9.2 \n",
"1 0 0 9.2 \n",
"2 0 0 9.2 \n",
"3 0 0 9.2 \n",
"4 0 0 9.1 \n",
"\n",
" Windgeschwindigkeit Schönwetterstrahlung Taupunkttemperatur TheorPVProd \\\n",
"0 1.8 0 7.9 0 \n",
"1 1.8 0 7.9 0 \n",
"2 1.8 0 7.9 0 \n",
"3 1.8 0 7.9 0 \n",
"4 1.8 0 7.8 0 \n",
"\n",
" TimestampWeather \n",
"0 2023-01-01 00:00:00 \n",
"1 2023-01-01 00:15:00 \n",
"2 2023-01-01 00:30:00 \n",
"3 2023-01-01 00:45:00 \n",
"4 2023-01-01 01:00:00 \n",
" dy Globalstrahlung_15Min Sonnenhöhe ExtraterrestrischeStrahlung \\\n",
"35035 365 0 -56.5 0 \n",
"35036 365 0 -58.5 0 \n",
"35037 365 0 -60.3 0 \n",
"35038 365 0 -61.9 0 \n",
"35039 365 0 -63.3 0 \n",
"\n",
" StundenwertStrahlung Diffusstrahlung StrahlungGeneigteFläche \\\n",
"35035 0 0 0 \n",
"35036 0 0 0 \n",
"35037 0 0 0 \n",
"35038 0 0 0 \n",
"35039 0 0 0 \n",
"\n",
" DiffusstrahlungGeneigteFläche Direktnormalstrahlung Lufttemperatur \\\n",
"35035 0 0 5.5 \n",
"35036 0 0 5.5 \n",
"35037 0 0 5.5 \n",
"35038 0 0 5.5 \n",
"35039 0 0 4.9 \n",
"\n",
" Windgeschwindigkeit Schönwetterstrahlung Taupunkttemperatur \\\n",
"35035 2.4 0 -18.2 \n",
"35036 2.4 0 -18.2 \n",
"35037 2.4 0 -18.2 \n",
"35038 2.4 0 -18.2 \n",
"35039 1.8 0 -14.0 \n",
"\n",
" TheorPVProd TimestampWeather \n",
"35035 0 2023-12-31 22:45:00 \n",
"35036 0 2023-12-31 23:00:00 \n",
"35037 0 2023-12-31 23:15:00 \n",
"35038 0 2023-12-31 23:30:00 \n",
"35039 0 2023-12-31 23:45:00 \n",
"Anzahl fehlender Werte pro Spalte:\n",
"dy 0\n",
"Globalstrahlung_15Min 0\n",
"Sonnenhöhe 0\n",
"ExtraterrestrischeStrahlung 0\n",
"StundenwertStrahlung 0\n",
"Diffusstrahlung 0\n",
"StrahlungGeneigteFläche 0\n",
"DiffusstrahlungGeneigteFläche 0\n",
"Direktnormalstrahlung 0\n",
"Lufttemperatur 0\n",
"Windgeschwindigkeit 0\n",
"Schönwetterstrahlung 0\n",
"Taupunkttemperatur 0\n",
"TheorPVProd 0\n",
"TimestampWeather 0\n",
"dtype: int64\n",
"Anzahl der Zeilen in dfClimaAll: 35040\n"
]
}
],
"source": [
"# Step 1 - Reading Data\n",
"\n",
"## dfClimaAll: Data from 2021-2023\n",
"## dfEnergyAll: All data from the transformer station from 2021-2023\n",
"\n",
"# Load data for 2021\n",
"dfClima21 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2021TimeWeather.xlsx')\n",
"\n",
"# Load data for 2022\n",
"dfClima22 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2022TimeWeather.xlsx')\n",
"\n",
"# Load data for 2023\n",
"dfClima23 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2023TimeWeather.xlsx')\n",
"\n",
"# Merge the DataFrames\n",
"#Only DF23\n",
"dfClimaAll = dfClima23.copy()\n",
"#All DFs:\n",
"#dfClimaAll = pd.concat([dfClima21, dfClima22, dfClima23])\n",
"\n",
"# Check the resulting DataFrame\n",
"print(\"First and last rows from dfClimaAll:\")\n",
"print(dfClimaAll.head())\n",
"print(dfClimaAll.tail())\n",
"\n",
"# Check for missing values in each column\n",
"## .isnull(): Returns DF where values with NaN are replaced by True & values without NaN are replaced by False\n",
"## sum(): Sums up the number of True values\n",
"print(\"Number of missing values per column:\")\n",
"print(dfClimaAll.isnull().sum())\n",
"\n",
"# Convert 'Timestamp' into a Datetime object and set it as index, if not already set\n",
"if 'TimestampWeather' in dfClimaAll.columns:\n",
" ## pd.to_datetime: Converts values into Datetime objects —> Pandas can then treat these as timestamps\n",
" dfClimaAll['TimestampWeather'] = pd.to_datetime(dfClimaAll['TimestampWeather'])\n",
" ## set_index: Sets index for the Timestamp column to facilitate access to data based on time points\n",
" dfClimaAll = dfClimaAll.set_index('TimestampWeather')\n",
"\n",
"# Number of rows in dfClimaAll\n",
"print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0a4710d5-06ed-4ab1-b396-66797786f0fa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Erste und letzte Zeilen aus dfEnergyAll:\n",
" Lastgang\n",
"Timestamp \n",
"2023-01-01 00:00:00 657.35\n",
"2023-01-01 00:15:00 677.68\n",
"2023-01-01 00:30:00 644.91\n",
"2023-01-01 00:45:00 656.67\n",
"2023-01-01 01:00:00 660.77\n",
" Lastgang\n",
"Timestamp \n",
"2023-12-31 22:45:00 833.17\n",
"2023-12-31 23:00:00 767.89\n",
"2023-12-31 23:15:00 770.04\n",
"2023-12-31 23:30:00 730.45\n",
"2023-12-31 23:45:00 744.21\n",
"Anzahl der Zeilen in dfEnergyAll: 35036\n"
]
}
],
"source": [
"# Step 1 - Reading Data\n",
"\n",
"## dfClimaAll: Data from 2021-2023\n",
"## dfEnergyAll: All data from the transformer station from 2021-2023\n",
"\n",
"# Path to the directory containing the Excel files\n",
"directory_path = Path('/home/sarah/Documents/BT2024/2023')\n",
"\n",
"# Create a list of all Excel files in the directory\n",
"file_paths = list(directory_path.glob('*.xlsx'))\n",
"\n",
"# List to store the individual DataFrames\n",
"dfs = []\n",
"\n",
"# Loop over all file paths\n",
"for file_path in file_paths:\n",
" # Read the Excel file\n",
" df = pd.read_excel(file_path)\n",
" \n",
" # Convert the 'Timestamp' column into a datetime\n",
" df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n",
" \n",
" # Convert the 'Lastgang' column into a numeric data type, treating errors as NaN\n",
" df['Lastgang'] = pd.to_numeric(df['Lastgang'], errors='coerce')\n",
" \n",
" # Sort the DataFrame by the 'Timestamp'\n",
" df = df.sort_values(by='Timestamp')\n",
" \n",
" # Perform linear interpolation for the 'Lastgang' on the individual DataFrame\n",
" df['Lastgang'] = df['Lastgang'].interpolate(method='linear')\n",
" \n",
" # Add the DataFrame to the list\n",
" dfs.append(df)\n",
"\n",
"# Merge all DataFrames in the list\n",
"dfEnergyAll = pd.concat(dfs).set_index('Timestamp')\n",
"\n",
"# Sum the Lastgang values for identical timestamps\n",
"dfEnergyAll = dfEnergyAll.groupby('Timestamp').sum()\n",
"\n",
"# Check the resulting DataFrame\n",
"print(\"First and last rows from dfEnergyAll:\")\n",
"print(dfEnergyAll.head())\n",
"print(dfEnergyAll.tail())\n",
"\n",
"# Display the number of rows in dfEnergyAll\n",
"print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dda00bbf-4a50-45f8-8c98-c29eff6bf793",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Fehlende Zeitstempel in dfEnergyAll:\n",
"DatetimeIndex(['2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
" '2023-03-26 02:30:00', '2023-03-26 02:45:00'],\n",
" dtype='datetime64[ns]', name='Timestamp', freq=None)\n",
"Überprüfen nach dem Ergänzen der fehlenden Zeitstempel:\n",
" Lastgang\n",
"2023-03-26 02:00:00 520.34\n",
"2023-03-26 02:15:00 520.34\n",
"2023-03-26 02:30:00 520.34\n",
"2023-03-26 02:45:00 520.34\n",
"Anzahl der Zeilen in dfClima21: 35040\n",
"Anzahl der Zeilen in dfEnergyAll: 35040\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1561988/424088960.py:29: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# Create a complete timestamp index for the years 2023 in 15-minute intervals\n",
"all_timestamps = pd.date_range(start='2023-01-01 00:00:00', end='2023-12-31 23:45:00', freq='15T')\n",
"\n",
"# Convert this into a DataFrame\n",
"df_all_timestamps = pd.DataFrame(all_timestamps, columns=['Timestamp'])\n",
"df_all_timestamps = df_all_timestamps.set_index('Timestamp')\n",
"\n",
"# Compare the complete timestamp index with dfEnergyAll\n",
"missing_timestamps = df_all_timestamps.index.difference(dfEnergyAll.index)\n",
"\n",
"print(\"Missing timestamps in dfEnergyAll:\")\n",
"print(missing_timestamps)\n",
"\n",
"\n",
"# Missing timestamps\n",
"missing_timestamps = pd.DatetimeIndex(['2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
" '2023-03-26 02:30:00', '2023-03-26 02:45:00'])\n",
"\n",
"# Create a DataFrame with the missing timestamps\n",
"df_missing = pd.DataFrame(index=missing_timestamps)\n",
"\n",
"# Merge this DataFrame with the original DataFrame\n",
"dfEnergyAll = dfEnergyAll.combine_first(df_missing)\n",
"\n",
"# Fill the missing values. Use 'ffill' for forward fill.\n",
"dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n",
"\n",
"print(\"Check after adding the missing timestamps:\")\n",
"print(dfEnergyAll.loc[missing_timestamps])\n",
"\n",
"# Number of rows in dfClima21\n",
"# Ensure dfClima21 is already defined before executing this line.\n",
"print(\"Number of rows in dfClima21:\", dfClimaAll.shape[0])\n",
"\n",
"# Number of rows in dfEnergyAll\n",
"print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d7e1513e-2337-45c7-92b9-82db88714c50",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Anzahl fehlender Werte pro Spalte:\n",
"Lastgang 0\n",
"StundenwertStrahlung 0\n",
"Globalstrahlung_15Min 0\n",
"StrahlungGeneigteFläche 0\n",
"TheorPVProd 0\n",
"Direktnormalstrahlung 0\n",
"Schönwetterstrahlung 0\n",
"Lufttemperatur 0\n",
"dtype: int64\n",
"Erste Zeilen aus dfEnergyAll-Bearbeitet:\n",
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2023-01-01 00:00:00 657.35 0 0 \n",
"2023-01-01 00:15:00 677.68 0 0 \n",
"2023-01-01 00:30:00 644.91 0 0 \n",
"2023-01-01 00:45:00 656.67 0 0 \n",
"2023-01-01 01:00:00 660.77 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2023-01-01 00:00:00 0 0 \n",
"2023-01-01 00:15:00 0 0 \n",
"2023-01-01 00:30:00 0 0 \n",
"2023-01-01 00:45:00 0 0 \n",
"2023-01-01 01:00:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2023-01-01 00:00:00 0 0 \n",
"2023-01-01 00:15:00 0 0 \n",
"2023-01-01 00:30:00 0 0 \n",
"2023-01-01 00:45:00 0 0 \n",
"2023-01-01 01:00:00 0 0 \n",
"\n",
" Lufttemperatur \n",
"2023-01-01 00:00:00 9.2 \n",
"2023-01-01 00:15:00 9.2 \n",
"2023-01-01 00:30:00 9.2 \n",
"2023-01-01 00:45:00 9.2 \n",
"2023-01-01 01:00:00 9.1 \n",
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2023-12-31 22:45:00 833.17 0 0 \n",
"2023-12-31 23:00:00 767.89 0 0 \n",
"2023-12-31 23:15:00 770.04 0 0 \n",
"2023-12-31 23:30:00 730.45 0 0 \n",
"2023-12-31 23:45:00 744.21 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2023-12-31 22:45:00 0 0 \n",
"2023-12-31 23:00:00 0 0 \n",
"2023-12-31 23:15:00 0 0 \n",
"2023-12-31 23:30:00 0 0 \n",
"2023-12-31 23:45:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2023-12-31 22:45:00 0 0 \n",
"2023-12-31 23:00:00 0 0 \n",
"2023-12-31 23:15:00 0 0 \n",
"2023-12-31 23:30:00 0 0 \n",
"2023-12-31 23:45:00 0 0 \n",
"\n",
" Lufttemperatur \n",
"2023-12-31 22:45:00 5.5 \n",
"2023-12-31 23:00:00 5.5 \n",
"2023-12-31 23:15:00 5.5 \n",
"2023-12-31 23:30:00 5.5 \n",
"2023-12-31 23:45:00 4.9 \n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# To check if the indexes in both DataFrames are set equally\n",
"dfClimaAll.index.equals(dfEnergyAll.index)\n",
"\n",
"# Adding the columns from dfClima21 to dfEnergyAll\n",
"dfEnergyAll = dfEnergyAll.join(dfClimaAll[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur']])\n",
"\n",
"# Checking for missing values in each column\n",
"print(\"Number of missing values per column:\")\n",
"print(dfEnergyAll.isnull().sum())\n",
"\n",
"# Printing the first and last rows from the dataframe\n",
"print(\"First and last rows from dfEnergyAll-Edited:\")\n",
"print(dfEnergyAll.head())\n",
"print(dfEnergyAll.tail())"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e33a35b4-0b2d-41d0-9be7-5ed46491538b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2023-01-01 00:00:00 657.35 0 0 \n",
"2023-01-01 00:15:00 677.68 0 0 \n",
"2023-01-01 00:30:00 644.91 0 0 \n",
"2023-01-01 00:45:00 656.67 0 0 \n",
"2023-01-01 01:00:00 660.77 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2023-01-01 00:00:00 0 0 \n",
"2023-01-01 00:15:00 0 0 \n",
"2023-01-01 00:30:00 0 0 \n",
"2023-01-01 00:45:00 0 0 \n",
"2023-01-01 01:00:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2023-01-01 00:00:00 0 0 \n",
"2023-01-01 00:15:00 0 0 \n",
"2023-01-01 00:30:00 0 0 \n",
"2023-01-01 00:45:00 0 0 \n",
"2023-01-01 01:00:00 0 0 \n",
"\n",
" Lufttemperatur Lastgang_Moving_Average \\\n",
"2023-01-01 00:00:00 9.2 707.704792 \n",
"2023-01-01 00:15:00 9.2 707.704792 \n",
"2023-01-01 00:30:00 9.2 707.704792 \n",
"2023-01-01 00:45:00 9.2 707.704792 \n",
"2023-01-01 01:00:00 9.1 707.704792 \n",
"\n",
" Lastgang_First_Difference \n",
"2023-01-01 00:00:00 20.33 \n",
"2023-01-01 00:15:00 20.33 \n",
"2023-01-01 00:30:00 -32.77 \n",
"2023-01-01 00:45:00 11.76 \n",
"2023-01-01 01:00:00 4.10 \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1561988/3400565057.py:13: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# Calculating the moving average for 'Lastgang'\n",
"window_size = 96 # This corresponds to 24 hours at 15-minute intervals\n",
"dfEnergyAll['Lastgang_Moving_Average'] = dfEnergyAll['Lastgang'].rolling(window=window_size).mean()\n",
"\n",
"# Calculating the first differences for 'Lastgang'\n",
"dfEnergyAll['Lastgang_First_Difference'] = dfEnergyAll['Lastgang'].diff()\n",
"\n",
"# Since the first `window_size - 1` values of the moving average will be NaN and the first value of the first difference will be NaN, fill these values.\n",
"dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n",
"\n",
"# To check the first few rows to ensure the new features look as expected.\n",
"print(dfEnergyAll.head())"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "326e34ca-5066-464d-9e84-b1da0b22f755",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAGGCAYAAACqvTJ0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACNt0lEQVR4nOzdeXwM5x8H8M8kks1BViRySSShriCKVIQqSkIcRRHaSlHVQ1tVPdDL0V8btHW2qJYGVaIN6iaulAoVZymKOhISR+QSOSR5fn+kO7LZI7uy2Rw+79drX8nOPjP7zOzOzHe++8zzSEIIASIiIiIiIiIiIjOyqOgKEBERERERERHRo4dJKSIiIiIiIiIiMjsmpYiIiIiIiIiIyOyYlCIiIiIiIiIiIrNjUoqIiIiIiIiIiMyOSSkiIiIiIiIiIjI7JqWIiIiIiIiIiMjsmJQiIiIiIiIiIiKzY1KKiIiIiIiIiIjMjkkpMql58+ZBkiS0aNGizMvasmULpkyZUqZl+Pj4oE+fPmWuS3m7fPkyJElCZGSk0fNev34dU6ZMwfHjxzVemzJlCiRJKnsFTSAqKgrNmzeHra0tJEnSWl9TGDFiBGrWrFlquQULFmjd3mX5LEzlpZdeQs+ePbW+9tdff0GSJFhZWSEpKUnnMjIyMvD5558jICAADg4OUCgU8PHxwUsvvYSjR4/K5SIjIyFJktbHe++9BwC4f/8+GjZsiDlz5pRpvfbu3QtJkrB3794yLccYqvWLj483y/vp2x+JyHxKHttq1KgBT09PjBw5EteuXTPpe33xxRdYv369xvSyHPO0zVue5/QNGzZAkiQ4OTkhNze3TMs6cOAApkyZgrS0tIdeRpcuXUwSS5qDJEkPFa/eu3cPU6ZM0fr9UH1/L1++XOb6ldWuXbsQEBAAe3t7SJKk9btuCqrv9+3bt/WW+/nnn3XGIw/7WZjKtGnT4Ofnh8LCQrU6FX8olUp06dIFmzdv1pj/9u3bUCgUpcYtubm5+Oabb/Dkk0/C0dER1tbWqFevHsLCwhAbGyuXUx1HtD0GDRokl3vqqacwbty4Mq17RcTPqvX79ddfzfJ++vZZKhsmpcikli5dCgA4ffo0Dh06VKZlbdmyBVOnTjVFtaq169evY+rUqVovgl9++WXExcWZv1Il3Lp1C+Hh4WjYsCG2bduGuLg4NG7cuELrpCsp5e7ujri4OPTu3dv8lQJw7NgxLFu2DP/73/+0vv7DDz8AAPLz87F8+XKtZS5evIjWrVtj+vTp6Nq1K1atWoUdO3Zg6tSpuHHjBtq2bYv09HS1eX788UfExcWpPcaOHQsAsLKywqeffopp06YhJSXFhGtb/ejbH4nI/FTHtpiYGIwePRqrVq1Cp06dkJWVZbL30JWUatOmDeLi4tCmTRuTvVd5WbJkCQDgzp07ZU46HDhwAFOnTi1TUupRcO/ePUydOlXrBW7v3r0RFxcHd3d381esGCEEwsLCYGVlhQ0bNiAuLg6dO3eu0DrpS0rFxcXh5ZdfNm+F/nP9+nXMnDkT06ZNg4WF+iX2oEGDEBcXhz/++APffvstkpOT0bdvX43E1IoVK5CXlwfgwT5Z0u3bt9GxY0eMHz8eLVq0QGRkJHbt2oWvv/4alpaW6NatG06cOKE2zxdffKER40VERMivf/bZZ1iwYAHOnTtnik1RbenbZ6lsalR0Baj6iI+Px4kTJ9C7d29s3rwZS5YsQWBgYEVXq1zdu3cPdnZ2GtOFEMjJyYGtrW0F1OoBT09PeHp6VmgdAOCff/7B/fv3MWzYsAoPZkqjUCjQvn37Cnv/6dOno127dggICNB4LTc3FytXrkSrVq1w+/ZtLF26FBMmTFArU1BQgAEDBuD27duIi4tT+6W5c+fOGD58OLZu3QorKyu1+Vq0aKH1PVWee+45jB8/Ht999x0+/PDDMq4lEZF5FD+2de3aFQUFBfjss8+wfv16vPDCC2VadnZ2tt7zvIODQ4WeTwyVnJyMLVu24Omnn8aBAwewZMkSDBkypKKrVa50xW9A6Z+rOdStWxd169at0DoARYmWO3fuYMCAAejWrVtFV6dUFbm/zZ07F7Vr18azzz6r8Zqrq6tctw4dOiAoKAiPPfYY5syZo/Yj6NKlS+Hi4gJvb2+sWrUKs2bN0vguvvjiizhx4gS2b9+Op59+Wu21oUOHYvz48XB0dFSb3qhRI73bpnPnzmjSpAm+/vprLF682Oh1JyortpQik1Fl9KdPn44OHTpg9erVuHfvnloZXU3ZSzb5HDFiBL799lsA6s1eVc2Yc3JyMGnSJPj6+spNVt944w2DfpVbsGABatSogcmTJ8vTli5dilatWsHGxgZ16tTBgAEDcObMGbX5VLeF/fXXXwgJCUGtWrXkE7QkSXjzzTexaNEiNGvWDAqFAsuWLQMAnD9/Hs8//zxcXFygUCjQrFkzed30uXDhAkaOHIlGjRrBzs4O9erVQ9++ffHXX3+pbc8nnngCADBy5Eh5O6maLmtr6l9YWIiZM2eiadOmUCgUcHFxwYsvvojExES1cqqm84cPH0anTp1gZ2eHBg0aYPr06WrNkgsLC/G///0PTZo0ga2tLWrXrg1/f3/MnTtX3m5PPvkkAGDIkCGQJAldunSR30P1f8lt7ePjIz9XfT+++uorzJo1C76+vqhZsyaCgoJw8ODBUrflH3/8AWdnZ/Tp0wdZWVnw8fHB6dOnERsbK28z1fvpan68f/9+dOvWDbVq1YKdnR06dOig8QuXqrn9nj178Prrr8PZ2RlOTk549tlncf369VLreePGDaxbtw7h4eFaX1+/fj1SUlLw8ssvY/jw4fjnn3+wf/9+jTJ//fUXJk2apPPWh9DQUJ3BuC7W1tYYMmQIFi9eDCFEqeXPnj2Lnj17ws7ODs7OznjttdeQmZmptezOnTvRrVs3ODg4wM7ODh07dsSuXbvUyty6dQuvvPIKvLy8oFAoULduXXTs2BE7d+40aj20ycnJwbvvvovHH38cSqUSderUQVBQEH777TeNsr/88gsCAwOhVCrlfeKll14CUPr+CADff/89GjduDIVCAT8/P/z8888a33cAmDp1KgIDA1GnTh04ODigTZs2WLJkica2V92ivG3bNrRp0wa2trZo2rSp3Gq1uP379yMoKAg2NjaoV68ePvnkE/zwww8at4js3r0bXbp0gZOTE2xtbVG/fn0MHDhQ43hOVBWpLsyuXLkCwPh9be3atWjdujVsbGwwdepUSJKErKwsLFu2TN7nVec1XTFPfHw8nnnmGdSpUwc2NjZo3bo11qxZ89DrFBUVhaCgINjb26NmzZro0aMHjh07ZvD8y5YtQ35+Pt555x08++yz2LVrl7x9VPTdmlMy7nj//fcBAL6+vvI2UW0DQ2MQbdatWwc7Ozu8/PLLyM/PB1B022FQUBDs7OxQq1YtBAcHa7QQV8VCR48exaBBg+Do6IiGDRsC0P25AkXJuldffRWenp6wtraGr68vpk6dKr+3Lrdu3cKYMWPg5+eHmjVrwsXFBU8//TT27duntj1VSSfV90iSJIwYMQKA7tv3jIlXL1y4gF69eqFmzZrw8vLCu+++q3Fr5sKFC9GqVSvUrFkTtWrVQtOmTeUfnqZMmSL/sDlhwgS1WEnbeav4ti5OFSOvWLECzZo1g52dHVq1aoVNmzbp3Y5AUSzRoEEDBAYG4ubNm/Jtb1euXFG7Pij+XiVv3zt16hT69esHR0dH2NjY4PHHH5djdBXVvrpq1Sp89NFH8PDwgIODA7p3725Q66G8vDwsWbIEzz//vEYrKW0aNmyIunXrqu1nhw4dwqlTpxAeHo7Ro0cjPT0d0dHRavMdOXIEW7duxahRozQSUipPPPEE6tevX2odSgoPD8fPP/+sM1Yr7vr16wgLC0OtWrWgVCoxZMgQJCcnay1ryPHu3r17eO+99+Dr6yt/twMCArBq1Sqj10MbQ4/z+uKf0vZZAPjtt9/g7+8PhUKBBg0aYO7cuVr3iW+//RZPPfUUXFxcYG9vj5YtW2LmzJm4f/++WjlDr8WAoruUQkJCYGdnh7p16+KNN97A5s2bNc5Bx44dQ58+feTrUg8PD/Tu3dugY3C5EkQmcO/ePaFUKsUTTzwhhBDihx9+EABEZGSkWrk9e/YIAGLPnj1q0y9duiQAiB9//FEIIcSFCxfEoEGDBAARFxcnP3JyckRhYaHo0aOHqFGjhvjkk0/Ejh07xFdffSXs7e1F69atRU5Ojrxcb29v0bt3byGEEIWFheLdd98VVlZW8vsIIcQXX3whAIjnnntObN68WSxfvlw0aNBAKJVK8c8//8jlhg8fLqysrISPj4+IiIgQu3btEtu3bxdCCAFA1KtXT/j7+4uff/5Z7N69W5w6dUqcPn1aKJVK0bJlS7F8+XKxY8cO8e677woLCwsxZcoUnesvhBCxsbHi3XffFb/++quIjY0V69atE/379xe2trbi7NmzQggh0tPTxY8//igAiI8//ljeTgkJCUIIISZPnixK7uavvPKKACDefPNNsW3bNrFo0SJRt25d4eXlJW7duiWX69y5s3BychKNGjUSixYtEjExMWLMmDECgFi2bJlcLiIiQlhaWorJkyeLXbt2iW3btok5c+bI63fhwgXx7bffCgDiiy++EHFxceL06dPye3Tu3Fnj+zR8+HDh7e2tsX18fHxEz549xfr168X69etFy5YthaOjo0hLS1Ob197eXn4eFRUlFAqFeP3110V+fr4QQoijR4+KBg0aiNatW8vb7OjRozo/i7179worKyvRtm1bERUVJdavXy9CQkKEJEli9erVcjnVZ9GgQQPx1ltvie3bt4sffvhBODo6iq5du2qsZ0nLly8XAMTff/+t9fXg4GChUCjEnTt3xIULF4QkSWLEiBFqZVSf75kzZ0p9v+J1PnjwoLh//77ao6SoqCgBQJw8eVLvMpOTk4WLi4uoV6+e+PHHH8WWLVvECy+8IOrXr6+x/69YsUJIkiT69+8v1q5dKzZu3Cj69OkjLC0txc6dO+VyPXr0EHXr1hWLFy8We/fuFevXrxeffvqp2vbXt36HDx/WWSYtLU2MGDFCrFixQuzevVts27ZNvPfee8LCwkLtu37gwAEhSZIYOnSo2LJli9i9e7f48ccfRXh4uBCi9P3xu+++EwDEwIEDxaZNm8TKlStF48aNhbe3t9r3XQghRowYIZYsWSJiYmJETEyM+Oyzz4Stra2YOnWqWjlvb2/h6ekp/Pz8xPLly8X27dvF4MGDBQARGxsrlztx4oSwsbER/v7+YvXq1WLDhg2iV69ewsfHRwAQly5dEkIUff9tbGxEcHCwWL9+vdi7d69YuXKlCA8PF6mpqXq3NVFlomvfnzt3rgAgFi9eLIQwbl9zd3cXDRo0EEuXLhV79uwRf/75p4iLixO2traiV69e8j6vOsdpi3l2794trK2tRadOnURUVJTYtm2bGDFihMZ5R9u82s7pn3/+uZAkSbz00kti06ZNYu3atSIoKEjY29vL9ShN48aNhbu7u8jPzxc7d+4UANRiFCG0nxtVAIjJkycLIYRISEgQb731lgAg1q5dK2+T9PR0IYRxMUjz5s3l57NmzRKWlpbis88+k6etXLlSABAhISFi/fr1IioqSrRt21ZYW1uLffv2aWw3b29vMWHCBBETEyPWr18vhND9uSYlJQkvLy/h7e0tvvvuO7Fz507x2WefCYVCoXHeLb7+Qghx9uxZ8frrr4vVq1eLvXv3ik2bNolRo0YJCwsL+fPMyckR27ZtEwDEqFGj5O104cIFIcSD76/q2CyEcfGqtbW1aNasmfjqq6/Ezp07xaeffiokSVL7Xq9atUoAEG+99ZbYsWOH2Llzp1i0aJEYO3as/FmuXbtWLlM8VioZp5Xc1iW3j4+Pj2jXrp1Ys2aN2LJli+jSpYuoUaOGuHjxosa8qu/B3r17haOjo+jXr5/IysoSQghx+vRp0bFjR+Hm5qZ2faDvs6hVq5Zo2LChWL58udi8ebN47rnnBAAxY8YMuZxqf/Px8REvvPCC2Lx5s1i1apWoX7++aNSokRw/6vL7778LAGLLli0arwEQb7zxhtq0O3fuCAsLC9GhQwd52ujRowUAcfr0aZGRkSHs7OxEly5d1OZTfQe2bt2qtz4l1ysqKqrUGO/QoUMCgNiwYYPeZd67d080a9ZMKJVKMX/+fLF9+3YxduxYOcYrfoww9Hj36quvCjs7OzFr1iyxZ88esWnTJjF9+nQxf/58g9bvl19+0VvOkON8afFPafvs1q1bhYWFhejSpYtYt26d+OWXX0RgYKAcZxX3zjvviIULF4pt27aJ3bt3i9mzZwtnZ2cxcuRItXKGXotdv35dODk5ifr164vIyEixZcsWER4eLr+36rhz9+5d4eTkJAICAsSaNWtEbGysiIqKEq+99prOaw9zYVKKTEJ1Mb1o0SIhhBCZmZmiZs2aolOnTmrlDE1KCSHEG2+8obETCyHkA8LMmTPVpqsumFWBphAPklL37t0TAwcOFEqlUu1CNzU1VQ4mi7t69apQKBTi+eefl6cNHz5cABBLly7VqBMAoVQqxZ07d9Sm9+jRQ3h6esrBmMqbb74pbGxs5PL6gj2V/Px8kZeXJxo1aiTeeecdefrhw4d1zlsyODhz5owAIMaMGaNWTnUi+vDDD+VpnTt3FgDEoUOH1Mr6+fmJHj16yM/79OkjHn/8cZ31FkL3ScPYpFTLli3VAoM///xTABCrVq1Sm1eVlJo+fbqwtLRUCzxUmjdvrvW9tX0W7du3Fy4uLiIzM1Oelp+fL1q0aCE8PT1FYWGhEOJBEFly+86cOVMAEElJSZobp5jXX39d2Nrayssr7vLly8LCwkIMHTpUnta5c2dhb28vMjIy5Gk9e/YUANSSs/qo6qztUTJoOX/+vAAgFi5cqHeZEyZMEJIkiePHj6tNDw4OVtv/s7KyRJ06dUTfvn3VyhUUFIhWrVqJdu3aydNq1qwpxo0bZ9A6aVs/fUmpkvLz88X9+/fFqFGjROvWreXpX331lQCglgQtSdf+WFBQINzc3ERgYKDa9CtXrggrKyutwX3xee/fvy+mTZsmnJyc1L4f3t7ewsbGRly5ckWelp2dLerUqSNeffVVedrgwYOFvb292kVfQUGB8PPzU7vw+fXXXwUAjc+OqKopmXDPzMwUmzZtEnXr1hW1atUSycnJGvOUtq9ZWlqKc+fOacxnb28vhg8frjFdW8zTtGlT0bp1a43ja58+fYS7u7soKCjQOW/Jc/rVq1dFjRo1xFtvvaW2rMzMTOHm5ibCwsL0biMhHlxMT5w4UQhR9AOer6+v8Pb2Vlt/Q5NSQgjx5ZdfaiRUhDA+BmnevLkoKCgQb775prC2thY//fST/HpBQYHw8PAQLVu2lLeZat1dXFzULvZV2+3TTz/VqLuuz/XVV18VNWvWVDu2CvHgPFA84Vdy/UtSnVO6desmBgwYIE+/deuWznlLJqUeJl5ds2aNWtlevXqJJk2ayM/ffPNNUbt2bZ31FuLB5/7ll1+qTTc2KeXq6qoWqyQnJwsLCwsRERGhMe+tW7fEihUrhLW1tRg7dqza5yuEEL1799Z5ziy5PYcOHSoUCoW4evWqWrnQ0FBhZ2cnn89V+1vJ7btmzRr5B3J9ZsyYIQBoPa6ovvP3798XeXl54syZMyI0NFQAEN9++60QoigecnBwEO3bt5fnGz58uJAkSU56CCHEa6+9JgDIP06XRrVe2h7nz59XK5uXlyckSRITJkzQu8yFCxcKAOK3335Tm65KqhU/Rhh6vGvRooXo37+/Qeukbf1KS0oVp+s4b0j8o2+ffeKJJ4SXl5fIzc2Vp2VmZgonJyet17Ml67N8+XJhaWmpdi1p6LXY+++/LyRJ0vghokePHmrnkfj4eAFATspXJrx9j0xiyZIlsLW1xdChQwEANWvWxODBg7Fv3z6cP3/epO+1e/duAFBrLgkAgwcPhr29vcZtPykpKXj66afx559/yrdgqcTFxSE7O1tjWV5eXnj66ac1lgUAAwcO1Fqvp59+Wu0e7pycHOzatQsDBgyAnZ0d8vPz5UevXr2Qk5Oj99az/Px8fPHFF/Dz84O1tTVq1KgBa2trnD9/XqOptqH27NkDQHPbtWvXDs2aNdNYXzc3N7Rr105tmr+/v1pz43bt2uHEiRMYM2YMtm/fjoyMjIeqmyF69+4NS0tLtboA0LjNQAiBV199FZMnT8bPP/+MDz744KHfMysrC4cOHcKgQYPURvWztLREeHg4EhMTNZp2P/PMM2rPddWzpOvXr6Nu3bpaR1f68ccfUVhYKN8qBhSN0peVlYWoqCij16uk5cuX4/Dhw2qPGjXUux10cXEBgFJHrtqzZw+aN2+OVq1aqU1//vnn1Z4fOHAAd+7cwfDhw9X2j8LCQvTs2ROHDx+WOyNu164dIiMj8b///Q8HDx7UaOJcVr/88gs6duyImjVrokaNGrCyssKSJUvU9jXVrXlhYWFYs2aNUSN4nTt3DsnJyQgLC1ObXr9+fXTs2FGj/O7du9G9e3colUpYWlrKnc2npKTg5s2bamUff/xxtab6NjY2aNy4sdr3LTY2Fk8//TScnZ3laRYWFhr1efzxx2FtbY1XXnkFy5Ytw7///mvwOhJVRu3bt4eVlRVq1aqFPn36wM3NDVu3boWrqysA4/Y1f3//Mg3SceHCBZw9e1buy6pkXJCUlGRUR8Pbt29Hfn4+XnzxRbVl2djYoHPnzgZ1xqvqekF1blHdjnLlyhWtMVBZGBuD5OTkoH///li5ciV27Nih1gfYuXPncP36dYSHh6vdLlWzZk0MHDgQBw8e1LjlWFf8pu1z3bRpE7p27QoPDw+1bRsaGgoAaiOcabNo0SK0adMGNjY28jll165dDx2/GRuvSpKEvn37aqxnyfgtLS0Nzz33HH777bdSR70ri65du6JWrVryc1dXV7i4uGiNiz7//HOMGDEC06dPx9y5cw26HU6X3bt3o1u3bvDy8lKbPmLECNy7d0/jVs+yxG+SJKmdY4tbsGABrKysYG1tjWbNmuHAgQOYNm0axowZAwBYs2YNMjIyNGI8IQR+/PFHw1ZWjxkzZmjEeCW3iZWVFWrXrm1QjFerVi2NbVUyxjPmeNeuXTts3boVEydOxN69e5GdnV3WVVZjyHG+LPFPVlYW4uPj0b9/f1hbW8vTa9asqbEfAkW30D3zzDNwcnKS6/Piiy+ioKAA//zzj1pZQ67FYmNj0aJFC/j5+amVe+6559SeP/bYY3B0dMSECROwaNEi/P333wavY3ljUorK7MKFC/j999/Ru3dvCCGQlpaGtLQ0eahRbX2blEVKSgpq1Kih0QGkJElwc3PTGB3sn3/+waFDhxAaGqrRx46qrLbRTTw8PDSWZWdnBwcHB631KrmMlJQU5OfnY/78+bCyslJ79OrVCwD0BgDjx4/HJ598gv79+2Pjxo04dOgQDh8+jFatWj30wdrY9XVyctIop1Ao1N5/0qRJ+Oqrr3Dw4EGEhobCyckJ3bp10zuU7cMqWR+FQgEAGtsjLy8PUVFRaN68uRxAPqzU1FQIIXRuMwClbjdd9SwpOzsbNjY2GtMLCwsRGRkJDw8PtG3bVt7HunfvDnt7e7URWlTJiUuXLhmwdg80a9YMAQEBao+SVHUrbT1SUlLg5uamMb3ktBs3bgAoGpWm5D4yY8YMCCFw584dAEV9pgwfPhw//PADgoKCUKdOHbz44os6+zAwxtq1axEWFoZ69erhp59+QlxcHA4fPoyXXnoJOTk5crmnnnoK69evly8CPT090aJFC4P6PFB9R1QXwsWVnPbnn38iJCQEQFEfVH/88QcOHz6Mjz76CIDm9jdkP01JSTHovRs2bIidO3fCxcUFb7zxBho2bIiGDRvKfcQRVTWqhPuxY8dw/fp1nDx5Uk4EG7uvlXUkNNUx77333tM45qkuTo1JDKiW98QTT2gsLyoqqtRlZWZm4pdffkG7du1Qt25d+dwyYMAASJKkc/Svh2VsDHLz5k1s374dQUFB6NChg1HLKiwsRGpqqtp0XZ+ftuk3btzAxo0bNbZr8+bNAej/nGbNmoXXX38dgYGBiI6OxsGDB3H48GH07NnTbPGbnZ2dRjyhUCjUzmnh4eFYunQprly5goEDB8LFxQWBgYGIiYl5qDrqY8h5SuWnn35CvXr15B+6yyIlJcVs8ZuVlZXaD6fFhYWF4fDhw4iPj8e5c+eQkpKCTz75RH59yZIlsLGxQc+ePeX90N/fHz4+PoiMjERBQQGAh4/xGjRooBHjqdatOBsbG4NiPG3xhK4Yz5Dj3bx58zBhwgSsX78eXbt2RZ06ddC/f3+TNGww9DhflvhHda1gSJx19epVdOrUCdeuXcPcuXOxb98+HD58WO5vuDxjPKVSidjYWDz++OP48MMP0bx5c3h4eGDy5Mkm/7HXWBx9j8ps6dKlEELg119/xa+//qrxump4e0tLS/kEWbKjRWOCMCcnJ+Tn5+PWrVtqiSkhBJKTk+XWDCpBQUEYPHgwRo0aBaCoU0fVry6qHT0pKUnjfa5fv67xi4e2Fiy6XnN0dJRb07zxxhta5/H19dW5vJ9++gkvvvgivvjiC7Xpt2/fRu3atXXOp0/x9S05Kp+29TVEjRo1MH78eIwfPx5paWnYuXMnPvzwQ/To0QMJCQl6O9S2sbFBenq6xvSy/lqnUCiwZ88e9OjRA927d8e2bds0RiIxlKOjIywsLHR+RwA81HbTxtnZGUePHtWYvnPnTvkXEW0np4MHD+Lvv/+Gn58fevTogcWLF2P9+vWYOHGiSeqlokoQlba+Tk5OWpNFJaepljN//nydo8KoTqjOzs6YM2cO5syZg6tXr2LDhg2YOHEibt68iW3bthm9LsX99NNP8PX1RVRUlNp+XPI4BQD9+vVDv379kJubi4MHDyIiIgLPP/88fHx8EBQUpPM9VJ+bKkgrruR2Wb16NaysrLBp0ya1i4qyDNPu5ORk0HsDQKdOndCpUycUFBQgPj4e8+fPx7hx4+Dq6mqSiwQic1Il3LUxdl/TFwMYQnXMmzRpktYRugCgSZMmRi/v119/hbe3t9H1WbVqFe7du4c///xT6zly3bp1SE1NlTuIBjSPiyUv6vUxNgapX78+Zs2ahQEDBuDZZ5/FL7/8ItejtPjNwsJCY510fX7apjs7O8Pf3x+ff/651nlUSQ1tfvrpJ3Tp0gULFy5Um25IB9K6GBuvGmrkyJEYOXIksrKy8Pvvv2Py5Mno06cP/vnnH73fKRsbG63nSFO0ttq2bRuGDBmCTp06YdeuXQ/13VZxcnIyW/yWl5eHrKws2Nvba7xet25dnceh4oPW6OqgfPv27ejVqxd69OiBDz/8EOvXr0fPnj1NUvfiUlNTDYrx/vzzT43pumI8Q4539vb2mDp1KqZOnYobN27Irab69u2Ls2fPPsyqyIw5zj9s/OPo6AhJkgyKs9avX4+srCysXbtW7bt9/Phx41fuP8bEeC1btsTq1ashhMDJkycRGRmJadOmwdbW1uTXDcZgSykqk4KCAixbtgwNGzbEnj17NB7vvvsukpKSsHXrVgCQR+o4efKk2nI2bNigsWxdv06obr/76aef1KZHR0cjKytL65C1w4cPx+rVq/Hjjz/KzSOBooSVra2txrISExPlJr8Py87ODl27dsWxY8fg7++v8QtFQECA1gSDiiRJGr9ibN68WaNZraG/4gCQR+ooub6HDx/GmTNnyjzcb+3atTFo0CC88cYbuHPnjsaoMSX5+Pjgn3/+UQtsUlJScODAgTLVAwBat26N2NhYJCYmokuXLhq3Yej6ha4ke3t7BAYGYu3atWrlCwsL8dNPP8HT07NMt3MU17RpU6SkpGgk6pYsWQILCwusX79eYx9bsWIFgActEvv164eWLVsiIiICp06d0vo+27dvf6iR1FRNmUs2Dy6pa9euOH36NE6cOKE2/eeff1Z73rFjR9SuXRt///231v0jICBArRm0Sv369fHmm28iODhYaxLPWJIkwdraWu3CJDk5WevoeyoKhQKdO3fGjBkzAEAe6UrX/tikSRO4ublpjDhz9epVje+7JEmoUaOG2i+u2dnZ8mf9MDp37ozdu3erXTAUFhbil19+0TmPpaUlAgMD5V/vTLGtiSoTU+1rhp5PmjRpgkaNGuHEiRM6j3nFb3EqTY8ePVCjRg1cvHhR5/L0WbJkCWrVqoVdu3ZpnFu+/PJL5ObmYuXKlQCKfiCwsbHRiN+0HSd1HQcfJgYJCQnB9u3b8fvvv8sj6AJF27JevXr4+eef1UbQysrKQnR0tDwi38Pq06cPTp06hYYNG2rdrvqSUtrit5MnT2rcKmZM/Fae8SpQFOuEhobio48+Ql5eHk6fPq23vI+PD27evKl2IZyXl4ft27eXqR4A4O3tjX379kGhUKBTp04arWUM3d+AomuG3bt3a4yAvHz5ctjZ2en8QcxYTZs2BQBcvHjR6HlVLRK///57jf1wy5YtsLKykmO8Nm3aIDQ0FEuWLJG7MykpPj4eV69eNboe169fR05OjkExXmZmpsa1W8kY72GPd66urhgxYgSee+45nDt3rswj/z7McV5X/KNrn7W3t0dAQADWr1+PvLw8efrdu3c1RplUxZrFjxFCCHz//fcPs3oAimK8U6dOadyOt3r1ap3zSJKEVq1aYfbs2ahdu3aFx3hsKUVlsnXrVly/fh0zZsyQh0AurkWLFvjmm2+wZMkSuS+H7t27IyIiAo6OjvD29sauXbuwdu1ajXlbtmwJoOg+6NDQUFhaWsLf3x/BwcHo0aMHJkyYgIyMDHTs2BEnT57E5MmT0bp1a4SHh2ut66BBg2BnZ4dBgwYhOzsbq1atQu3atfHJJ5/gww8/xIsvvojnnnsOKSkpmDp1KmxsbDB58uQybZ+5c+fiySefRKdOnfD666/Dx8cHmZmZuHDhAjZu3KjzhAIUBUSRkZFo2rQp/P39ceTIEXz55Zcavy42bNgQtra2WLlyJZo1a4aaNWvCw8NDa8DUpEkTvPLKK5g/fz4sLCwQGhqKy5cv45NPPoGXlxfeeecdo9exb9++aNGiBQICAuThbefMmQNvb280atRI77zh4eH47rvvMGzYMIwePRopKSmYOXOmzlskjdWsWTPs27cP3bt3x1NPPYWdO3fK20/1S0FUVBQaNGgAGxsb+TtXUkREBIKDg9G1a1e89957sLa2xoIFC3Dq1CmsWrWqzL+eq3Tp0gVCCBw6dEhuapySkoLffvsNPXr0QL9+/bTON3v2bCxfvhwRERGwsrLCunXrEBISgqCgILz++uvo2rUr7O3tceXKFfz666/YuHGjxm0Nhjh48CAsLS3x1FNP6S03btw4LF26FL1798b//vc/uLq6YuXKlRq/dtWsWRPz58/H8OHDcefOHQwaNAguLi64desWTpw4gVu3bmHhwoVIT09H165d8fzzz6Np06aoVasWDh8+jG3btun89a2k3bt3a02S9urVSx4OfMyYMRg0aBASEhLw2Wefwd3dXS0Y/vTTT5GYmIhu3brB09MTaWlpmDt3LqysrNC5c2cA+vfHqVOn4tVXX8WgQYPw0ksvIS0tDVOnToW7u7tanxm9e/fGrFmz8Pzzz+OVV15BSkoKvvrqK61N7Q310UcfYePGjejWrRs++ugj2NraYtGiRfIFnur9Fy1ahN27d6N3796oX78+cnJy5GC4e/fuD/3+RJWRqfa1li1bYu/evdi4cSPc3d1Rq1YtnS2evvvuO4SGhqJHjx4YMWIE6tWrhzt37uDMmTM4evSo3kRxST4+Ppg2bRo++ugj/Pvvv+jZsyccHR1x48YN/Pnnn3LrA21OnTqFP//8E6+//rrWoeU7duyIr7/+GkuWLMGbb74JSZIwbNgwLF26FA0bNkSrVq3w559/alyIqrYHUBQDDR8+HFZWVmjSpMlDxyBPPvkkdu3ahZ49eyIkJARbtmyBUqnEzJkz8cILL6BPnz549dVXkZubiy+//BJpaWmYPn26wdtRm2nTpiEmJgYdOnTA2LFj0aRJE+Tk5ODy5cvYsmULFi1apBGPqfTp0wefffYZJk+ejM6dO+PcuXOYNm0afH19kZ+fL5erVasWvL298dtvv6Fbt26oU6cOnJ2d5R9wiyuPeHX06NGwtbVFx44d4e7ujuTkZERERECpVGrcdVDSkCFD8Omnn2Lo0KF4//33kZOTg3nz5sk/+paVu7s7YmNj0aNHDzz11FOIiYmRu+Bo2bIl1q5di4ULF6Jt27awsLDQmYCdPHmy3D/Yp59+ijp16mDlypXYvHkzZs6cCaVSaZL6qq6BDh48KPdDZYj8/HwsX74czZo1w8svv6y1TN++fbFhwwb5DpHly5ejZ8+eCA0NxUsvvYTQ0FA4OjoiKSkJGzduxKpVq3DkyBGdra50UfVz27VrV73lXnzxRcyePRsvvvgiPv/8czRq1AhbtmzRmpA09HgXGBiIPn36wN/fH46Ojjhz5gxWrFhhcHJZVx+9nTt3Nvg4b0j8o2+fnTZtGnr37o0ePXrg7bffRkFBAb788kvUrFlTvtMAAIKDg2FtbY3nnnsOH3zwAXJycrBw4cKHistVVHF3aGgopk2bBldXV/z8889y3K2K8TZt2oQFCxagf//+aNCgAYQQWLt2LdLS0hAcHPzQ728SFdK9OlUb/fv3F9bW1uLmzZs6ywwdOlTUqFFDHpEiKSlJDBo0SNSpU0colUoxbNgweTSA4iM25ObmipdfflnUrVtXSJKkNgpJdna2mDBhgvD29hZWVlbC3d1dvP766xpDlqtG3ytuz549ombNmqJnz57i3r17QgghfvjhB+Hv7y+sra2FUqkU/fr10xjBoPiobiVBy3CvKpcuXRIvvfSSqFevnrCyshJ169YVHTp0EP/73//UypRc/9TUVDFq1Cjh4uIi7OzsxJNPPin27dundcS6VatWiaZNmworKyu1USG0jYJSUFAgZsyYIRo3biysrKyEs7OzGDZsmDxsvUrJ4ZiLb4fio558/fXXokOHDsLZ2VlYW1uL+vXri1GjRonLly/LZfSNjrFs2TLRrFkzYWNjI/z8/ERUVJTO0fdKjv4ihOZIK9o+p8TERNG0aVPh4+MjDz98+fJlERISImrVqiXw31DRxd+r5AhD+/btE08//bSwt7cXtra2on379mLjxo1qZXSN9KZr1MmSCgoKhI+Pj9rIRHPmzCl1pIxFixYJACI6OlqelpaWJj777DPRpk0bUbNmTWFlZSXq168vhg0bJv74449S66xNp06dNEbK0+Xvv/8WwcHBwsbGRtSpU0eMGjVK/Pbbb1q3Q2xsrOjdu7eoU6eOsLKyEvXq1RO9e/eWvy85OTnitddeE/7+/sLBwUHY2tqKJk2aiMmTJ8vDROuib3TB4seU6dOnCx8fH6FQKESzZs3E999/r7H/bNq0SYSGhop69eoJa2tr4eLiInr16qU29LgQuvdHIYRYvHixeOyxx4S1tbVo3LixWLp0qejXr5/aKH9CCLF06VLRpEkToVAoRIMGDURERIRYsmSJxohW2o5xQmgf2XLfvn0iMDBQKBQK4ebmJt5//315xCDVCERxcXFiwIABwtvbWygUCuHk5CQ6d+5c6hDRRJWNoce2su5rQghx/Phx0bFjR2FnZycAyPuermP/iRMnRFhYmHBxcRFWVlbCzc1NPP300/IIxrrm1XZOF0KI9evXi65duwoHBwehUCiEt7e3GDRokNpowyWNGzeu1JGmJk6cKACII0eOCCGESE9PFy+//LJwdXUV9vb2om/fvuLy5ctaR6OaNGmS8PDwEBYWFmrrUZYY5NSpU8LNzU20adNGHkl0/fr1IjAwUNjY2Ah7e3vRrVs3tXNc8e1WfPRRFX2f661bt8TYsWOFr6+vsLKyEnXq1BFt27YVH330kbh7965cruT65+bmivfee0/Uq1dP2NjYiDZt2oj169drHbFu586donXr1kKhUAgA8iiOJUffUylLvFry+7Ns2TLRtWtX4erqKqytrYWHh4cICwsTJ0+elMvoi7+2bNkiHn/8cWFraysaNGggvvnmG52j72mLkb29vdVGrdT2OaWlpYmOHTuKOnXqyPvynTt3xKBBg0Tt2rXl64Pi71Xyu/jXX3+Jvn37CqVSKaytrUWrVq00Yjxdcaoho2OrdOrUSWP0Pn3rL0TR9xeAmDNnjs7lqkYd//rrr+Vp2dnZYt68eSIoKEg4ODiIGjVqCA8PD/Hss8+KzZs3l7pe2oSHh4uWLVuWWk6Iorh64MCBombNmqJWrVpi4MCB4sCBA1q3lSHHu4kTJ4qAgADh6OgoH4vfeecdcfv2bb310De6YPHjjiHHeUPjH137rBBCrFu3TrRs2VK+Hpo+fboYO3ascHR0VFvGxo0bRatWrYSNjY2oV6+eeP/998XWrVs1jvmGXosJUXR87N69u1rcvWzZMgFAnDhxQgghxNmzZ8Vzzz0nGjZsKGxtbYVSqRTt2rUTkZGRerezOUhCFGvzSkREFerrr7/G559/jmvXrsHW1raiqyO7ePEiGjVqhO3bt1f8rynVSFpaGho3boz+/ftj8eLFZn//kJAQXL58WWO0FyIiIjJcdHQ0hgwZgitXrqBevXoVXR2jZGRkwMPDA7Nnz8bo0aMrujrVxv379/H444+jXr162LFjh9nf/5VXXsGqVauQkpKitTuMyoRJKSKiSiQnJwfNmjXDG2+8gffee6+iqyMbOXIkEhMTy2VUnkdFcnIyPv/8c3Tt2hVOTk64cuUKZs+ejbNnzyI+Pl4e1am8jB8/Hq1bt4aXlxfu3LmDlStXYu3atViyZInaMNRERERkHCEEOnTogLZt2+Kbb76p6OoYZerUqYiKisLJkydRowZ793lYo0aNQnBwsHw77KJFixAbG4sdO3aUexcI06ZNg4eHBxo0aCD3ZfXDDz/g448/xrRp08r1vU2B3zoiokrExsYGK1askDvOrgzy8/PRsGFDTJo0qaKrUqUpFApcvnwZY8aMwZ07d+ROVhctWlTuCSmgaGCKTz/9FMnJyZAkCX5+flixYgWGDRtW7u9NRERUnUmShO+//x4bNmxAYWGhWl+RlZ2DgwMiIyOZkCqjzMxMvPfee7h16xasrKzQpk0bbNmyxSx9clpZWeHLL79EYmIi8vPz0ahRI8yaNQtvv/12ub+3KbClFBERERERERERmV3VSeEC+P3339G3b194eHhAkiSsX7++1HliY2PRtm1b2NjYoEGDBli0aJFGmejoaPj5+UGhUMDPzw/r1q0rh9oTERERmR/jJyIiIqqsqlRSKisrC61atTL4Pt1Lly6hV69e6NSpE44dO4YPP/wQY8eORXR0tFwmLi4OQ4YMQXh4OE6cOIHw8HCEhYXh0KFD5bUaRERERGbD+ImIiIgqqyp7+54kSVi3bh369++vs8yECROwYcMGnDlzRp722muv4cSJE4iLiwMADBkyBBkZGdi6datcpmfPnnB0dMSqVavKrf5ERERE5sb4iYiIiCqTat2bWVxcHEJCQtSm9ejRA0uWLMH9+/dhZWWFuLg4vPPOOxpl5syZo3O5ubm5yM3NlZ8XFhbizp07cHJygiRJJl0HIiIiqjhCCGRmZsLDw6NKdVxbFoyfiIiIqKwMjaGqdVIqOTkZrq6uatNcXV2Rn5+P27dvy8M1aiuTnJysc7kRERGYOnVqudSZiIiIKp+EhAR4enpWdDXMgvETERERmUppMVS1TkoB0PjlTXW3YvHp2sro+8Vu0qRJGD9+vPw8PT0d9evXR0JCAhwcHMpc59kx/yDywGUUFGreWWlpIWFEBx+8E9wYa48mYsqG05AkSa6zEAJTn2mOAW0ejcCZiIioPGVkZMDLywu1atWq6KqYFeMnIiIiKgtDY6hqnZRyc3PT+MXu5s2bqFGjBpycnPSWKfnrX3EKhQIKhUJjuoODg0mCqhc7N8Oy+Buw0NLblyQBwzs3Q0oeMG37JcDaDqpiqr9Tt19C5xbe8HG2L3NdiIiISDMBU50xfmL8REREZCqlxVDVunOEoKAgxMTEqE3bsWMHAgICYGVlpbdMhw4dzFbPknyd7TFjoD8sin12lpIECwmYMdAfPs72WBOfoPPDlSQJUfEJZqotERERVSeMn4iIiMhcqlRLqbt37+LChQvy80uXLuH48eOoU6cO6tevj0mTJuHatWtYvnw5gKKRYr755huMHz8eo0ePRlxcHJYsWaI2Kszbb7+Np556CjNmzEC/fv3w22+/YefOndi/f7/Z16+4wQFeaFHPAaFzi+ox8kkfDAt88OtdYmo2dA2cKIRAYmq2/PzS7SysiU9AYmo2PB1tERbgBV/+CkhERPRIYPz0cPETERERlb8qlZSKj49H165d5eeqfgmGDx+OyMhIJCUl4erVq/Lrvr6+2LJlC9555x18++238PDwwLx58zBw4EC5TIcOHbB69Wp8/PHH+OSTT9CwYUNERUUhMDDQfCumg7fTg8TR+ODGsLN+8HF5OtoW/dKnJbCSJAmejrYAgDXxCZgYfVKt34TvYi9ixkB/DA7wKv+VICIiogrF+Mn4+ImIiIjMQxK6fi4ig2VkZECpVCI9Pd0kfSKo3MvLh9+n2wEAf0/roRZUXbqdhW5f74WWvjxhIQG73+0CAZRahv0mEBER6VZe53iqvPETYyMiIqKyM/Q8X637lKrO2G8CERERkXEMiZ+IiIjIfKrU7Xukjv1OERERERmntPiJiIiIzIdJqSqO/U4RERERGUdf/ERERETmw9v3qrGwAC+9LaWGBHjh0u0sTIw+iUIBFBQKtb8Tok/i8u0sM9eaiIiIiIiIiB4FTEpVY+x3ioiIiIiIiIgqK7ZVrubY7xQRERERERERVUZMSj0C2O8UEREREREREVU2vH3vEcd+p4iIiIiIiIioIjAp9Yhjv1NEREREREREVBF4+x6x3ykiIiIiIiIiMjsmpQgA+50iIiIiIiIiIvPi7XtUKvY7RURERERERESmxqQUlYr9ThERERERERGRqfH2PTKIKfudIiIiIiIiIiJiUooMZop+p4iIiIiIiIiIACalyETCArzwXexFra+p+p1S4Qh9RERERERERMSkFJmEqt+pCf91dg4U9TslIOR+pwCO0EdERERERERERdjROZnM4AAvbB77pPx85JM+2P1uFznZxBH6iIiIiIiIiEiFSSkyqZL9TvkUuy2PI/QRERERERERkQqTUmQ2HKGPiIiIiIiIiFSYlCKzkUfo04Ij9BERERERERE9WtjROZmNMSP0ARylj4iIiIiIiKg6Y1KKzMbQEfoAjtJHREREREREVN3x9j0yq9JG6AM4Sh8RERERERHRo4BJKTI7fSP0ARylj4iIiIiIiOhRwKQUVTocpY+IiIiIiIio+mNSiiodjtJHREREREREVP1VuaTUggUL4OvrCxsbG7Rt2xb79u3TWXbEiBGQJEnj0bx5c7lMZGSk1jI5OTnmWB3SIizAS29LqZKj9BEREVHpGEMRERFRZVOlklJRUVEYN24cPvroIxw7dgydOnVCaGgorl69qrX83LlzkZSUJD8SEhJQp04dDB48WK2cg4ODWrmkpCTY2NiYY5VIC9UofRbFGktZShIsJGiM0nfpdhZmbDuLt1Ydw4xtZ3GJnaATERFpYAxFRERElVGNiq6AMWbNmoVRo0bh5ZdfBgDMmTMH27dvx8KFCxEREaFRXqlUQqlUys/Xr1+P1NRUjBw5Uq2cJElwc3Mr38qTUQYHeKFFPQeEzt0PoGiUvmGB3moJqTXxCZgYfRKSJEEIAUmS8F3sRcwY6K82mh8REdGjjjEUERERVUZVpqVUXl4ejhw5gpCQELXpISEhOHDggEHLWLJkCbp37w5vb2+16Xfv3oW3tzc8PT3Rp08fHDt2zGT1poenb5S+S7ezMDH6JAoFUFAo1P5OiD6Jy2wxRUREBIAxFBEREVVeVSYpdfv2bRQUFMDV1VVtuqurK5KTk0udPykpCVu3bpV/IVRp2rQpIiMjsWHDBqxatQo2Njbo2LEjzp8/r3NZubm5yMjIUHuQea2JT9DbGXpUfIKZa0RERFQ5VZYYivETERERlVRlklIqJRMRqtu2ShMZGYnatWujf//+atPbt2+PYcOGoVWrVujUqRPWrFmDxo0bY/78+TqXFRERITdrVyqV8PLirWLmlpiarbcz9MTUbDPXiIiIqHKr6BiK8RMRERGVVGWSUs7OzrC0tNT4Re/mzZsav/yVJITA0qVLER4eDmtra71lLSws8MQTT+htKTVp0iSkp6fLj4QEtsoxN09HW70tpTwdbc1cIyIiosqpssRQjJ+IiIiopCqTlLK2tkbbtm0RExOjNj0mJgYdOnTQO29sbCwuXLiAUaNGlfo+QggcP34c7u7uOssoFAo4ODioPci8wgK89LaUGsKOzomIiABUnhiK8RMRERGVVKVG3xs/fjzCw8MREBCAoKAgLF68GFevXsVrr70GoOgXuGvXrmH58uVq8y1ZsgSBgYFo0aKFxjKnTp2K9u3bo1GjRsjIyMC8efNw/PhxfPvtt2ZZJ3o4vs72mDHQHxP+6+wcACwlCQICMwb6a3SKviY+AYmp2fB0tEVYgBd8i71ORERU3TGGIiIiosqoSiWlhgwZgpSUFEybNg1JSUlo0aIFtmzZIo8Ek5SUhKtXr6rNk56ejujoaMydO1frMtPS0vDKK68gOTkZSqUSrVu3xu+//4527dqV+/pQ2QwO8EKLeg4InbsfADDySR8MC/RWS0itiU/AxOiTkCRJ7jvju9iLmDHQH4PZmoqIiB4RjKGIiIioMqpSSSkAGDNmDMaMGaP1tcjISI1pSqUS9+7d07m82bNnY/bs2aaqHpmZt9ODBNT44Maws37wlb50OwsTVS2pVLf6/fd3QvRJPOFTRy2BRUREVJ0xhiIiIqLKpsr0KUVkrDXxCXo7Q4+KZwerRERERERERBWFSSmqthJTs/V2hp6Ymm3mGhERERERERGRCpNSVG15OtrqbSnl6Whr5hoRERERERERkQqTUlRthQV46W0pNYQdnRMRERERERFVmCrX0TmRoXyd7TFjoD8mqDo7B2ApSRAQmDHQX62T80u3s7AmPgGJqdnwdLRFWIAXfNkJOhEREREREVG5YVKKqrXBAV5oUc8BoXP3AwBGPumDYYHeagmpNfEJmBh9EpIkQQgBSZLwXexFzBjoj8FsTUVERERERERULnj7HlV73k4PElDjgxtrtJCa+F9LqoJCofZ3QvRJXL6dVRFVJiIiIiIiIqr2mJSiR9qa+AS9naFHxSeYuUZEREREREREjwYmpeiRlpiarbcz9MTUbDPXiIiIiIiIiOjRwKQUPdI8HW31tpTydLQ1c42IiIiIiIiIHg1MStEjLSzAS29LqSHs6JyIiIiIiIioXDApRY80X2d7zBjoD4tijaUsJQkWEjBjoL9ap+hEREREREREZDo1KroCRBVtcIAXWtRzQOjc/QCAkU/6YFigt0ZC6tLtLKyJT0BiajY8HW0RFuAFXyatiIiIiIiIiB4Kk1JEALydHiSXxgc3hp21+q6xJj4BE6NPQpIkCCEgSRK+i72IGQP9MZi3+BEREREREREZjbfvEZXi0u0sTIw+iUIBFBQKtb8Tok/i8u2siq4iERERERERUZXDpBRRKdbEJ+gdoS8qPsHMNSIiIiIiIiKq+piUIipFYmq23hH6ElOzzVwjIiIiIiIioqqPSSmiUng62uptKeXpaGvmGhERERERERFVfUxKEZUiLMBLb0upIezonIiIiIiIiMhoHH2PqBS+zvaYMdAfE/7r7BwALCUJAgIzBvrDx/nByH2XbmdhTXwCElOz4eloi7AAL/gWe52IiIiIiIiIijApRWSAwQFeaFHPAaFz9wMARj7pg2GB3moJqTXxCZgYfRKSJEEIAUmS8F3sRcwY6I/BbE1FREREREREpIa37xEZyNvpQQJqfHBjjRZSE/9rSVVQKNT+Tog+icu3syqiykRERERERESVFpNSRCawJj5Bb2foUfEJZq4RERERERERUeXGpBSRCSSmZuvtDD0xNdvMNSIiIiIiIiKq3JiUIjIBT0dbvS2lPB1tzVwjIiIiIiIiosqNSSkiEwgL8NLbUmoIOzonIiIiIiIiUsOkFJEJ+DrbY8ZAf1gUayxlKUmwkIAZA/3VOkUnIiIiIiIioiqYlFqwYAF8fX1hY2ODtm3bYt++fTrL7t27F5IkaTzOnj2rVi46Ohp+fn5QKBTw8/PDunXryns1qBoaHOCFzWOflJ+PfNIHu9/tgsElWkldup2FGdvO4q1VxzBj21lc4sh8RERkBoyhiIiIqLKpUkmpqKgojBs3Dh999BGOHTuGTp06ITQ0FFevXtU737lz55CUlCQ/GjVqJL8WFxeHIUOGIDw8HCdOnEB4eDjCwsJw6NCh8l4dqoa8nR60iBof3FijhdSa+AR0+3ovFv/+LzafvI7Fv/+Lbl/vxS8cnY+IiMoRYygiIiKqjKpUUmrWrFkYNWoUXn75ZTRr1gxz5syBl5cXFi5cqHc+FxcXuLm5yQ9LS0v5tTlz5iA4OBiTJk1C06ZNMWnSJHTr1g1z5swp57WhR82l21mYGH0ShQIoKBRqfydEn8RltpgiIqJywhiKiIiIKqMqk5TKy8vDkSNHEBISojY9JCQEBw4c0Dtv69at4e7ujm7dumHPnj1qr8XFxWkss0ePHqUuk8hYa+IT9I7QF8XWUkREVA4YQxEREVFlVaOiK2Co27dvo6CgAK6urmrTXV1dkZycrHUed3d3LF68GG3btkVubi5WrFiBbt26Ye/evXjqqacAAMnJyUYtEwByc3ORm5srP8/IyHjY1aJHSGJqtt4R+hJTs81cIyIiehRUlhiK8RMRERGVVGWSUiolW5oIIXS2PmnSpAmaNGkiPw8KCkJCQgK++uorOaAydpkAEBERgalTpz5M9ekR5uloW/S90pKYkiQJno62FVArIiJ6VFR0DMX4iYiIiEqqMrfvOTs7w9LSUuPXt5s3b2r8SqdP+/btcf78efm5m5ub0cucNGkS0tPT5UdCAm+7otKFBXjpbSk1pMQofURERKZQWWIoxk9ERERUUpVJSllbW6Nt27aIiYlRmx4TE4MOHToYvJxjx47B3d1dfh4UFKSxzB07duhdpkKhgIODg9qDqDS+zvaYMdAfFsV+QLaUJFhIwIyB/moj9V26nYUZ287irVXHMGPbWVxiJ+hERPSQKksMxfiJiIiISqpSt++NHz8e4eHhCAgIQFBQEBYvXoyrV6/itddeA1D0C9y1a9ewfPlyAEWjwvj4+KB58+bIy8vDTz/9hOjoaERHR8vLfPvtt/HUU09hxowZ6NevH3777Tfs3LkT+/fvr5B1pOptcIAXWtRzQOjcou/XyCd9MCzQWy0htSY+AROjT0KSJPk2iO9iL2LGQH8MZmsqIiJ6CIyhiIiIqDKqUkmpIUOGICUlBdOmTUNSUhJatGiBLVu2wNvbGwCQlJSEq1evyuXz8vLw3nvv4dq1a7C1tUXz5s2xefNm9OrVSy7ToUMHrF69Gh9//DE++eQTNGzYEFFRUQgMDDT7+tGjwdvpQQJqfHBj2Fk/2A0v3c7CxOiTKBR40PfUf38nRJ/EEz511BJYREREhmAMRURERJVRlUpKAcCYMWMwZswYra9FRkaqPf/ggw/wwQcflLrMQYMGYdCgQaaoHlGZrIlP0NsZelR8Aib0bFoBNSMioqqOMRQRERFVNlWmTymiR0FiarbeztATU7PNXCMiIiIiIiKi8sGkFFEl4uloq3MobUmS4Oloa+YaEREREREREZUPJqWIKpGwAC+9LaWGsKNzIiIiIiIiqiaYlCKqRHyd7TFjoD8sijWWspQkWEjAjIH+7OSciIiIiIiIqo0q19E5UXU3OMALLeo5IHRu0ZDaI5/0wbBAb42E1KXbWVgTn4DE1Gx4OtoiLMALvkxaERERERERURXBpBRRJeTt9CC5ND64Meys1XfVNfEJmBh9EpIkQQgBSZLwXexFzBjoj8G8xY+IiIiIiIiqAN6+R1TFXLqdhYnRJ1EogIJCofZ3QvRJXL6dVdFVJCIiIiIiIioVk1JEVcya+AS9I/RFxSeYuUZERERERERExmNSiqiKSUzN1jtCX2JqtplrRERERERERGQ8JqWIqhhPR1u9LaU8HW3NXCMiIiIiIiIi4zEpRVTFhAV46W0pNYQdnRMREREREVEVwNH3iKoYX2d7zBjojwn/dXYOAJaSBAGBGQP94eNsr1b+0u0srIlPQGJqNjwdbREW4AXfEmWIiIiIiIiIzI1JKaIqaHCAF1rUc0Do3P0AgJFP+mBYoLdGQmpNfAImRp+EJEkQQkCSJHwXexEzBvpjMFtUERERERERUQXi7XtEVZS304ME1PjgxlpbSE38rzVVQaFQ+zsh+iQu384yd5WJiIiIiIiIZExKEVVTa+IT9HaIHhWfYOYaERERERERET3ApBRRNZWYmq23Q/TE1Gwz14iIiIiIiIjoASaliKopT0dbvS2lPB1tzVwjIiIiIiIiogeYlCKqpsICvPS2lBrCjs6JiIiIiIioAnH0PaJqytfZHjMG+mPCf52dA4ClJEFAYMZAf7WO0S/dzsKa+AQkpmbD09EWYQFe8C3RcToRERERERGRKTEpRVSNDQ7wQot6Dgidux8AMPJJHwwL9FZLSK2JT8DE6JOQJAlCCEiShO9iL2LGQH8MZmsqIiIiIiIiKidGJ6WysrIwffp07Nq1Czdv3kRhYaHa6//++6/JKkdEZeft9CABNT64MeysH+z2l25nYaKqJZXqVr///k6IPoknfOqoJbCIiOjhMYYiIiIiUmd0Uurll19GbGwswsPD4e7urrMjZSKq/NbEJxTtw1r6npIkCVHxCZjQs2kF1IyIqPphDEVERESkzuik1NatW7F582Z07NixPOpDRGaUmJqttzP0xNRsM9eIiKj6YgxFREREpM7o0fccHR1Rp06d8qgLEZmZp6Otzl/qJUmCp6OtmWtERFR9MYYiIiIiUmd0Uuqzzz7Dp59+inv37pVHfYjIjMICvPS2lBpSrKPzS7ezMGPbWby16hhmbDuLS7ezzFVNIqJqgTEUERERkTqjb9/7+uuvcfHiRbi6usLHxwdWVlZqrx89etRklSOi8uXrbI8ZA/0xQdXZOQBLSYKAwIyB/nIn5xyhj4io7BhDEREREakzOinVv3//cqgGEVWUwQFeaFHPAaFz9wMARj7pg2GB3nJCiiP0ERGZBmMoIiIiInVGJ6UmT55cHvUgogrk7fQgqTQ+uDHsrB8cGjhCHxGRaTCGIiIiIlJndJ9SKkeOHMFPP/2ElStX4tixY6ask14LFiyAr68vbGxs0LZtW+zbt09n2bVr1yI4OBh169aFg4MDgoKCsH37drUykZGRkCRJ45GTk1Peq0JUJXCEPiIi02IMRURERFTE6JZSN2/exNChQ7F3717Url0bQgikp6eja9euWL16NerWrVse9QQAREVFYdy4cViwYAE6duyI7777DqGhofj7779Rv359jfK///47goOD8cUXX6B27dr48ccf0bdvXxw6dAitW7eWyzk4OODcuXNq89rY2JTbehBVJfIIfTpaSnGEPiIiwzCGIiIiIlJndEupt956CxkZGTh9+jTu3LmD1NRUnDp1ChkZGRg7dmx51FE2a9YsjBo1Ci+//DKaNWuGOXPmwMvLCwsXLtRafs6cOfjggw/wxBNPoFGjRvjiiy/QqFEjbNy4Ua2cJElwc3NTexBREY7QR0RkGoyhiIiIiNQZnZTatm0bFi5ciGbNmsnT/Pz88O2332Lr1q0mrVxxeXl5OHLkCEJCQtSmh4SE4MCBAwYto7CwEJmZmahTp47a9Lt378Lb2xuenp7o06dPqU3pc3NzkZGRofYgqq5UI/RZSA+mWUoSLCRojNDX7eu9WPz7v9h88joW//4vun29F7/EJ1RQzYmIKpdHPYZi/EREREQlGZ2UKiws1BjCGACsrKxQWFhokkppc/v2bRQUFMDV1VVtuqurK5KTkw1axtdff42srCyEhYXJ05o2bYrIyEhs2LABq1atgo2NDTp27Ijz58/rXE5ERASUSqX88PLy0lmWqDoYHOCFzWOflJ+PfNIHu9/tgsH/tZIqPkJfQaFQ+zsh+iQus8UUEdEjH0MxfiIiIqKSjE5KPf3003j77bdx/fp1edq1a9fwzjvvoFu3biatnDaSJKk9F0JoTNNm1apVmDJlCqKiouDi4iJPb9++PYYNG4ZWrVqhU6dOWLNmDRo3boz58+frXNakSZOQnp4uPxIS2BKEqr+SI/SpWkgBxUbo00I1Qh8R0aPuUY+hGD8RERFRSUZ3dP7NN9+gX79+8PHxgZeXFyRJwtWrV9GyZUv89NNP5VFHAICzszMsLS01ftG7efOmxi9/JUVFRWHUqFH45Zdf0L17d71lLSws8MQTT+htKaVQKKBQKAyvPFE1xxH6iIhK96jHUIyfiIiIqCSjk1JeXl44evQoYmJicPbsWQgh4OfnV2qgUlbW1tZo27YtYmJiMGDAAHl6TEwM+vXrp3O+VatW4aWXXsKqVavQu3fvUt9HCIHjx4+jZcuWJqk30aOAI/QREZWOMRQRERGROqOTUirBwcEIDg42ZV1KNX78eISHhyMgIABBQUFYvHgxrl69itdeew1AUbPwa9euYfny5QCKgqkXX3wRc+fORfv27eVfCG1tbaFUKgEAU6dORfv27dGoUSNkZGRg3rx5OH78OL799luzrhtRVRYW4IXvYi9qfU3bCH1r4hOQmJoNT0dbhAV4wbfYrYBERNUdYygiIiKiIgYlpebNm4dXXnkFNjY2mDdvnt6y5Tmk8ZAhQ5CSkoJp06YhKSkJLVq0wJYtW+Dt7Q0ASEpKwtWrV+Xy3333HfLz8/HGG2/gjTfekKcPHz4ckZGRAIC0tDS88sorSE5OhlKpROvWrfH777+jXbt25bYeRNWNaoS+Cf91dg4UjdAnIDRG6JsYfRKSJMl9mXwXexEzBvrLnaYTEVUnjKGIiIiIdDMoKTV79my88MILsLGxwezZs3WWkySpXAMqABgzZgzGjBmj9TVVkKSyd+/eUpc3e/ZsvetERIYZHOCFFvUcEDp3P4CiEfqGBXrLCaniI/TJt/n993dC9Ek84VNHrfN0IqLqgDEUERERkW4GJaUuXbqk9X8iouJKjtBnZ/3gECOP0Kej36mo+ARM6NnULPUkIjIXxlBEREREulkYO8O0adNw7949jenZ2dmYNm2aSSpFRNUPR+gjokcdYygiIiIidUYnpaZOnYq7d+9qTL937x6mTp1qkkoRUfUjj9CnBUfoI6JHAWMoIiIiInVGj76n6py4pBMnTqBOnTomqRQRVT8coY+oajJkf6xsZSorxlBERERE6gxOSjk6OkKSJEiShMaNG6sFVQUFBbh79648rDARUUkcoY+ocjEkuWPI/ljZylRGjKGIiIiItDM4KTVnzhwIIfDSSy9h6tSpUCqV8mvW1tbw8fFBUFBQuVSSiKoHjtBHZB6lJZwMSe4Ysj8KoFKVqazHB8ZQRERERNoZnJQaPnw4AMDX1xcdOnSAlZVVuVWKiKovjtBHVDZlTTgZmvw1ZH9U/V9ZylTW4wNjKCIiIiLtjO5TqnPnzvL/2dnZuH//vtrrDg4OZa8VET2SjBmhryr3K0OkizkSToYmfw3dHytbmcqMMRQRERGROqOTUvfu3cMHH3yANWvWICUlReP1goICk1SMiB498gh9Oi6WVSP0VdV+ZYj0MVfCydBkk6H7Y2UrU5kxhiIiIiJSZ2HsDO+//z52796NBQsWQKFQ4IcffsDUqVPh4eGB5cuXl0cdiegRERbgpfdieUiJC/OCQqH2d0L0SVy+nWXmWhMZ5tLtLMzYdhZvrTqGGdvO4lKx76oh32s54aSFMQknOdmkYzmq5I4h+2NlK1PZMYYiIiIiUmd0Umrjxo1YsGABBg0ahBo1aqBTp074+OOP8cUXX2DlypXlUUciekSoRuizKHa9bClJsJAgj9BnyIU5UWWzJj4B3b7ei8W//4vNJ69j8e//otvXe/HLf99XcyacDE3uGLI/VrYylR1jKCIiIiJ1Rt++d+fOHfj6+gIo6vvgzp07AIAnn3wSr7/+umlrR0SPnNJG6DOm3ykic9HXF5Qht90ZlXDSc/taWIAXvou9qHM5QwK84PNfcmeCqk4oSu4ICI3kTmn7Y2UsU5kxhiIiIiJSZ3RLqQYNGuDy5csAAD8/P6xZswZA0a9/tWvXNmXdiOgRVXKEvuIXnIbeegTov12KyFRM0QrKVC2cDG1NNDjAC5vHPimXGfmkD3a/20Vrn2z69sfKWqayYgxFREREpM7opNTIkSNx4sQJAMCkSZPkfhHeeecdvP/++yavIBFRcYbeelRaooDIUGXtC8qQVlAVkXCqysmdqooxFBEREZE6o2/fe+edd+T/u3btirNnzyI+Ph4NGzZEq1atTFo5IqKSfA249ciQ26V4AU6GKG1EPENGuzPktjtDvteA4bevlUw42VkbfbqncsAYioiIiEhdmaPU+vXro379+qaoCxGRQUq7MDckUTChZ1MA+vsCourPHH1BjQ9uXGo/TwATTo8ixlBERET0qDMokp03b57BCxw7duxDV4aIyFD6LswN7Qy9tFYwVL1VtlZQABNO1RFjKCIiIiLdDIp2Z8+ebdDCJEliQEVEFc6QRAFv8av+qmIrKKp+GENVf2xxS0RE9PAMSkpdunSpvOtBRGQyYQFepSYKoniLX5VW2mfCVlBUWTCGqt7Y4paIiKhsjB59TyUvLw/nzp1Dfn6+KetDRFRmhoxSZswtfhzFr3Ip7TMx54h4gOGj3RGpMIaqHgw51hAREZF+Riel7t27h1GjRsHOzg7NmzfH1atXART1gzB9+nSTV5CI6GGUliiQW8Fooe0WP15wmMel21mYse0s3lp1DDO2ncWlEtvYkM9EbgWlhUYrKB1lireC0pfcVCnZCoq35ZE2jKGqF0OONURERKSf0UmpSZMm4cSJE9i7dy9sbGzk6d27d0dUVJRJK0dEVBb6EgWGtIIx9oKjtIQK6WdIqzRDPhO2gqLKijFU9WJoi1si0o/xE9GjzegOLdavX4+oqCi0b99e7cLAz88PFy9q78OFiKiyMaQvIGMuONivSOnK2vG4oZ8J+4KiyooxVPViyLGGqDozRZ+bjJ+IyOjI+tatW3BxcdGYnpWVpfPXayKiyqi0EdEMveAwZiS/6tppujk6Hp/Qs6lBn4khHd0DHBGPzI8xVPVi6LGGqCoq63nd0Pd41OMnInqIpNQTTzyBzZs346233gIAOYj6/vvvERQUZNraET0CVK0+hADEf8/zCwrl1/PyC2FpUaBxDZ6dVyD/fy8v/8G5vMRys/IedKSbnn0f9wtKFPxvfpW0rPvIvf/g/VXFir/fnbt5yLYuKLkYtTK3M/Nga12AkoqXuZWZC1trzY5+s3OLlcnQUabYcm6WoYyt1YPD4LBAb9haW+JGRg4A4OmmLnovOLo1dcGNjBz8+MclSJCgvjWKSACW/nEJb3R9DBtPXMcXW85AQlGLHAlFAdxHvZuhj7+HPM/VO/ew8cR1JKXnwF1pg76tPFC/jp3WephDafUpbb2u3rmnN+j0dbbHhZt39baAunDzLm5k5Bj0mdhZW+Kj3s3w+eYzcisoVb9QH/ZqBhsrSySnF33GNjUefP4vtPNWe02l+PfoRnrp3zVDyiSn58DW2tLkZVSbsHiZpLTSl6OtjLZ9/7oBy1KVKfl5Fi9zLTW71OUk3jGujIONFZR2VhrlKxPGUNWLMS0uqXoyJFFSGZMpZU04GZNM0sfQH6QMTYBVxm1NRKUzOikVERGBnj174u+//0Z+fj7mzp2L06dPIy4uDrGxseVRRyKdCgsfnMRy7hfIF8WFAigUAqJQPeFyOzMPNlb5EPjv9f/K3SuWBLly+x5srC3l14Giv/eKXQidTcqEwspC7TxcKASy7z8oczwhDYoalvL8qvN2drH6HPr3DmysNC+6coot59jVtFLL/JWYobVMyXJnkzJLXda5G6WXOX/zbqllLt4qvcy/t7JKL3O79DKXyrHMK081wHe//yt/1hZS0Wf5ylMNcL9A4N9bWTh/8y4KtSSkAKAQRdvrjwu38fmWM/J3qkjR3/9tPoM6dgq4KW2w99xNLN73r5zikgCsOHgFrz7VAJ0bP2hhkZSejb3nbuHW3VzUralAlyZ14a5Uv1XEFGVKq09Senap67Xn3E2t20ZledwV2Or4/qrYWlni31tFfUwY8pn4uSvxxYCWmLj2LwBAzxZuCG7mBjeljVpfFcU//8sppX9HTFXmSso9s5W5eufhy5Qsl2DAsgwpk5iaXWqZa2nGlfF0RKVPSjGGqn7Y4vLRZUiixJS3phmacDFHwsnQZFJp9THklnxDE2AVkbiqqklJqloehe+Q0UmpDh064MCBA/jyyy/RsGFD7NixA23atEFcXBxatmxZHnWkKiq/oBC5+QUoLAQKhCgaIatQ4G7ug6TM9bQcKGpYoFA8GEVLCIGCEomik4npsK5hAfFfucL/RtsqfnFyIiHdJImS5IycUsukZ9+HTb7+Mrn3C/9rPaOuUPu5lyqpzo1d4ONkrzW5oVK3pkJHO6miJE7dmgrsPXdLb5k9526iS5O6WLzvXzmJiWLlv/v9XzRxddCZuNp48rpa4soUZZLSs0utjyHrdeturo6UXdF8t+7mYnBbT2w8eV1nma5NHiTkDPlMAMDV4cHzwW29dCZdiMyFMVT1xH7nqp6yJhMMSZQIwGS3phmacDFXwsnQPjdLq48ht+QbUp+wAC+zJ67MnZSk6skct8ka+l4VyajR9+7fv4+RI0fCzs4Oy5Ytw6lTp/D333/jp59+MlswtWDBAvj6+sLGxgZt27bFvn379JaPjY1F27ZtYWNjgwYNGmDRokUaZaKjo+Hn5weFQgE/Pz+sW7euvKpfJRQWCuTlF+JeXj4ycu4jNSsPtzJzcSM9Vy5z6XYWzt/IxNnkDJy6lo6TiWk4djUVR6+kymWOXEnD0StpOJ6Qhr8S0/H39QycTc7EhZt35TIJd+4hMTUb19NykJyeg1uZubh9Nw+pWfeRnn1fLpedV4Dc+4XIyxfILxBM7JBZlUxulEx+dGlSV2/SpWsTF4MSM6oEjzaqBE/xRFGhgNrf737/F8npOSYrY0h9DFkvVdJO13Lq1lTAXWmLV59qgOLd6lhIgCQBrz7VoNSEU8nXiSobxlBElYOhI73qK2PISLCGjuBb2nsVTyQVFAq1vxOiT+Lyf61/DSlnqhFs5WSSjuV4OtoaVB9DRsI1pD6GrJeh29GQ74chyzL0/VTL4+iDjx5T7fumeK+KZlRSysrKqkKDjaioKIwbNw4fffQRjh07hk6dOiE0NBRXr17VWv7SpUvo1asXOnXqhGPHjuHDDz/E2LFjER0dLZeJi4vDkCFDEB4ejhMnTiA8PBxhYWE4dOiQuVar3N0v1j/Rnbt5uJGRg8TUe7j8X2Lp7+tFiSWVw5dTceRKKk4kpOP0tQeJpMspD774NzMeJI8yc/KRlVuAnPuFD/orInqEGJJQMSQxY6rElanKmCrhZEjSDihqARUx4MHFec8Wbpg1+HG12xaJqirGUEQVz1TJBEMSJcbemlaWRBJgWKLMVAknQ5JJhtRH1S+bRbFilpIECwlyv2yG1KciElfmSkqqVMXElSF1NnS9qtv6m3LfN6QepkpulRej2xcPGDAA69evx/jx48ujPnrNmjULo0aNwssvvwwAmDNnDrZv346FCxciIiJCo/yiRYtQv359zJkzBwDQrFkzxMfH46uvvsLAgQPlZQQHB2PSpEkAgEmTJiE2NhZz5szBqlWrzLNiRsovKEReQVECKLNYa6LLt+/BylJCXkEh8gsE8guLyhTvFNaQvoCIyHil3VLWpUndUm9P23PuZqm3ARqSKFL9X9YyhtyWaMh6uSlt8KqOfqBKtoLiLXdUnTGGouqmMt4Ooq9OhtwKpvpfXxlDR+c1xa1pht4qZ1TCqYwj2PoY0Mm/ofUurV82Q+oTVcp2NDpxVUpfWYauW1XuL6usTHl7Y2W8DdIco04b+j0rjTF9wFUUo5NSjz32GD777DMcOHAAbdu2hb29+hd97NixJqtccXl5eThy5AgmTpyoNj0kJAQHDhzQOk9cXBxCQkLUpvXo0QNLlizB/fv3YWVlhbi4OLzzzjsaZVRBmDHu5eWjRp7miEsPq3gH3cX/v3L7HpL/Gx0st3hHtSlZUGi5gMtV6+dIe/KpspWpjHWqimUqY52qaxkAqG37oJPlZ/w9oLCylBO+jnbWeKmDL5b+cUlO8qgSMy918EVtOysENXTSm+Dp0NAJv5/X34eT438dPZuijCH1MWS9cu4XINDXCR5KG3y64W8AQHAzV3Rt6gJXB5sSfbHxe12ZylTGOukqk51XoHauNBVTLpMxlHbmip+AogFGAPXvzu/nbmmNnwxlymVVJfvO38KPBy6r9Uu4KPYiXurgiycbOZfLeyZn5GDf+VtIuZsHp5rW6NSoLtyK/ZhRWp2OXklFoY6LvEIh5G4oSivTv3U9vWW869jJg+roK7Pu2LVS38upprXW11UKCgux5+xNFBQWllqufh27Uut0+XYWRuo4r4/s4ItL/7Umc66pwJS+fvJ5vXszF3Rt6gLnmgqD67PnbNFAKMX3oYD6jvJ7qJRWH0PW60qK/tYgBYWFBn0/DF230hQUFuLL7Wf1lpm5/Sw6NaqLD9f9VZRPKJG4+iD6JAoKBVwdbAzeH0vbh0xRJjkjp9Q6C8Cg9TJkWa7F3re0eptCadvakDob8l0zdN8vjSHvVR7xE2B4DCUJXek3HXx9fXUvTJLw77//GrM4g12/fh316tXDH3/8gQ4dOsjTv/jiCyxbtgznzp3TmKdx48YYMWIEPvzwQ3nagQMH0LFjR1y/fh3u7u6wtrZGZGQknn/+ebnMzz//jJEjRyI3N1djmQCQm5ur9lpGRga8vLzgNW4NLBQVN2w7ERERmVZh7j0kzAlDeno6HBwcyrSsRz2GYvxERET06DA0hjKqpZQQAnv27IGLiwvs7ComeCh5X6WqOZwx5UtON3aZERERmDp1qsF1JiIiokcbYyjGT0RERKTJ6KRU48aNcfr0aTRq1Ki86qSVs7MzLC0tkZycrDb95s2bcHV11TqPm5ub1vI1atSAk5OT3jK6lgkU9ZlQvD8I1S99f37Urcy/ohoiL78QufkFKCgo6sT8fqFAfkEh7hf+15dUgcD9wkLczy/kKHVE1dSNjBz8XqyJ8lON6qr1x2TKMkRVQb3atvCsY2vy5WZkZMB9TtmXwxiq4uOnh3EvLx8B/9sFAIj/uBvsrI3u+cLg5VSlMu/9cgLbTiVrjTMtpKJ+Fb8a3EqedjY5A88uiAMAjOjgjbAnvODj9OD21bVHr+HT305p9E/0Wf8WGNC6HmbF/IMf919GgZYbPCwlCSOf9MH1tGyD6rTu2DV8sv4UJBS9h+qv6r0AGFTGVAx9ryspWYg+eg3X07LhUdsWA9vUg7eTZn9BhpYzl6pWH2M+e0PWTV+ZyylZ6DNvv87v7OaxTyL66DWTfPc9atuWuhwAlarM+ODGBu37hi4LKPuxyJBjnyHbenxwY5Ps+4Z8h7yd7M16TCvO0BjKqDOrhYUFGjVqhJSUFLMHVNbW1mjbti1iYmIwYMAAeXpMTAz69eundZ6goCBs3LhRbdqOHTsQEBAAKysruUxMTIxanwg7duxQa95ekkKhgEKh0JhuZ13joYMVY9jpv71UTUGhKEpc/df5efHEVV5BIfL/e37/v47TC5jFIqoSvJ3sEV5KUGeqMkRVga21Zbmcg/NNtEzGUBUfP5WVqeppyHIqexlvJ3u9Hed6O9nL5VUd/qqsiLuK5XFX5A5/L93OUrsIBCBfzH2y/hQ6NnTGjYxcCB3DcwgI3MjINbhOLwR6o2NDZ7kjYU9HW7nzbhVDypiKoe/VzF2Jj3srS12eoeXMparVx5jP3pB101fGz10pdxhfvENsIYo6jG/mrsQLgTWwdP8lrfMLCAwL9C61o3dvp/86ni9lH1L9X9Yy44Mbl1pnAZRaRrW/llbu65h/Sq2TnXUNkxyLDDnOhAV4GbxuZd33N55I0lufDSeSMKFnU7Me04ozNIYy+sw6c+ZMvP/++1i4cCFatGhhdMXKYvz48QgPD0dAQACCgoKwePFiXL16Fa+99hqAol/grl27huXLlwMAXnvtNXzzzTcYP348Ro8ejbi4OCxZskRtRJi3334bTz31FGbMmIF+/frht99+w86dO7F//36zrlt5sbSQYGlhafAIVoWFAvmFRcmp/MLC//6KB38LHkwvEEXJrUJR9LrqwbwWERGRJsZQVF0YMiIaoD4UuYrqIk81upghI0OZatQ4FR9n+1JHmzKkjKmY872odOb8PAYHeOEJnzo6kwW+xUY61Ja48nG2N9kIhar/y1rGkDoDMKiMIcsy5PhgqmORsaNT6ls3oOzfNWNG6KvMxxmjk1LDhg3DvXv30KpVK1hbW8PWVr2p/J07d0xWuZKGDBmClJQUTJs2DUlJSWjRogW2bNkCb29vAEBSUhKuXr0ql/f19cWWLVvwzjvv4Ntvv4WHhwfmzZsnD2UMAB06dMDq1avx8ccf45NPPkHDhg0RFRWFwMDAcluPyszCQoK1haoviIcbPUaIB4msQlGUpCooFCj8L5Gl+ltQKCBUr4kHZQu1vla0XNXrxnXPT0REVPEYQ1F1YehFp6mGPR8f3NikF4JElUlpyQJzJa4EYJIyhtTZ0DKGlDNFUs7QY5Ghxz5D162sDEnIVQVGJ6WMHebX1MaMGYMxY8ZofS0yMlJjWufOnXH06FG9yxw0aBAGDRpkiuoRinYAK0sJ5TkisiiRwAKgltQSWpJYqucCRc8fTC+apkp8if+WXzQd6mWhPs+DMkIuC6jPqzq4FR8VlIiIHj2Moaqey8WGkZ8V8w9eCPSG70NcVJhqOeZUWp0Nuegy5CLPkIuqynYhSGRu5khcAYa1XjJlKyBDW+/oK2fIupnqWAQYfpwxR8skY1qIVmZGJ6WGDx9eHvUgMookSbCUAEuUb/KrPBRPeMnP5f8fJLtQbBrw4P7tkvMWvaZetvjE4vOVeEltGSWna86j5UBu2CTNumnMY3y2rqISfMwrkj66Ap7yez+zvl2pHrY+D3MMKKmWTeXvk4gxVNVSsv+RH/dfxtL9l+T+R8y9HHMytM6lXXSZ8ra7ynQhSFQZlTVxZcoy5lZanSriFmBzMDTZWNk9VARXUFCA9evX48yZM5AkCX5+fnjmmWdgaVnFsgNEFUCSJKiPlq17OG4iIqpeGENVDYb0P2JIsG+q5ZiTKetc2fpfIXrUmar1UmXcF/XVydTHosqkMiYJjWV0UurChQvo1asXrl27hiZNmkAIgX/++QdeXl7YvHkzGjZsWB71JCIiIqrSGENVHYb0hWTIBZmplmNOpqwzb7sjosqguh+LKmOS0BhGJ6XGjh2Lhg0b4uDBg6hTpw4AICUlBcOGDcPYsWOxefNmk1eSiIiIqKpjDFV1GDOikTmWY06mrjNvuyOiyoDHosrL6KRUbGysWjAFAE5OTpg+fTo6duxo0soRERERVReMoaoOU41oZMxyzNkZur73Ko/RnHiRR0SVAY9FlZOFsTMoFApkZmZqTL979y6sra1NUikiIiKi6oYxVNURFuClt7WQoSMaGbqcNfEJ6DNvv/zaj/svo9vXe/FLfIKRNS9dae9lqnUnIiIyhNFJqT59+uCVV17BoUOH/htFTODgwYN47bXX8Mwzz5RHHYmIiIiqPMZQVYeq/xELCbC0kNT+GtPhrSHL0dWxeKEo6lj88u0s3W9gJEPey1TrTkREZAijb9+bN28ehg8fjqCgIFhZWQEA8vPz8cwzz2DOnDmmrh8RERFRtcAYqmoxVYe3pS3HnJ2hG/peVbWzXyIiqnqMTkrVrl0bv/32Gy5cuIAzZ85ACAE/Pz889thjyM6ufJ01EhEREVUGjKGqHlP1P6JvOebsDN2Y92LfK0REZA5G3773xhtvAAAee+wx9O3bF8888wwee+wxZGVlITQ01OQVJCIiIqoOGEORNnLH4lo8bMfileG9iIiIDGF0UmrHjh34+OOP1aZlZWWhZ8+eKCgoMFnFiIiIiKoTxlCkjTEdi5ccNe+Skf1NsRNzIiKqbB4qKfXjjz9i9uzZAIDMzEwEBwdDkiRs27bN5BUkIiIiqg4YQ5E2hnYsbooR+tiJORERVTZG9ynl6+uL7du3o0uXLrCwsMDq1auhUCiwefNm2NvzREZERESkDWMo0qW0jsV1jZoHFI2a94RPHYMTSuzEnIiIKhOjk1IA0KJFC2zatAndu3dHYGAgNm3aBFtb3oNOREREpA9jKNJFX8fixozQV/IWvxcCveFbIuHETsyJiKiyMCgp1bp1a62dIioUCly/fh0dO3aUpx09etR0tSMiIiKqwhhDkSkYOmremvgETIw+Kb/24/7LWLr/EmYM9Mdg9hdFRESVkEFJqf79+5dzNYiIiIiqH8ZQZAryqHk6Wkp5Otqa9BY/IiIiczEoKTV58uTyrgcRERFRtcMYikwhLMAL38Ve1PqaatS8KCNu8SMiIqosHqpPKQA4cuQIzpw5A0mS4Ofnh9atW5uyXkRERETVEmMoMpZq1LwJ0SchSRKEEPJf1ah5ht7iR0REVJkYnZS6efMmhg4dir1796J27doQQiA9PR1du3bF6tWrUbdu3fKoJxEREVGVxhiKyqK0UfMMucWPiIiosrEwdoa33noLGRkZOH36NO7cuYPU1FScOnUKGRkZGDt2bHnUkYiIiKjKYwxFZaUaNW/+c60xoWdTtT6iwgK89LaUGsKOzomIqBKShK6zlw5KpRI7d+7EE088oTb9zz//REhICNLS0kxZvyohIyMDSqUS6enpcHBwqOjqEBERkYmY8hzPGEod4yfT+yU+Qectfhx9j4iIzMnQ87zRt+8VFhbCyspKY7qVlRUKCwuNXRwRERHRI4ExFJW30m7xIyIiqmyMbinVr18/pKWlYdWqVfDw8AAAXLt2DS+88AIcHR2xbt26cqloZcZf+oiIiKonU57jGUOpY/xERERUfRl6nje6T6lvvvkGmZmZ8PHxQcOGDfHYY4/B19cXmZmZmD9/fpkqTURERFRdMYYiIiIiUmf07XteXl44evQoYmJicPbsWQgh4Ofnh+7du5dH/YiIiIiqBcZQREREROqMvn1v+fLlGDJkCBQKhdr0vLw8rF69Gi+++KJJK1gVsPk5ERFR9WTKczxjKHWMn4iIiKovQ8/zRielLC0tkZSUBBcXF7XpKSkpcHFxQUFBwcPVuApjUEVERFQ9mfIczxhKHeMnIiKi6qvc+pRSDS9bUmJiIpRKpbGLM1hqairCw8OhVCqhVCoRHh6ud+jk+/fvY8KECWjZsiXs7e3h4eGBF198EdevX1cr16VLF0iSpPYYOnRoua0HERERPZoYQxERERGpM7hPqdatW8sBR7du3VCjxoNZCwoKcOnSJfTs2bNcKgkAzz//PBITE7Ft2zYAwCuvvILw8HBs3LhRa/l79+7h6NGj+OSTT9CqVSukpqZi3LhxeOaZZxAfH69WdvTo0Zg2bZr83NbWttzWg4iIiB4tjKGIiIiItDM4KdW/f38AwPHjx9GjRw/UrFlTfs3a2ho+Pj4YOHCgySsIAGfOnMG2bdtw8OBBBAYGAgC+//57BAUF4dy5c2jSpInGPEqlEjExMWrT5s+fj3bt2uHq1auoX7++PN3Ozg5ubm7lUnciIiJ6tDGGIiIiItLO4KTU5MmTAQA+Pj4YMmQIbGxsyq1SJcXFxUGpVMrBFAC0b98eSqUSBw4c0BpQaZOeng5JklC7dm216StXrsRPP/0EV1dXhIaGYvLkyahVq5YpV4GIiIgeUYyhiIiIiLQzOCmlMnz48PKoh17JyckanYICgIuLC5KTkw1aRk5ODiZOnIjnn39erZOtF154Ab6+vnBzc8OpU6cwadIknDhxQuMXwuJyc3ORm5srP8/IyDBibYiIiOhR9KjHUIyfiIiIqCSjk1IWFhZaO+lUMWbkmClTpmDq1Kl6yxw+fBgAtL6nrg5DS7p//z6GDh2KwsJCLFiwQO210aNHy/+3aNECjRo1QkBAAI4ePYo2bdpoXV5ERESp9SYiIiIq7lGPoRg/ERERUUlGJ6XWrl2rFsTcv38fx44dw7Jly4wONN58881SR2nx8fHByZMncePGDY3Xbt26BVdXV73z379/H2FhYbh06RJ2795d6pDDbdq0gZWVFc6fP68zKTVp0iSMHz9efp6RkQEvLy+9yyUiIqJH26MeQzF+IiIiopKMTkqpOussbtCgQWjevDmioqIwatQog5fl7OwMZ2fnUssFBQUhPT0df/75J9q1awcAOHToENLT09GhQwed86mCqfPnz2PPnj1wcnIq9b1Onz6N+/fvw93dXWcZhUIBhUJR6rKIiIiIVB71GIrxExEREZUkCSGEKRZ08eJF+Pv7IysryxSL0xAaGorr16/ju+++A1A0nLG3t7facMZNmzZFREQEBgwYgPz8fAwcOBBHjx7Fpk2b1H4NrFOnDqytrXHx4kWsXLkSvXr1grOzM/7++2+8++67sLW1xeHDh2FpaWlQ3TIyMqBUKpGenl7qr4hERERUdZjjHP+oxlCMn4iIiKovQ8/zFqZ4s+zsbMyfPx+enp6mWJxWK1euRMuWLRESEoKQkBD4+/tjxYoVamXOnTuH9PR0AEBiYiI2bNiAxMREPP7443B3d5cfBw4cAFA0DPOuXbvQo0cPNGnSBGPHjkVISAh27txpcEKKiIiI6GExhiIiIqJHmdEtpRwdHdX6QxBCIDMzE7a2tli5ciWeeeYZk1eysuMvfURERNWTKc/xjKHUMX4iIiKqvgw9zxvdp9ScOXPUnltYWKBu3boIDAzElStXjK4oERER0aOAMRQRERGRujL3KZWeno6VK1diyZIlOH78uFHDGVcX/KWPiIioeirPc/yjHkMxfiIiIqq+yr1Pqd27d2PYsGFwd3fH/PnzERoaivj4+IddHBEREdEjgTEUERERURGjbt9LTExEZGQkli5diqysLISFheH+/fuIjo6Gn59fedWRiIiIqEpjDEVERESkyeCWUr169YKfnx/+/vtvzJ8/H9evX8f8+fPLs25EREREVR5jKCIiIiLtDG4ptWPHDowdOxavv/46GjVqVJ51IiIiIqo2GEMRERERaWdwS6l9+/YhMzMTAQEBCAwMxDfffINbt26VZ92IiIiIqjzGUERERETaGZyUCgoKwvfff4+kpCS8+uqrWL16NerVq4fCwkLExMQgMzOzPOtJREREVCUxhiIiIiLSThJCiIed+dy5c1iyZAlWrFiBtLQ0BAcHY8OGDaasX5XAIY2JiIiqp/I6xzOGYvxERERUnRl6nje4pZQ2TZo0wcyZM5GYmIhVq1aVZVFEREREjwzGUERERERlbClFRfhLHxERUfXEc3z54bYlIiKqvszSUoqIiIiIiIiIiOhhMClFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2VWZpFRqairCw8OhVCqhVCoRHh6OtLQ0vfOMGDECkiSpPdq3b69WJjc3F2+99RacnZ1hb2+PZ555BomJieW4JkRERETmwxiKiIiIKqsqk5R6/vnncfz4cWzbtg3btm3D8ePHER4eXup8PXv2RFJSkvzYsmWL2uvjxo3DunXrsHr1auzfvx93795Fnz59UFBQUF6rQkRERGQ2jKGIiIiosqpR0RUwxJkzZ7Bt2zYcPHgQgYGBAIDvv/8eQUFBOHfuHJo0aaJzXoVCATc3N62vpaenY8mSJVixYgW6d+8OAPjpp5/g5eWFnTt3okePHqZfGSIiIiIzYQxFRERElVmVaCkVFxcHpVIpB1MA0L59eyiVShw4cEDvvHv37oWLiwsaN26M0aNH4+bNm/JrR44cwf379xESEiJP8/DwQIsWLfQuNzc3FxkZGWoPIiIiosqmMsVQjJ+IiIiopCqRlEpOToaLi4vGdBcXFyQnJ+ucLzQ0FCtXrsTu3bvx9ddf4/Dhw3j66aeRm5srL9fa2hqOjo5q87m6uupdbkREhNwvg1KphJeX10OuGREREVH5qUwxFOMnIiIiKqlCk1JTpkzR6ESz5CM+Ph4AIEmSxvxCCK3TVYYMGYLevXujRYsW6Nu3L7Zu3Yp//vkHmzdv1luv0pY7adIkpKeny4+EhAQD15iIiIio7KpiDMX4iYiIiEqq0D6l3nzzTQwdOlRvGR8fH5w8eRI3btzQeO3WrVtwdXU1+P3c3d3h7e2N8+fPAwDc3NyQl5eH1NRUtV/6bt68iQ4dOuhcjkKhgEKhMPh9iYiIiEypKsZQjJ+IiIiopApNSjk7O8PZ2bnUckFBQUhPT8eff/6Jdu3aAQAOHTqE9PR0vcmjklJSUpCQkAB3d3cAQNu2bWFlZYWYmBiEhYUBAJKSknDq1CnMnDnzIdaIiIiIqPwxhiIiIqLqoEr0KdWsWTP07NkTo0ePxsGDB3Hw4EGMHj0affr0URs1pmnTpli3bh0A4O7du3jvvfcQFxeHy5cvY+/evejbty+cnZ0xYMAAAIBSqcSoUaPw7rvvYteuXTh27BiGDRuGli1byiPJEBEREVVVjKGIiIioMqvQllLGWLlyJcaOHSuP8vLMM8/gm2++UStz7tw5pKenAwAsLS3x119/Yfny5UhLS4O7uzu6du2KqKgo1KpVS55n9uzZqFGjBsLCwpCdnY1u3bohMjISlpaW5ls5IiIionLCGIqIiIgqK0kIISq6ElVdRkYGlEol0tPT4eDgUNHVISIiIhPhOb78cNsSERFVX4ae56vE7XtERERERERERFS9MClFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZXZVJSqWmpiI8PBxKpRJKpRLh4eFIS0vTO48kSVofX375pVymS5cuGq8PHTq0nNeGiIiIyDwYQxEREVFlVaOiK2Co559/HomJidi2bRsA4JVXXkF4eDg2btyoc56kpCS151u3bsWoUaMwcOBAtemjR4/GtGnT5Oe2trYmrDkRERFRxWEMRURERJVVlUhKnTlzBtu2bcPBgwcRGBgIAPj+++8RFBSEc+fOoUmTJlrnc3NzU3v+22+/oWvXrmjQoIHadDs7O42yRERERFUdYygiIiKqzKrE7XtxcXFQKpVyMAUA7du3h1KpxIEDBwxaxo0bN7B582aMGjVK47WVK1fC2dkZzZs3x3vvvYfMzEy9y8rNzUVGRobag4iIiKiyqUwxFOMnIiIiKqlKtJRKTk6Gi4uLxnQXFxckJycbtIxly5ahVq1aePbZZ9Wmv/DCC/D19YWbmxtOnTqFSZMm4cSJE4iJidG5rIiICEydOtW4lSAiIiIys8oUQzF+IiIiopIqtKXUlClTdHakqXrEx8cDKOpwsyQhhNbp2ixduhQvvPACbGxs1KaPHj0a3bt3R4sWLTB06FD8+uuv2LlzJ44ePapzWZMmTUJ6err8SEhIMGKtiYiIiMqmKsZQjJ+IiIiopAptKfXmm2+WOkqLj48PTp48iRs3bmi8duvWLbi6upb6Pvv27cO5c+cQFRVVatk2bdrAysoK58+fR5s2bbSWUSgUUCgUpS6LiIiIqDxUxRiK8RMRERGVVKFJKWdnZzg7O5daLigoCOnp6fjzzz/Rrl07AMChQ4eQnp6ODh06lDr/kiVL0LZtW7Rq1arUsqdPn8b9+/fh7u5e+goQERERVQDGUERERFQdVImOzps1a4aePXti9OjROHjwIA4ePIjRo0ejT58+aqPGNG3aFOvWrVObNyMjA7/88gtefvlljeVevHgR06ZNQ3x8PC5fvowtW7Zg8ODBaN26NTp27Fju60VERERUnhhDERERUWVWJZJSQNHoLi1btkRISAhCQkLg7++PFStWqJU5d+4c0tPT1aatXr0aQgg899xzGsu0trbGrl270KNHDzRp0gRjx45FSEgIdu7cCUtLy3JdHyIiIiJzYAxFRERElZUkhBAVXYmqLiMjA0qlEunp6XBwcKjo6hAREZGJ8BxffrhtiYiIqi9Dz/NVpqUUERERERERERFVH0xKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZsekFBERERERERERmR2TUkREREREREREZHZMShERERERERERkdkxKUVERERERERERGbHpBQREREREREREZkdk1JERERERERERGR2TEoREREREREREZHZMSlFRERERERERERmx6QUERERERERERGZHZNSRERERERERERkdkxKERERERERERGR2TEpRUREREREREREZldlklKff/45OnToADs7O9SuXdugeYQQmDJlCjw8PGBra4suXbrg9OnTamVyc3Px1ltvwdnZGfb29njmmWeQmJhYDmtAREREZH6MoYiIiKiyqjJJqby8PAwePBivv/66wfPMnDkTs2bNwjfffIPDhw/Dzc0NwcHByMzMlMuMGzcO69atw+rVq7F//37cvXsXffr0QUFBQXmsBhEREZFZMYYiIiKiykoSQoiKroQxIiMjMW7cOKSlpektJ4SAh4cHxo0bhwkTJgAo+kXP1dUVM2bMwKuvvor09HTUrVsXK1aswJAhQwAA169fh5eXF7Zs2YIePXoYVKeMjAwolUqkp6fDwcGhTOtHRERElUd1OsdXthiqOm1bIiIiUmfoeb7KtJQy1qVLl5CcnIyQkBB5mkKhQOfOnXHgwAEAwJEjR3D//n21Mh4eHmjRooVchoiIiOhRwhiKiIiIzKVGRVegvCQnJwMAXF1d1aa7urriypUrchlra2s4OjpqlFHNr01ubi5yc3Pl5+np6QCKMoFERERUfajO7VWsYXmZlFcMxfiJiIjo0WFoDFWhSakpU6Zg6tSpesscPnwYAQEBD/0ekiSpPRdCaEwrqbQyERERWuvt5eX1cJUkIiKiSi0zMxNKpbKiqyGrijEU4yciIqJHT2kxVIUmpd58800MHTpUbxkfH5+HWrabmxuAol/y3N3d5ek3b96Uf/lzc3NDXl4eUlNT1X7pu3nzJjp06KBz2ZMmTcL48ePl54WFhbhz5w6cnJxKDdaMlZGRAS8vLyQkJLC/hXLGbW0+3Nbmw21tPtzW5mPObS2EQGZmJjw8PMr1fYxVFWMoxk/VE7e1+XBbmw+3tflwW5uPube1oTFUhSalnJ2d4ezsXC7L9vX1hZubG2JiYtC6dWsARaPPxMbGYsaMGQCAtm3bwsrKCjExMQgLCwMAJCUl4dSpU5g5c6bOZSsUCigUCrVphg6x/LAcHBy4k5oJt7X5cFubD7e1+XBbm4+5tnVlaiGlUhVjKMZP1Ru3tflwW5sPt7X5cFubjzm3tSExVJXpU+rq1au4c+cOrl69ioKCAhw/fhwA8Nhjj6FmzZoAgKZNmyIiIgIDBgyAJEkYN24cvvjiCzRq1AiNGjXCF198ATs7Ozz//PMAijbQqFGj8O6778LJyQl16tTBe++9h5YtW6J79+4VtapEREREJsMYioiIiCqrKpOU+vTTT7Fs2TL5ueqXuz179qBLly4AgHPnzsmdZgLABx98gOzsbIwZMwapqakIDAzEjh07UKtWLbnM7NmzUaNGDYSFhSE7OxvdunVDZGQkLC0tzbNiREREROWIMRQRERFVVlUmKRUZGYnIyEi9ZUr26i5JEqZMmYIpU6bonMfGxgbz58/H/PnzTVBL01MoFJg8ebJGc3cyPW5r8+G2Nh9ua/PhtjYfbmvjPIoxFL8j5sNtbT7c1ubDbW0+3NbmU1m3tSQepTGOiYiIiIiIiIioUrCo6AoQEREREREREdGjh0kpIiIiIiIiIiIyOyaliIiIiIiIiIjI7JiUqsQWLFgAX19f2NjYoG3btti3b19FV6la+P3339G3b194eHhAkiSsX79e7XUhBKZMmQIPDw/Y2tqiS5cuOH36dMVUtgqLiIjAE088gVq1asHFxQX9+/fHuXPn1MpwW5vGwoUL4e/vDwcHBzg4OCAoKAhbt26VX+d2Lj8RERGQJAnjxo2Tp3F7m8aUKVMgSZLaw83NTX6d25n0YQxleoyfzIcxlPkwhqoYjJ/KV1WLoZiUqqSioqIwbtw4fPTRRzh27Bg6deqE0NBQXL16taKrVuVlZWWhVatW+Oabb7S+PnPmTMyaNQvffPMNDh8+DDc3NwQHByMzM9PMNa3aYmNj8cYbb+DgwYOIiYlBfn4+QkJCkJWVJZfhtjYNT09PTJ8+HfHx8YiPj8fTTz+Nfv36yScXbufycfjwYSxevBj+/v5q07m9Tad58+ZISkqSH3/99Zf8Grcz6cIYqnwwfjIfxlDmwxjK/Bg/mUeViqEEVUrt2rUTr732mtq0pk2biokTJ1ZQjaonAGLdunXy88LCQuHm5iamT58uT8vJyRFKpVIsWrSoAmpYfdy8eVMAELGxsUIIbuvy5ujoKH744Qdu53KSmZkpGjVqJGJiYkTnzp3F22+/LYTg99qUJk+eLFq1aqX1NW5n0ocxVPlj/GRejKHMizFU+WH8ZB5VLYZiS6lKKC8vD0eOHEFISIja9JCQEBw4cKCCavVouHTpEpKTk9W2vUKhQOfOnbntyyg9PR0AUKdOHQDc1uWloKAAq1evRlZWFoKCgridy8kbb7yB3r17o3v37mrTub1N6/z58/Dw8ICvry+GDh2Kf//9FwC3M+nGGKpicJ8sX4yhzIMxVPlj/GQ+VSmGqlEh70p63b59GwUFBXB1dVWb7urqiuTk5Aqq1aNBtX21bfsrV65URJWqBSEExo8fjyeffBItWrQAwG1tan/99ReCgoKQk5ODmjVrYt26dfDz85NPLtzOprN69WocPXoUhw8f1niN32vTCQwMxPLly9G4cWPcuHED//vf/9ChQwecPn2a25l0YgxVMbhPlh/GUOWPMZR5MH4yn6oWQzEpVYlJkqT2XAihMY3KB7e9ab355ps4efIk9u/fr/Eat7VpNGnSBMePH0daWhqio6MxfPhwxMbGyq9zO5tGQkIC3n77bezYsQM2NjY6y3F7l11oaKj8f8uWLREUFISGDRti2bJlaN++PQBuZ9KN342Kwe1ueoyhyh9jqPLH+Mm8qloMxdv3KiFnZ2dYWlpq/KJ38+ZNjYwmmZZqVAJue9N56623sGHDBuzZsweenp7ydG5r07K2tsZjjz2GgIAAREREoFWrVpg7dy63s4kdOXIEN2/eRNu2bVGjRg3UqFEDsbGxmDdvHmrUqCFvU25v07O3t0fLli1x/vx5fq9JJ8ZQFYP7ZPlgDGUejKHKH+OnilXZYygmpSoha2trtG3bFjExMWrTY2Ji0KFDhwqq1aPB19cXbm5uats+Ly8PsbGx3PZGEkLgzTffxNq1a7F79274+vqqvc5tXb6EEMjNzeV2NrFu3brhr7/+wvHjx+VHQEAAXnjhBRw/fhwNGjTg9i4nubm5OHPmDNzd3fm9Jp0YQ1UM7pOmxRiqYjGGMj3GTxWr0sdQ5u5ZnQyzevVqYWVlJZYsWSL+/vtvMW7cOGFvby8uX75c0VWr8jIzM8WxY8fEsWPHBAAxa9YscezYMXHlyhUhhBDTp08XSqVSrF27Vvz111/iueeeE+7u7iIjI6OCa161vP7660KpVIq9e/eKpKQk+XHv3j25DLe1aUyaNEn8/vvv4tKlS+LkyZPiww8/FBYWFmLHjh1CCG7n8lZ89BghuL1N5d133xV79+4V//77rzh48KDo06ePqFWrlnwe5HYmXRhDlQ/GT+bDGMp8GENVHMZP5aeqxVBMSlVi3377rfD29hbW1taiTZs28jCwVDZ79uwRADQew4cPF0IUDZM5efJk4ebmJhQKhXjqqafEX3/9VbGVroK0bWMA4scff5TLcFubxksvvSQfK+rWrSu6desmB1NCcDuXt5JBFbe3aQwZMkS4u7sLKysr4eHhIZ599llx+vRp+XVuZ9KHMZTpMX4yH8ZQ5sMYquIwfio/VS2GkoQQwnztsoiIiIiIiIiIiNinFBERERERERERVQAmpYiIiIiIiIiIyOyYlCIiIiIiIiIiIrNjUoqIiIiIiIiIiMyOSSkiIiIiIiIiIjI7JqWIiIiIiIiIiMjsmJQiIiIiIiIiIiKzY1KKiIiIiIiIiIjMjkkpIiIiIiIiIiIyOyaliOiRNWLECPTv37+iq0FERERUZTB+IiJTYlKKiIiIiIiIiIjMjkkpIiItZs2ahZYtW8Le3h5eXl4YM2YM7t69q1bm+++/h5eXF+zs7DBgwADMmjULtWvXll8/ceIEunbtilq1asHBwQFt27ZFfHy8mdeEiIiIyDwYPxGRsZiUIiLSwsLCAvPmzcOpU6ewbNky7N69Gx988IH8+h9//IHXXnsNb7/9No4fP47g4GB8/vnnast44YUX4OnpicOHD+PIkSOYOHEirKyszL0qRERERGbB+ImIjCUJIURFV4KIqCKMGDECaWlpWL9+fallf/nlF7z++uu4ffs2AGDo0KG4e/cuNm3aJJcZNmwYNm3ahLS0NACAg4MD5s+fj+HDh5dH9YmIiIjMjvETEZkSW0oREWnx//bunSWuNYwC8PKQIiDptLLSYpAQsAliZeUQSJjGSJrAmCKCjYWCvXaClyYXhBTBHyCWAxYTQabJBdIIprAISEIKb4gIccDThWiqI2ZPDnmebm/2B+/XLda+vXnzJuVyOV1dXbl161aq1Wr29vZycnKSJPn06VP6+/svrLl8PDU1ladPn2ZoaChzc3PZ2dkpbH4AgKLJT8B/pZQCuOTz58+5f/9+7ty5k9XV1Xz48CEvXrxIkpydnSVJzs/P09bWdmHd5QdPZ2ZmsrW1lQcPHqRer+f27dtZW1srZhMAAAWSn4CrUEoBXPL+/fs0m80sLi5mYGAgpVIpX758uXBNb29v3r59+8u6y0qlUiYnJ7O+vp7h4eG8fv36t84OANAK8hNwFTdaPQBAKx0dHeXjx48XznV2dqbZbObZs2epVCppNBpZXl6+cM3ExEQGBweztLSUSqWSer2eWq324+7f6elppqenMzIyku7u7uzu7ubdu3d5+PBhUVsDAPgt5CfguvjQOfDXevLkSVZWVn45Pzo6mr6+vszPz+fw8DCDg4N5/PhxqtVqDg4Ofvy2+NWrV5mdnc3+/n7u3buXu3fv5vnz5/n69Wu+f/+e0dHRNBqNfPv2LR0dHRkeHs78/Hxu3rxZ8E4BAK6H/ARcJ6UUwDUZGxvL9vZ2Njc3Wz0KAMD/gvwEfzev7wFc0cLCQsrlctrb21Or1bKyspKXL1+2eiwAgD+W/AT8zJNSAFf06NGjbGxs5Pj4OD09PZmYmMj4+HirxwIA+GPJT8DPlFIAAAAAFO6fVg8AAAAAwN9HKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABROKQUAAABA4ZRSAAAAABTuX0Et0uA0wLvBAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1200x400 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# Create a figure with two subplots side by side\n",
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) # 1 row, 2 columns, and an optional size specification\n",
"\n",
"# ACF plot in the first subplot\n",
"plot_acf(dfEnergyAll['Lastgang'].dropna(), lags=50, ax=ax1) # Autocorrelation plot for 'Lastgang' with 50 lags\n",
"ax1.set_title('Autocorrelation Function (ACF) of Lastgang') # Set title for the first subplot\n",
"ax1.set_xlabel('Lags') # Set x-label as 'Lags'\n",
"ax1.set_ylabel('Autocorrelation') # Set y-label as 'Autocorrelation'\n",
"\n",
"# PACF plot in the second subplot\n",
"plot_pacf(dfEnergyAll['Lastgang'].dropna(), lags=50, ax=ax2) # Partial autocorrelation plot for 'Lastgang' with 50 lags\n",
"ax2.set_title('Partial Autocorrelation Function (PACF) of Lastgang') # Set title for the second subplot\n",
"ax2.set_xlabel('Lags') # Set x-label as 'Lags'\n",
"ax2.set_ylabel('Autocorrelation') # Set y-label as 'Autocorrelation'\n",
"\n",
"# Adjust spacing between the plots\n",
"plt.tight_layout()\n",
"\n",
"# Display the plots\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "a8e697f0-54a3-4854-82dd-2334582538a5",
"metadata": {},
"outputs": [],
"source": [
"# Step 3 - Data Scaling\n",
"\n",
"# Initialize the scalers\n",
"lastgang_scaler = MinMaxScaler(feature_range=(0, 1))\n",
"features_scaler = MinMaxScaler(feature_range=(0, 1))\n",
"\n",
"# Apply the scaler to the corresponding columns\n",
"dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1))\n",
"dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4a436b9a-88ca-4642-9a8f-5e4f61d69c7e",
"metadata": {},
"outputs": [],
"source": [
"# Step 3 - Check the scaled values\n",
"\n",
"print(dfEnergyAll.describe())\n",
"\n",
"print(\"Skalierparameter für Lastgang:\", lastgang_scaler.scale_, lastgang_scaler.min_)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "7c33eb1a-a633-499d-96cf-a5a5a6aa33b5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU before model training:\n",
"CPU Utilization: 98.6%\n",
"RAM before model training:\n",
"Total memory: 146.88 GB\n",
"Available memory: 109.45 GB\n",
"Used memory: 35.63 GB\n",
"Memory usage: 25.5%\n"
]
}
],
"source": [
"# Step 3 - Show GPU Utilization and Memory Usage before Model Training\n",
"\n",
"#def print_gpu_utilization():\n",
" # Retrieve and print GPU utilization and memory stats\n",
" # GPUs = GPUtil.getGPUs()\n",
" # for GPU in GPUs:\n",
" # print(f\"GPU: {GPU.name}, GPU RAM Free: {GPU.memoryFree}MB, Used: {GPU.memoryUsed}MB, Utilization: {GPU.load*100}%\")\n",
"\n",
"#print(\"GPU before model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n",
"#print_gpu_utilization()\n",
"\n",
"# Function to print CPU utilization\n",
"def print_cpu_utilization():\n",
" # Retrieve and print the percentage of CPU utilization\n",
" print(f\"CPU Utilization: {psutil.cpu_percent(interval=1)}%\")\n",
"\n",
"print(\"CPU before model training:\")\n",
"print_cpu_utilization()\n",
"\n",
"def print_memory_usage():\n",
" # Retrieve and print memory statistics\n",
" memory = psutil.virtual_memory()\n",
" print(f\"Total memory: {memory.total / (1024**3):.2f} GB\")\n",
" print(f\"Available memory: {memory.available / (1024**3):.2f} GB\")\n",
" print(f\"Used memory: {memory.used / (1024**3):.2f} GB\")\n",
" print(f\"Memory usage: {memory.percent}%\")\n",
"\n",
"print(\"RAM before model training:\")\n",
"print_memory_usage()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c181460f-7248-4672-b8a0-516e6e09fed7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"RUNNING THE L-BFGS-B CODE\n",
"\n",
" * * *\n",
"\n",
"Machine precision = 2.220D-16\n",
" N = 12 M = 10\n",
"\n",
"At X0 0 variables are exactly at the bounds\n",
"\n",
"At iterate 0 f= -2.08057D+00 |proj g|= 1.19631D+03\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" This problem is unconstrained.\n"
]
}
],
"source": [
"# Step 4 - Creating the SARIMAX model and generating predictions\n",
"\n",
"# Ensure the index is set as DatetimeIndex and has the correct frequency\n",
"dfEnergyAll.index = pd.to_datetime(dfEnergyAll.index) # Convert the index to datetime type\n",
"dfEnergyAll = dfEnergyAll.asfreq('15T') # Set the frequency of the DataFrame to every 15 minutes\n",
"\n",
"# Split the data into training and testing sets\n",
"# Since you want to forecast 48 hours ahead (192 fifteen-minute intervals), take this into account when splitting\n",
"train, test = train_test_split(dfEnergyAll, train_size=len(dfEnergyAll)-192)\n",
"\n",
"# Separate the target variable (Lastgang) and the exogenous variables\n",
"y_train = train['Lastgang'] # Target variable for training\n",
"X_train = train[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] # Exogenous variables for training\n",
"# Only 1 external variable: , 'Lufttemperatur'\n",
"\n",
"y_test = test['Lastgang'] # Target variable for testing, used later for evaluation\n",
"X_test = test[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] # Exogenous variables for testing, used for predictions\n",
"# Only 1 external variable: , 'Lufttemperatur'\n",
"\n",
"# Define and fit the SARIMAX model\n",
"# SARIMAX model with ARIMA(1,0,0) and seasonal order (1,0,0,96)\n",
"model = sm.tsa.SARIMAX(y_train, exog=X_train, order=(1,0,0), seasonal_order=(1,0,0,96), enforce_stationarity=False, enforce_invertibility=False)\n",
"results = model.fit()\n",
"\n",
"# Display the model summary\n",
"print(results.summary())\n",
"\n",
"# Use the model for predictions\n",
"predictions = results.get_forecast(steps=192, exog=X_test).predicted_mean # Forecasting using the model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ecc374bc-c312-4400-915d-96707c87ae49",
"metadata": {},
"outputs": [],
"source": [
"# Step 5 - Rescaling, error metrics and visualization\n",
"\n",
"# Rescale predictions and review\n",
"predictions_original_scale = lastgang_scaler.inverse_transform(predictions.to_numpy().reshape(-1, 1)) # Rescale the predictions to the original scale\n",
"print(\"After rescaling (first 5 values):\", predictions_original_scale[:5]) # Print the first 5 rescaled prediction values\n",
"\n",
"# Rescale actual values and review\n",
"y_test_original_scale = lastgang_scaler.inverse_transform(y_test.to_numpy().reshape(-1, 1)) # Rescale the actual values to the original scale\n",
"print(\"Actual values after rescaling (first 5 values):\", y_test_original_scale[:5]) # Print the first 5 rescaled actual values"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d272a1e2-4f7e-4840-81ed-0a1f5a462d46",
"metadata": {},
"outputs": [],
"source": [
"# Step 5 - Rescaling, error metrics and visualization\n",
"\n",
"# Create a series for SARIMAX forecast results with timestamps\n",
"sarimax_forecast_series = pd.Series(predictions, index=y_test.index) # Initially store predictions in a series with the test set's timestamps\n",
"\n",
"# Create a series for SARIMAX forecast results with timestamps using rescaled predictions\n",
"sarimax_forecast_series = pd.Series(predictions_original_scale.ravel(), index=y_test.index) # Use rescaled predictions for the series\n",
"\n",
"# Calculate error metrics for SARIMAX model predictions\n",
"mse = mean_squared_error(y_test_original_scale, sarimax_forecast_series) # Calculate mean squared error\n",
"mae = mean_absolute_error(y_test_original_scale, sarimax_forecast_series) # Calculate mean absolute error\n",
"rmse = np.sqrt(mse) # Calculate root mean square error\n",
"mape = np.mean(np.abs((y_test_original_scale.ravel() - sarimax_forecast_series) / y_test_original_scale.ravel())) * 100 # Calculate mean absolute percentage error\n",
"\n",
"# Output error metrics for SARIMAX model predictions\n",
"print(f\"Mean Squared Error (MSE) for the last 2 days: {mse}\")\n",
"print(f\"Mean Absolute Error (MAE) for the last 2 days: {mae}\")\n",
"print(f\"Root Mean Square Error (RMSE) for the last 2 days: {rmse}\")\n",
"print(f\"Mean Absolute Percentage Error (MAPE) for the last 2 days: {mape}%\")\n",
"\n",
"# Visualization\n",
"plt.figure(figsize=(12, 6))\n",
"plt.plot(y_test.index, y_test_original_scale, label='Actual Values', color='#3E7A6F') # Plot actual values\n",
"plt.plot(sarimax_forecast_series.index, sarimax_forecast_series, label='Predicted Values', color='#7DFFE7') # Plot predicted values\n",
"plt.legend()\n",
"plt.title('Comparison of Actual and Predicted Values: SARIMAX over 48 Hours')\n",
"plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%m-%d %H:%M')) # Format the x-axis labels to show month-day and time\n",
"plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3)) # Set major tick intervals on the x-axis\n",
"plt.gcf().autofmt_xdate() # Auto-format date labels for better readability\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40da38a3-6473-4dc2-9690-dcfa5ae27415",
"metadata": {},
"outputs": [],
"source": [
"# Step 7 - Show GPU Utilization and Memory Usage after Model Training\n",
"\n",
"#print(\"GPU after model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")) # Print GPU utilization after model training\n",
"#print_gpu_utilization() # Call function to print GPU utilization\n",
"\n",
"print(\"CPU after model training:\") # Print CPU utilization after model training\n",
"print_cpu_utilization() # Call function to print CPU utilization\n",
"\n",
"print(\"RAM after model training:\") # Print RAM usage after model training\n",
"print_memory_usage() # Call function to print RAM usage"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|