File size: 208,275 Bytes
027bd9a 49343c3 027bd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
{
"cells": [
{
"cell_type": "markdown",
"id": "30b18a7c-b40c-4b53-b1cc-90eb0632e6d3",
"metadata": {},
"source": [
"# Transformer-Architecture for the prediction of energy consumption data over 48 hours\n",
"### 1 - Transformer-Architecture with Energy consumption data and weather data\n",
"### 2 - Transformer-Architecture with Energy consumption data and 2 variables 'Lastgang_Moving_Average' and 'Lastgang_First_Difference'"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "db9e4cca-6b76-41b9-a8c3-645bc7bd97de",
"metadata": {},
"outputs": [],
"source": [
"#Install all required packages with 'conda install NAME' or with pip install NAME'\n",
"# pandas\n",
"# numpy\n",
"# matplotlib\n",
"# scikit-learn\n",
"# torch\n",
"# gputil\n",
"# psutil\n",
"# torchsummary"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "abe044e7-e328-433e-8c33-adf3b8442863",
"metadata": {},
"outputs": [],
"source": [
"#Import all required libraries\n",
"import sys # Provides access to some variables used or maintained by the interpreter\n",
"import pandas as pd # Library for data manipulation and analysis, ideal for working with structured data like tables\n",
"import numpy as np # For scientific computing, supports large, multi-dimensional arrays and matrices\n",
"import matplotlib.pyplot as plt # For creating static, interactive, and animated visualizations\n",
"import matplotlib.dates as mdates # Provides classes for manipulating dates in plots\n",
"from pathlib import Path # Used for filesystem path manipulation in an object-oriented way\n",
"import torch # Scientific computing library for ML and neural networks\n",
"import torch.nn as nn # Module in PyTorch providing various layers and parameters for neural networks, facilitates building and training\n",
"from sklearn.metrics import mean_squared_error, mean_absolute_error # For calculating key regression metrics\n",
"from sklearn.preprocessing import MinMaxScaler # For scaling and normalizing features, often useful in data preprocessing\n",
"import os # Provides a way of using operating system dependent functionality\n",
"import GPUtil # For monitoring GPU utilization\n",
"from datetime import datetime # For handling dates and times\n",
"import psutil # For accessing system details and process utilities\n",
"from torchsummary import summary # Import summary from torchsummary to display a summary of model layers and parameters"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "cabbab8f-0d40-44ab-975e-0f18ea6056db",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/sarah/anaconda3/envs/BT2024PyTorch/bin/python\n"
]
}
],
"source": [
"#To display the current environment\n",
"print(sys.executable)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "944e31d4-e885-4fa7-ab6c-e2a2a3bc14e7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First and last rows from dfClimaAll:\n",
" dy Globalstrahlung_15Min Sonnenhöhe ExtraterrestrischeStrahlung \\\n",
"0 1 0 -65.0 0 \n",
"1 1 0 -65.0 0 \n",
"2 1 0 -65.4 0 \n",
"3 1 0 -65.5 0 \n",
"4 1 0 -65.2 0 \n",
"\n",
" StundenwertStrahlung Diffusstrahlung StrahlungGeneigteFläche \\\n",
"0 0 0 0 \n",
"1 0 0 0 \n",
"2 0 0 0 \n",
"3 0 0 0 \n",
"4 0 0 0 \n",
"\n",
" DiffusstrahlungGeneigteFläche Direktnormalstrahlung Lufttemperatur \\\n",
"0 0 0 2.5 \n",
"1 0 0 2.5 \n",
"2 0 0 2.5 \n",
"3 0 0 2.5 \n",
"4 0 0 2.4 \n",
"\n",
" Windgeschwindigkeit Schönwetterstrahlung Taupunkttemperatur TheorPVProd \\\n",
"0 1.2 0 0.8 0 \n",
"1 1.2 0 0.8 0 \n",
"2 1.2 0 0.8 0 \n",
"3 1.1 0 0.8 0 \n",
"4 1.1 0 0.8 0 \n",
"\n",
" TimestampWeather \n",
"0 2021-01-01 00:00:00 \n",
"1 2021-01-01 00:15:00 \n",
"2 2021-01-01 00:30:00 \n",
"3 2021-01-01 00:45:00 \n",
"4 2021-01-01 01:00:00 \n",
" dy Globalstrahlung_15Min Sonnenhöhe ExtraterrestrischeStrahlung \\\n",
"35035 365 0 -56.5 0 \n",
"35036 365 0 -58.5 0 \n",
"35037 365 0 -60.3 0 \n",
"35038 365 0 -61.9 0 \n",
"35039 365 0 -63.3 0 \n",
"\n",
" StundenwertStrahlung Diffusstrahlung StrahlungGeneigteFläche \\\n",
"35035 0 0 0 \n",
"35036 0 0 0 \n",
"35037 0 0 0 \n",
"35038 0 0 0 \n",
"35039 0 0 0 \n",
"\n",
" DiffusstrahlungGeneigteFläche Direktnormalstrahlung Lufttemperatur \\\n",
"35035 0 0 5.5 \n",
"35036 0 0 5.5 \n",
"35037 0 0 5.5 \n",
"35038 0 0 5.5 \n",
"35039 0 0 4.9 \n",
"\n",
" Windgeschwindigkeit Schönwetterstrahlung Taupunkttemperatur \\\n",
"35035 2.4 0 -18.2 \n",
"35036 2.4 0 -18.2 \n",
"35037 2.4 0 -18.2 \n",
"35038 2.4 0 -18.2 \n",
"35039 1.8 0 -14.0 \n",
"\n",
" TheorPVProd TimestampWeather \n",
"35035 0 2023-12-31 22:45:00 \n",
"35036 0 2023-12-31 23:00:00 \n",
"35037 0 2023-12-31 23:15:00 \n",
"35038 0 2023-12-31 23:30:00 \n",
"35039 0 2023-12-31 23:45:00 \n",
"Number of missing values per column:\n",
"dy 0\n",
"Globalstrahlung_15Min 0\n",
"Sonnenhöhe 0\n",
"ExtraterrestrischeStrahlung 0\n",
"StundenwertStrahlung 0\n",
"Diffusstrahlung 0\n",
"StrahlungGeneigteFläche 0\n",
"DiffusstrahlungGeneigteFläche 0\n",
"Direktnormalstrahlung 0\n",
"Lufttemperatur 0\n",
"Windgeschwindigkeit 0\n",
"Schönwetterstrahlung 0\n",
"Taupunkttemperatur 0\n",
"TheorPVProd 0\n",
"TimestampWeather 0\n",
"dtype: int64\n",
"Number of rows in dfClimaAll: 105120\n"
]
}
],
"source": [
"# Step 1 - Reading Data\n",
"\n",
"## dfClimaAll: Data from 2021-2023\n",
"## dfEnergyAll: All data from the transformer station from 2021-2023\n",
"\n",
"# Load data for 2021\n",
"dfClima21 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2021TimeWeather.xlsx')\n",
"\n",
"# Load data for 2022\n",
"dfClima22 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2022TimeWeather.xlsx')\n",
"\n",
"# Load data for 2023\n",
"dfClima23 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2023TimeWeather.xlsx')\n",
"\n",
"# Merge the DataFrames\n",
"dfClimaAll = pd.concat([dfClima21, dfClima22, dfClima23])\n",
"\n",
"# Check the resulting DataFrame\n",
"print(\"First and last rows from dfClimaAll:\")\n",
"print(dfClimaAll.head())\n",
"print(dfClimaAll.tail())\n",
"\n",
"# Check for missing values in each column\n",
"## .isnull(): Returns DF where values with NaN are replaced by True & values without NaN are replaced by False\n",
"## sum(): Sums up the number of True values\n",
"print(\"Number of missing values per column:\")\n",
"print(dfClimaAll.isnull().sum())\n",
"\n",
"# Convert 'Timestamp' into a Datetime object and set it as index, if not already set\n",
"if 'TimestampWeather' in dfClimaAll.columns:\n",
" ## pd.to_datetime: Converts values into Datetime objects —> Pandas can then treat these as timestamps\n",
" dfClimaAll['TimestampWeather'] = pd.to_datetime(dfClimaAll['TimestampWeather'])\n",
" ## set_index: Sets index for the Timestamp column to facilitate access to data based on time points\n",
" dfClimaAll = dfClimaAll.set_index('TimestampWeather')\n",
"\n",
"# Number of rows in dfClimaAll\n",
"print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "dd18e843-0297-4813-a58b-4a448f63c446",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First and last rows from dfEnergyAll:\n",
" Lastgang\n",
"Timestamp \n",
"2021-01-01 00:00:00 472.88\n",
"2021-01-01 00:15:00 498.83\n",
"2021-01-01 00:30:00 480.48\n",
"2021-01-01 00:45:00 446.74\n",
"2021-01-01 01:00:00 459.55\n",
" Lastgang\n",
"Timestamp \n",
"2023-12-31 22:45:00 833.17\n",
"2023-12-31 23:00:00 767.89\n",
"2023-12-31 23:15:00 770.04\n",
"2023-12-31 23:30:00 730.45\n",
"2023-12-31 23:45:00 744.21\n",
"Number of rows in dfEnergyAll: 105108\n"
]
}
],
"source": [
"# Step 1 - Reading Data\n",
"\n",
"## dfClimaAll: Data from 2021-2023\n",
"## dfEnergyAll: All data from the transformer station from 2021-2023\n",
"\n",
"# Path to the directory containing the Excel files\n",
"directory_path = Path('/home/sarah/Documents/BT2024/All')\n",
"\n",
"# Create a list of all Excel files in the directory\n",
"file_paths = list(directory_path.glob('*.xlsx'))\n",
"\n",
"# List to store the individual DataFrames\n",
"dfs = []\n",
"\n",
"# Loop over all file paths\n",
"for file_path in file_paths:\n",
" # Read the Excel file\n",
" df = pd.read_excel(file_path)\n",
" \n",
" # Convert the 'Timestamp' column to a datetime\n",
" df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n",
" \n",
" # Convert the 'Lastgang' column to a numeric type, treat errors as NaN\n",
" df['Lastgang'] = pd.to_numeric(df['Lastgang'], errors='coerce')\n",
" \n",
" # Sort the DataFrame by 'Timestamp'\n",
" df = df.sort_values(by='Timestamp')\n",
" \n",
" # Perform linear interpolation for 'Lastgang' on the individual DataFrame\n",
" df['Lastgang'] = df['Lastgang'].interpolate(method='linear')\n",
" \n",
" # Add the DataFrame to the list\n",
" dfs.append(df)\n",
"\n",
"# Merge all DataFrames in the list\n",
"dfEnergyAll = pd.concat(dfs).set_index('Timestamp')\n",
"\n",
"# Sum the 'Lastgang' values for identical timestamps\n",
"dfEnergyAll = dfEnergyAll.groupby('Timestamp').sum()\n",
"\n",
"# Check the resulting DataFrame\n",
"print(\"First and last rows from dfEnergyAll:\")\n",
"print(dfEnergyAll.head())\n",
"print(dfEnergyAll.tail())\n",
"\n",
"# Display the number of rows in dfEnergyAll\n",
"print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "f57c59a7-8588-400b-a65e-7798892b3bff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing timestamps in dfEnergyAll:\n",
"DatetimeIndex(['2021-03-28 02:00:00', '2021-03-28 02:15:00',\n",
" '2021-03-28 02:30:00', '2021-03-28 02:45:00',\n",
" '2022-03-27 02:00:00', '2022-03-27 02:15:00',\n",
" '2022-03-27 02:30:00', '2022-03-27 02:45:00',\n",
" '2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
" '2023-03-26 02:30:00', '2023-03-26 02:45:00'],\n",
" dtype='datetime64[ns]', name='Timestamp', freq=None)\n",
"Check after adding the missing timestamps:\n",
" Lastgang\n",
"2021-03-28 02:00:00 372.28\n",
"2021-03-28 02:15:00 372.28\n",
"2021-03-28 02:30:00 372.28\n",
"2021-03-28 02:45:00 372.28\n",
"2022-03-27 02:00:00 554.20\n",
"2022-03-27 02:15:00 554.20\n",
"2022-03-27 02:30:00 554.20\n",
"2022-03-27 02:45:00 554.20\n",
"2023-03-26 02:00:00 520.34\n",
"2023-03-26 02:15:00 520.34\n",
"2023-03-26 02:30:00 520.34\n",
"2023-03-26 02:45:00 520.34\n",
"Number of rows in dfClima21: 105120\n",
"Number of rows in dfEnergyAll: 105120\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1514653/1871761932.py:32: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# Create a complete timestamp index for the years 2021 - 2023 in 15-minute intervals\n",
"all_timestamps = pd.date_range(start='2021-01-01 00:00:00', end='2023-12-31 23:45:00', freq='15T')\n",
"\n",
"# Convert this into a DataFrame\n",
"df_all_timestamps = pd.DataFrame(all_timestamps, columns=['Timestamp'])\n",
"df_all_timestamps = df_all_timestamps.set_index('Timestamp')\n",
"\n",
"# Compare the complete timestamp index with dfEnergyAll\n",
"missing_timestamps = df_all_timestamps.index.difference(dfEnergyAll.index)\n",
"\n",
"print(\"Missing timestamps in dfEnergyAll:\")\n",
"print(missing_timestamps)\n",
"\n",
"\n",
"# Missing timestamps\n",
"missing_timestamps = pd.DatetimeIndex(['2021-03-28 02:00:00', '2021-03-28 02:15:00',\n",
" '2021-03-28 02:30:00', '2021-03-28 02:45:00',\n",
" '2022-03-27 02:00:00', '2022-03-27 02:15:00',\n",
" '2022-03-27 02:30:00', '2022-03-27 02:45:00',\n",
" '2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
" '2023-03-26 02:30:00', '2023-03-26 02:45:00'])\n",
"\n",
"# Create a DataFrame with the missing timestamps\n",
"df_missing = pd.DataFrame(index=missing_timestamps)\n",
"\n",
"# Merge this DataFrame with the original DataFrame\n",
"dfEnergyAll = dfEnergyAll.combine_first(df_missing)\n",
"\n",
"# Fill the missing values. Use 'ffill' for forward fill.\n",
"dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n",
"\n",
"print(\"Check after adding the missing timestamps:\")\n",
"print(dfEnergyAll.loc[missing_timestamps])\n",
"\n",
"# Number of rows in dfClimaAll\n",
"# Ensure dfClimaAll is already defined before executing this line.\n",
"print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])\n",
"\n",
"# Number of rows in dfEnergyAll\n",
"print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
]
},
{
"cell_type": "markdown",
"id": "aff293e9-0b20-45bf-981e-5c952ddb4e52",
"metadata": {},
"source": [
"## 1 - Transformer-Architecture with Energy consumption data and weather data"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "5939df7d-254c-4aba-a087-fccc490a0ee5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of missing values per column:\n",
"Lastgang 0\n",
"StundenwertStrahlung 0\n",
"Globalstrahlung_15Min 0\n",
"StrahlungGeneigteFläche 0\n",
"TheorPVProd 0\n",
"Direktnormalstrahlung 0\n",
"Schönwetterstrahlung 0\n",
"Lufttemperatur 0\n",
"dtype: int64\n",
"First and last rows from dfEnergyAll-Edited:\n",
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2021-01-01 00:00:00 472.88 0 0 \n",
"2021-01-01 00:15:00 498.83 0 0 \n",
"2021-01-01 00:30:00 480.48 0 0 \n",
"2021-01-01 00:45:00 446.74 0 0 \n",
"2021-01-01 01:00:00 459.55 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2021-01-01 00:00:00 0 0 \n",
"2021-01-01 00:15:00 0 0 \n",
"2021-01-01 00:30:00 0 0 \n",
"2021-01-01 00:45:00 0 0 \n",
"2021-01-01 01:00:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2021-01-01 00:00:00 0 0 \n",
"2021-01-01 00:15:00 0 0 \n",
"2021-01-01 00:30:00 0 0 \n",
"2021-01-01 00:45:00 0 0 \n",
"2021-01-01 01:00:00 0 0 \n",
"\n",
" Lufttemperatur \n",
"2021-01-01 00:00:00 2.5 \n",
"2021-01-01 00:15:00 2.5 \n",
"2021-01-01 00:30:00 2.5 \n",
"2021-01-01 00:45:00 2.5 \n",
"2021-01-01 01:00:00 2.4 \n",
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2023-12-31 22:45:00 833.17 0 0 \n",
"2023-12-31 23:00:00 767.89 0 0 \n",
"2023-12-31 23:15:00 770.04 0 0 \n",
"2023-12-31 23:30:00 730.45 0 0 \n",
"2023-12-31 23:45:00 744.21 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2023-12-31 22:45:00 0 0 \n",
"2023-12-31 23:00:00 0 0 \n",
"2023-12-31 23:15:00 0 0 \n",
"2023-12-31 23:30:00 0 0 \n",
"2023-12-31 23:45:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2023-12-31 22:45:00 0 0 \n",
"2023-12-31 23:00:00 0 0 \n",
"2023-12-31 23:15:00 0 0 \n",
"2023-12-31 23:30:00 0 0 \n",
"2023-12-31 23:45:00 0 0 \n",
"\n",
" Lufttemperatur \n",
"2023-12-31 22:45:00 5.5 \n",
"2023-12-31 23:00:00 5.5 \n",
"2023-12-31 23:15:00 5.5 \n",
"2023-12-31 23:30:00 5.5 \n",
"2023-12-31 23:45:00 4.9 \n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# To check if the indexes in both DataFrames are set equally\n",
"dfClimaAll.index.equals(dfEnergyAll.index)\n",
"\n",
"# Adding the columns from dfClima21 to dfEnergyAll\n",
"dfEnergyAll = dfEnergyAll.join(dfClimaAll[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur']])\n",
"\n",
"# Checking for missing values in each column\n",
"print(\"Number of missing values per column:\")\n",
"print(dfEnergyAll.isnull().sum())\n",
"\n",
"# Printing the first and last rows from the dataframe\n",
"print(\"First and last rows from dfEnergyAll-Edited:\")\n",
"print(dfEnergyAll.head())\n",
"print(dfEnergyAll.tail())"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "d74e0399-9d4c-4aad-aeb1-b615170f8c5c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"2021-01-01 00:00:00 472.88 0 0 \n",
"2021-01-01 00:15:00 498.83 0 0 \n",
"2021-01-01 00:30:00 480.48 0 0 \n",
"2021-01-01 00:45:00 446.74 0 0 \n",
"2021-01-01 01:00:00 459.55 0 0 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd \\\n",
"2021-01-01 00:00:00 0 0 \n",
"2021-01-01 00:15:00 0 0 \n",
"2021-01-01 00:30:00 0 0 \n",
"2021-01-01 00:45:00 0 0 \n",
"2021-01-01 01:00:00 0 0 \n",
"\n",
" Direktnormalstrahlung Schönwetterstrahlung \\\n",
"2021-01-01 00:00:00 0 0 \n",
"2021-01-01 00:15:00 0 0 \n",
"2021-01-01 00:30:00 0 0 \n",
"2021-01-01 00:45:00 0 0 \n",
"2021-01-01 01:00:00 0 0 \n",
"\n",
" Lufttemperatur Lastgang_Moving_Average \\\n",
"2021-01-01 00:00:00 2.5 549.123854 \n",
"2021-01-01 00:15:00 2.5 549.123854 \n",
"2021-01-01 00:30:00 2.5 549.123854 \n",
"2021-01-01 00:45:00 2.5 549.123854 \n",
"2021-01-01 01:00:00 2.4 549.123854 \n",
"\n",
" Lastgang_First_Difference \n",
"2021-01-01 00:00:00 25.95 \n",
"2021-01-01 00:15:00 25.95 \n",
"2021-01-01 00:30:00 -18.35 \n",
"2021-01-01 00:45:00 -33.74 \n",
"2021-01-01 01:00:00 12.81 \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_1514653/1800522370.py:11: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
" dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n"
]
}
],
"source": [
"# Step 2 - Preparing the Data\n",
"\n",
"# Calculating the moving average for 'Lastgang'\n",
"window_size = 96 # This corresponds to 24 hours at 15-minute intervals\n",
"dfEnergyAll['Lastgang_Moving_Average'] = dfEnergyAll['Lastgang'].rolling(window=window_size).mean()\n",
"\n",
"# Calculating the first differences for 'Lastgang'\n",
"dfEnergyAll['Lastgang_First_Difference'] = dfEnergyAll['Lastgang'].diff()\n",
"\n",
"# Since the first `window_size - 1` values of the moving average will be NaN and the first value of the first difference will be NaN, fill these values.\n",
"dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n",
"\n",
"# To check the first few rows to ensure the new features look as expected.\n",
"print(dfEnergyAll.head())"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "c513ae39-9901-490c-939b-c2061b85d5d9",
"metadata": {},
"outputs": [],
"source": [
"# Step 3 - Data Scaling\n",
"\n",
"# Initialize the scalers\n",
"lastgang_scaler = MinMaxScaler(feature_range=(0, 1))\n",
"features_scaler = MinMaxScaler(feature_range=(0, 1))\n",
"\n",
"# Apply the scaler to the corresponding columns\n",
"dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1))\n",
"dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']])"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "f98d7e5d-6358-4ddf-a1e0-907e2c133c40",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Lastgang StundenwertStrahlung Globalstrahlung_15Min \\\n",
"count 105120.000000 105120.000000 105120.000000 \n",
"mean 0.425947 0.561652 0.125328 \n",
"std 0.149590 0.111328 0.197261 \n",
"min 0.000000 0.000000 0.000000 \n",
"25% 0.312299 0.490186 0.000000 \n",
"50% 0.397657 0.492149 0.000861 \n",
"75% 0.527101 0.593719 0.182444 \n",
"max 1.000000 1.000000 1.000000 \n",
"\n",
" StrahlungGeneigteFläche TheorPVProd Direktnormalstrahlung \\\n",
"count 105120.000000 105120.000000 105120.000000 \n",
"mean 0.125328 116.568056 144.916924 \n",
"std 0.197261 177.407501 266.941484 \n",
"min 0.000000 0.000000 0.000000 \n",
"25% 0.000000 0.000000 0.000000 \n",
"50% 0.000861 1.000000 0.000000 \n",
"75% 0.182444 179.000000 132.000000 \n",
"max 1.000000 799.000000 1010.000000 \n",
"\n",
" Schönwetterstrahlung Lufttemperatur Lastgang_Moving_Average \\\n",
"count 105120.000000 105120.000000 105120.000000 \n",
"mean 220.075295 0.487743 0.468536 \n",
"std 296.754964 0.169107 0.234477 \n",
"min 0.000000 0.000000 0.000000 \n",
"25% 0.000000 0.359408 0.282593 \n",
"50% 6.000000 0.482030 0.433883 \n",
"75% 403.000000 0.606765 0.641900 \n",
"max 1020.000000 1.000000 1.000000 \n",
"\n",
" Lastgang_First_Difference \n",
"count 105120.000000 \n",
"mean 0.504792 \n",
"std 0.046065 \n",
"min 0.000000 \n",
"25% 0.476896 \n",
"50% 0.504275 \n",
"75% 0.532252 \n",
"max 1.000000 \n",
"Skalierparameter für Lastgang: [0.00068067] [-0.03440131]\n"
]
}
],
"source": [
"# Step 3 - Check the scaled values\n",
"\n",
"print(dfEnergyAll.describe())\n",
"\n",
"print(\"Skalierparameter für Lastgang:\", lastgang_scaler.scale_, lastgang_scaler.min_)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "5a0dcfe5-3d9a-40e1-834e-468d8c47864e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPU before model training: 2024-05-03 17:23:54\n",
"GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 15712.0MB, Used: 65326.0MB, Utilization: 4.0%\n",
"GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 236.0MB, Used: 80803.0MB, Utilization: 100.0%\n",
"CPU before model training:\n",
"CPU Utilization: 82.1%\n",
"RAM before model training:\n",
"Total memory: 146.88 GB\n",
"Available memory: 110.48 GB\n",
"Used memory: 34.61 GB\n",
"Memory usage: 24.8%\n"
]
}
],
"source": [
"# Step 3 - Show GPU Utilization and Memory Usage before Model Training\n",
"\n",
"def print_gpu_utilization():\n",
" # Retrieve and print GPU utilization and memory stats\n",
" GPUs = GPUtil.getGPUs()\n",
" for GPU in GPUs:\n",
" print(f\"GPU: {GPU.name}, GPU RAM Free: {GPU.memoryFree}MB, Used: {GPU.memoryUsed}MB, Utilization: {GPU.load*100}%\")\n",
"\n",
"print(\"GPU before model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n",
"print_gpu_utilization()\n",
"\n",
"# Function to print CPU utilization\n",
"def print_cpu_utilization():\n",
" # Retrieve and print the percentage of CPU utilization\n",
" print(f\"CPU Utilization: {psutil.cpu_percent(interval=1)}%\")\n",
"\n",
"print(\"CPU before model training:\")\n",
"print_cpu_utilization()\n",
"\n",
"def print_memory_usage():\n",
" # Retrieve and print memory statistics\n",
" memory = psutil.virtual_memory()\n",
" print(f\"Total memory: {memory.total / (1024**3):.2f} GB\")\n",
" print(f\"Available memory: {memory.available / (1024**3):.2f} GB\")\n",
" print(f\"Used memory: {memory.used / (1024**3):.2f} GB\")\n",
" print(f\"Memory usage: {memory.percent}%\")\n",
"\n",
"print(\"RAM before model training:\")\n",
"print_memory_usage()\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "0d90e033-70b7-4d3d-b038-315db7f388a9",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
"\n",
"def create_sequences(data, seq_length):\n",
" xs = []\n",
" ys = []\n",
" for i in range(len(data) - seq_length):\n",
" x = data.iloc[i:(i + seq_length)].to_numpy() # Extract sequence from data\n",
" y = data.iloc[i + seq_length, 0] # Extract target value for the sequence\n",
" xs.append(x)\n",
" ys.append(y)\n",
" return np.array(xs), np.array(ys) # Convert lists to numpy arrays\n",
"\n",
"seq_length = 192 # Length of each sequence\n",
"X, y = create_sequences(dfEnergyAll, seq_length) # Create sequences from data\n",
"\n",
"# Use the last 192 sequences for testing to maintain a comparable distribution as the TBATS model\n",
"X_train, X_test = X[:-192], X[-192:] # Split data into training and testing sets\n",
"y_train, y_test = y[:-192], y[-192:] # Split targets into training and testing sets\n",
"\n",
"\n",
"# Function for positional encoding\n",
"def positional_encoding(seq_len, d_model):\n",
" encoding = np.array([\n",
" [pos / np.power(10000, 2 * (j // 2) / d_model) for j in range(d_model)]\n",
" if pos != 0 else np.zeros(d_model)\n",
" for pos in range(seq_len)\n",
" ])\n",
" encoding[1:, 0::2] = np.sin(encoding[1:, 0::2]) # Apply sin to even indices\n",
" encoding[1:, 1::2] = np.cos(encoding[1:, 1::2]) # Apply cos to odd indices\n",
" return encoding\n",
"\n",
"# Apply positional encodings\n",
"d_model = X_train.shape[2] # Number of features in the data\n",
"pos_enc = positional_encoding(seq_length, d_model) # Generate positional encoding\n",
"\n",
"# Add positional encodings to the sequences\n",
"X_train_enc = np.array([x + pos_enc for x in X_train]) # Add encoding to training data\n",
"X_test_enc = np.array([x + pos_enc for x in X_test]) # Add encoding to testing data"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "e0e131ce-7193-42fb-94dc-f2bd0876aa2b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"X_train Shape: (104736, 192, 10)\n",
"X_test Shape: (192, 192, 10)\n",
"X_train_enc Shape: (104736, 192, 10)\n",
"X_test_enc Shape: (192, 192, 10)\n"
]
}
],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"# Print the shapes of the training and testing datasets\n",
"print(f\"X_train Shape: {X_train.shape}\")\n",
"print(f\"X_test Shape: {X_test.shape}\")\n",
"\n",
"# Print the shapes of the training and testing datasets with positional encodings applied\n",
"print(f\"X_train_enc Shape: {X_train_enc.shape}\")\n",
"print(f\"X_test_enc Shape: {X_test_enc.shape}\")"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "69131796-20f7-4e93-a091-5fa9dfed0237",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"# Check Hardware Availability for the PyTorch code\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "514b9884-3534-4263-b95f-e830396947aa",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"X_train_tensors = torch.Tensor(X_train_enc).to(device) # Convert training data to tensors and move to the designated device (GPU or CPU)\n",
"y_train_tensors = torch.Tensor(y_train).view(-1, 1).to(device) # Convert training labels to tensors, reshape them and move to the device\n",
"X_test_tensors = torch.Tensor(X_test_enc).to(device) # Convert testing data to tensors and move to the designated device\n",
"y_test_tensors = torch.Tensor(y_test).view(-1, 1).to(device) # Convert testing labels to tensors, reshape them and move to the device"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "e84d8190-9f4f-4e97-94e5-6587d3efa9a1",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sarah/anaconda3/envs/BT2024PyTorch/lib/python3.10/site-packages/torch/nn/modules/transformer.py:286: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)\n",
" warnings.warn(f\"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}\")\n"
]
}
],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"#Create Transformer Model\n",
"import torch.nn as nn\n",
"\n",
"class TransformerModel(nn.Module):\n",
" def __init__(self, input_size, hidden_layer_size, output_size, num_layers, nhead):\n",
" super(TransformerModel, self).__init__()\n",
" self.input_size = input_size # Number of input features\n",
" self.hidden_layer_size = hidden_layer_size # Size of the hidden layer\n",
" self.output_size = output_size # Size of the output layer\n",
"\n",
" # Embedding layer that maps input features to the hidden layer size\n",
" self.embedding = nn.Linear(input_size, hidden_layer_size)\n",
"\n",
" # Transformer Encoder\n",
" encoder_layers = nn.TransformerEncoderLayer(d_model=hidden_layer_size, nhead=nhead)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)\n",
"\n",
" # Linear layer for output\n",
" self.linear = nn.Linear(hidden_layer_size, output_size)\n",
"\n",
" def forward(self, src):\n",
" # Embedding\n",
" src = self.embedding(src) # Apply embedding layer to source data\n",
"\n",
" # Transformer Encoder\n",
" src = src.permute(1, 0, 2) # Permute the dimensions of src for the Transformer (expects [seq_len, batch, features])\n",
" output = self.transformer_encoder(src) # Pass the embedded src through the transformer encoder\n",
"\n",
" # Only take the output from the last time step for making predictions\n",
" output = output[-1]\n",
"\n",
" # Linear layer\n",
" output = self.linear(output) # Apply linear layer to the output of the transformer\n",
" return output\n",
"\n",
"# Parameters\n",
"input_size = 10 # Number of features\n",
"hidden_layer_size = 100 # Size of the hidden layer\n",
"output_size = 1 # Output size\n",
"num_layers = 2 # Number of layers in the transformer\n",
"nhead = 2 # Number of attention heads\n",
"\n",
"# Instantiate the model\n",
"model = TransformerModel(input_size, hidden_layer_size, output_size, num_layers, nhead).to(device) # Create the model and move it to the designated device"
]
},
{
"cell_type": "markdown",
"id": "d936195f-89d1-48e4-9acb-4d63cd825590",
"metadata": {},
"source": [
"from torchsummary import summary\n",
"\n",
"# Angabe der Eingabedimension für torchsummary\n",
"seq_length = 192 # Sequenzlänge, wie im Modell verwendet\n",
"summary(model, input_size=(seq_length, input_size))"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "5ba77573-4e7b-45d1-8a98-d0c25deed352",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/sarah/anaconda3/envs/BT2024PyTorch/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"New best model saved at epoch 1 with test loss 0.03984663731534965.\n",
"Epoch 1, Train Loss: 0.013731314026245361, Test Loss: 0.03984663731534965\n",
"New best model saved at epoch 2 with test loss 0.016820339420519304.\n",
"Epoch 2, Train Loss: 0.005286569327589577, Test Loss: 0.016820339420519304\n",
"Epoch 3, Train Loss: 0.006792317569947825, Test Loss: 0.017148404789622873\n",
"Epoch 4, Train Loss: 0.004567338423792936, Test Loss: 0.02858270751312375\n",
"Epoch 5, Train Loss: 0.004809053334021856, Test Loss: 0.017867928676423617\n",
"Epoch 6, Train Loss: 0.004574279051601939, Test Loss: 0.04403836881829193\n",
"Epoch 7, Train Loss: 0.0048564385962972505, Test Loss: 0.024106490673148073\n",
"Early Stopping after 7 epochs!\n"
]
}
],
"source": [
"# Step 5 - Model Training\n",
"\n",
"# Define the number of epochs and batch size\n",
"loss_function = nn.MSELoss() # Loss function for measuring the mean squared error loss\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Optimizer with a learning rate of 0.001\n",
"epochs = 70 # Total number of epochs to train the model\n",
"batch_size = 12 # Number of samples per batch\n",
"\n",
"# For storing the loss values\n",
"train_losses = [] # List to store training loss values for each epoch\n",
"test_losses = [] # List to store validation loss values for each epoch\n",
"\n",
"# Initialize variables for Early Stopping\n",
"best_test_loss = float('inf') # Best validation loss seen so far, initialized to infinity\n",
"best_model_path = 'best_model.pth' # Path to save the best performing model\n",
"early_stopping_patience = 5 # Number of epochs to continue without improvement before stopping\n",
"epochs_without_improvement = 0 # Counter to track epochs without improvement\n",
"\n",
"for epoch in range(epochs): # Loop over each epoch\n",
" model.train() # Set the model to training mode\n",
" train_loss = 0.0 # Reset training loss for this epoch\n",
" for i in range(0, len(X_train_tensors), batch_size): # Iterate over the training data in batches\n",
" X_batch = X_train_tensors[i:i + batch_size] # Get the current batch of input data\n",
" y_batch = y_train_tensors[i:i + batch_size] # Get the current batch of target data\n",
"\n",
" # Dynamic adjustment of the batch size for the last batch of the epoch\n",
" actual_batch_size = X_batch.size(0)\n",
"\n",
" optimizer.zero_grad() # Reset the gradients to zero\n",
"\n",
" # No need to manage hidden states for the Transformer model\n",
" y_pred = model(X_batch) # Forward pass through the model\n",
"\n",
" loss = loss_function(y_pred, y_batch) # Calculate loss\n",
" loss.backward() # Backpropagation\n",
" optimizer.step() # Update model weights\n",
" \n",
" train_loss += loss.item() * actual_batch_size # Accumulate the loss\n",
"\n",
" # Calculate the average training loss for this epoch\n",
" train_loss /= len(X_train_tensors)\n",
" train_losses.append(train_loss)\n",
"\n",
" # Validation phase\n",
" model.eval() # Set the model to evaluation mode\n",
" test_loss = 0.0\n",
" with torch.no_grad(): # No gradient calculations\n",
" for i in range(0, len(X_test_tensors), batch_size):\n",
" X_batch = X_test_tensors[i:i + batch_size]\n",
" y_batch = y_test_tensors[i:i + batch_size]\n",
"\n",
" y_pred = model(X_batch) # Forward pass through the model for validation\n",
" loss = loss_function(y_pred, y_batch) # Calculate loss\n",
" test_loss += loss.item() * actual_batch_size # Accumulate the loss\n",
" \n",
" # Calculate the average validation loss for this epoch\n",
" test_loss /= len(X_test_tensors)\n",
" test_losses.append(test_loss)\n",
"\n",
" if test_loss < best_test_loss:\n",
" best_test_loss = test_loss # Update the best test loss\n",
" torch.save(model.state_dict(), best_model_path) # Save the best model\n",
" epochs_without_improvement = 0 # Reset the improvement counter\n",
" print(f'New best model saved at epoch {epoch+1} with test loss {test_loss}.')\n",
" else:\n",
" epochs_without_improvement += 1 # Increment the no-improvement counter\n",
"\n",
" print(f'Epoch {epoch + 1}, Train Loss: {train_loss}, Test Loss: {test_loss}')\n",
"\n",
" if epochs_without_improvement >= early_stopping_patience:\n",
" print(f'Early Stopping after {epoch+1} epochs!') # Stop training if no improvement\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "2eb9a478-fe5e-4e77-9b67-4cd32b584b00",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHFCAYAAADmGm0KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8nUlEQVR4nO3deVxU9f7H8dewLwIqKrgL7vsCiWi0mqa2mFpqWbaaWdeU671lttri/XWr6+3mkqaVLWqLmZWlVGqWqGm4pGiWKC4goQlu7Of3x5FRZFRA4MzA+/l4zGO+nPmecz4M4nz4rjbDMAxEREREpAg3qwMQERERcUZKkkREREQcUJIkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSROSC3nnnHWw2Gxs2bLA6lFK76qqruOqqqyy7f0FBAe+99x69e/emTp06eHp6Uq9ePW644Qa++OILCgoKLItNRC7Ow+oAREQqyvTp0y27d1ZWFgMHDmT58uUMGzaMGTNmEBoayp9//sk333zDrbfeysKFC7n55psti1FELkxJkoi4BMMwyMrKwtfXt8TntGvXrgIjurDY2FiWLVvGu+++y1133VXktUGDBvGPf/yDU6dOlcu9Tp48iZ+fX7lcS0TOUHebiJSLXbt2cfvtt1OvXj28vb1p27Yt06ZNK1InKyuLv//973Tp0oWgoCBq165NdHQ0n3/+ebHr2Ww2HnnkEWbOnEnbtm3x9vbm3XfftXf/rVixgoceeog6deoQHBzMoEGDOHjwYJFrnNvdtmfPHmw2G6+88gqvvfYaYWFh1KhRg+joaNauXVsshtmzZ9OqVSu8vb1p164dH374IXfffTfNmjW74HuRmprKW2+9Rd++fYslSIVatmxJp06dgDNdmnv27ClSZ+XKldhsNlauXFnke+rQoQM//PADPXv2xM/Pj3vvvZeBAwfStGlTh114UVFRdOvWzf61YRhMnz6dLl264OvrS61atRgyZAi7d+++4PclUt0oSRKRS7Z9+3Yuu+wyfv31V1599VW+/PJLBgwYwNixY3nuuefs9bKzszly5AgTJkxg8eLFzJ8/n8svv5xBgwYxb968YtddvHgxM2bM4Omnn2bZsmXExMTYX7v//vvx9PTkww8/5OWXX2blypWMGDGiRPFOmzaNuLg4pk6dygcffMCJEyfo378/GRkZ9jqzZs1i1KhRdOrUiUWLFvHkk0/y3HPPFUlYzmfFihXk5uYycODAEsVTWikpKYwYMYLbb7+dpUuXMmbMGO69916Sk5P5/vvvi9TdsWMH69ev55577rEfe/DBBxk3bhy9e/dm8eLFTJ8+nW3bttGzZ08OHTpUITGLuCRDROQC3n77bQMwfv755/PW6du3r9GoUSMjIyOjyPFHHnnE8PHxMY4cOeLwvLy8PCM3N9e47777jK5duxZ5DTCCgoKKnVsYz5gxY4ocf/nllw3ASElJsR+78sorjSuvvNL+dVJSkgEYHTt2NPLy8uzH169fbwDG/PnzDcMwjPz8fCM0NNSIiooqco+9e/canp6eRtOmTc/7XhiGYfzrX/8yAOObb765YL1zv6ekpKQix1esWGEAxooVK4p8T4Dx3XffFambm5trhISEGLfffnuR4//85z8NLy8vIz093TAMw4iPjzcA49VXXy1Sb9++fYavr6/xz3/+s0Qxi1QHakkSkUuSlZXFd999xy233IKfnx95eXn2R//+/cnKyirSlfXxxx/Tq1cvatSogYeHB56ensyZM4fExMRi177mmmuoVauWw/vedNNNRb4u7Lrau3fvRWMeMGAA7u7u5z13586dpKamcttttxU5r0mTJvTq1eui169otWrV4pprrilyzMPDgxEjRrBo0SJ7i1h+fj7vvfceN998M8HBwQB8+eWX2Gw2RowYUeRnFRoaSufOnUvUUiZSXShJEpFLcvjwYfLy8vjf//6Hp6dnkUf//v0BSE9PB2DRokXcdtttNGzYkPfff5/4+Hh+/vln7r33XrKysopdu379+ue9b+GHfiFvb2+AEg2Gvti5hw8fBiAkJKTYuY6OnatJkyYAJCUlXbRuWZzvfSl8HxcsWADAsmXLSElJKdLVdujQIQzDICQkpNjPa+3atfaflYhodpuIXKJatWrh7u7OnXfeycMPP+ywTlhYGADvv/8+YWFhLFy4EJvNZn89Ozvb4Xln16lMhUmUo/E5qampFz3/6quvxtPTk8WLFzN69OiL1vfx8QGKvw/nS1jO9760a9eO7t278/bbb/Pggw/y9ttv06BBA/r06WOvU6dOHWw2G6tXr7Ynh2dzdEykulJLkohcEj8/P66++moSEhLo1KkTkZGRxR6FSYfNZsPLy6vIh3xqaqrD2W1Wat26NaGhoXz00UdFjicnJ7NmzZqLnh8aGsr999/PsmXLHA5IB/jjjz/YsmULgH22XOHXhZYsWVLq2O+55x7WrVvHjz/+yBdffMHIkSOLdC3ecMMNGIbBgQMHHP6sOnbsWOp7ilRVakkSkRL5/vvvi01RB+jfvz///e9/ufzyy4mJieGhhx6iWbNmHDt2jN9//50vvvjCPuPqhhtuYNGiRYwZM4YhQ4awb98+nn/+eerXr8+uXbsq+Ts6Pzc3N5577jkefPBBhgwZwr333svRo0d57rnnqF+/Pm5uF//78rXXXmP37t3cfffdLFu2jFtuuYWQkBDS09OJi4vj7bffZsGCBXTq1InLLruM1q1bM2HCBPLy8qhVqxafffYZP/74Y6ljHz58OLGxsQwfPpzs7GzuvvvuIq/36tWLUaNGcc8997BhwwauuOIK/P39SUlJ4ccff6Rjx4489NBDpb6vSFWkJElESuSxxx5zeDwpKYl27drxyy+/8Pzzz/Pkk0+SlpZGzZo1admypX1cEpitHGlpacycOZO5c+cSHh7O448/zv79+4ssFeAMRo0ahc1m4+WXX+aWW26hWbNmPP7443z++eckJydf9HwfHx+++uorPvjgA959910efPBBMjMzqVWrFpGRkcydO5cbb7wRAHd3d7744gseeeQRRo8ejbe3N8OGDeONN95gwIABpYo7KCiIW265hQ8//JBevXrRqlWrYnXefPNNevTowZtvvsn06dMpKCigQYMG9OrVi+7du5fqfiJVmc0wDMPqIEREXMHRo0dp1aoVAwcOZNasWVaHIyIVTC1JIiIOpKam8uKLL3L11VcTHBzM3r17+c9//sOxY8d49NFHrQ5PRCqBkiQREQe8vb3Zs2cPY8aM4ciRI/j5+dGjRw9mzpxJ+/btrQ5PRCqButtEREREHNASACIiIiIOKEkSERERcUBJkoiIiIgDGrhdRgUFBRw8eJCAgADLtk4QERGR0jEMg2PHjtGgQYOLLgyrJKmMDh48SOPGja0OQ0RERMpg3759NGrU6IJ1lCSVUUBAAGC+yYGBgRZHIyIiIiWRmZlJ48aN7Z/jF6IkqYwKu9gCAwOVJImIiLiYkgyV0cBtEREREQcsT5KmT59OWFgYPj4+REREsHr16gvWX7VqFREREfj4+BAeHs7MmTPPW3fBggXYbDYGDhxY5Pizzz6LzWYr8ggNDS2Pb0dERESqCEuTpIULFzJu3DgmTZpEQkICMTEx9OvX77w7bCclJdG/f39iYmJISEjgiSeeYOzYsXz66afF6u7du5cJEyYQExPj8Frt27cnJSXF/ti6dWu5fm8iIiLi2iwdk/Taa69x3333cf/99wMwdepUli1bxowZM5gyZUqx+jNnzqRJkyZMnToVgLZt27JhwwZeeeUVBg8ebK+Xn5/PHXfcwXPPPcfq1as5evRosWt5eHio9UikjPLz88nNzbU6DCkHXl5eF50GLVJdWZYk5eTksHHjRh5//PEix/v06cOaNWscnhMfH0+fPn2KHOvbty9z5swhNzcXT09PACZPnkzdunW57777ztt9t2vXLho0aIC3tzdRUVG89NJLhIeHl8N3JlJ1GYZBamqqwz88xDW5ubkRFhaGl5eX1aGIOB3LkqT09HTy8/MJCQkpcjwkJITU1FSH56Smpjqsn5eXR3p6OvXr1+enn35izpw5bNq06bz3joqKYt68ebRq1YpDhw7xwgsv0LNnT7Zt20ZwcLDDc7Kzs8nOzrZ/nZmZWcLvVKTqKEyQ6tWrh5+fnxZSdXGFi+KmpKTQpEkT/TxFzmH5EgDn/lIahnHBX1RH9QuPHzt2jBEjRjB79mzq1Klz3mv069fPXu7YsSPR0dE0b96cd999l9jYWIfnTJkyheeee+6i349IVZWfn29PkM73x4S4nrp163Lw4EHy8vLsrfEiYrIsSapTpw7u7u7FWo3S0tKKtRYVCg0NdVjfw8OD4OBgtm3bxp49e7jxxhvtrxcUFADmGKSdO3fSvHnzYtf19/enY8eO7Nq167zxTpw4sUgCVbgYlUh1UTgGyc/Pz+JIpDwVdrPl5+crSRI5h2Wj9by8vIiIiCAuLq7I8bi4OHr27OnwnOjo6GL1ly9fTmRkJJ6enrRp04atW7eyadMm++Omm27i6quvZtOmTedNarKzs0lMTKR+/frnjdfb29u+cKQWkJTqTF0yVYt+niLnZ2l3W2xsLHfeeSeRkZFER0cza9YskpOTGT16NGC23hw4cIB58+YBMHr0aN544w1iY2N54IEHiI+PZ86cOcyfPx8AHx8fOnToUOQeNWvWBChyfMKECdx44400adKEtLQ0XnjhBTIzMxk5cmQlfNciIiLiCixNkoYOHcrhw4eZPHkyKSkpdOjQgaVLl9K0aVMAUlJSiqyZFBYWxtKlSxk/fjzTpk2jQYMGvP7660Wm/5fE/v37GT58OOnp6dStW5cePXqwdu1a+31FRC7kqquuokuXLvblSESkarIZhSOfpVQyMzMJCgoiIyNDXW9SLWRlZZGUlGRfId8VXKwraeTIkbzzzjulvu6RI0fw9PQs0QaZ53P33Xdz9OhRFi9eXOZrlAdX/LmKXIrSfH5bPrtNRKSipKSk2MsLFy7k6aefZufOnfZjvr6+Reqfvd7ahdSuXbv8gpTqwzAgLws8fS9eV5yCllkVkSorNDTU/ggKCrLv0xgaGkpWVhY1a9bko48+4qqrrsLHx4f333+fw4cPM3z4cBo1aoSfnx8dO3a0j3ssdNVVVzFu3Dj7182aNeOll17i3nvvJSAggCZNmjBr1qxLin3VqlV0794db29v6tevz+OPP05eXp799U8++YSOHTvi6+tLcHAwvXv35sSJEwCsXLmS7t274+/vT82aNenVqxd79+69pHikHGyYAy+Gwq/Ft9IS56QkSUTKzDAMTubkVfqjPEcJPPbYY4wdO5bExET69u1LVlYWERERfPnll/z666+MGjWKO++8k3Xr1l3wOq+++iqRkZEkJCQwZswYHnroIXbs2FGmmA4cOED//v257LLL2Lx5MzNmzGDOnDm88MILgNlCNnz4cO69914SExNZuXIlgwYNwjAM8vLyGDhwIFdeeSVbtmwhPj6eUaNGaRab1QwD1r1plle8BKeXpxHnpu42ESmzU7n5tHt6WaXfd/vkvvh5lc9/X+PGjWPQoEFFjk2YMMFe/tvf/sY333zDxx9/TFRU1Hmv079/f8aMGQOYidd//vMfVq5cSZs2bUod0/Tp02ncuDFvvPEGNpuNNm3acPDgQR577DGefvppUlJSyMvLY9CgQfYJJx07dgTM8VIZGRnccMMN9nXh2rZtW+oYpJwd2gbpv5nlw7/DruXQ+nprY5KLUkuSiFRrkZGRRb7Oz8/nxRdfpFOnTgQHB1OjRg2WL19eZKatI506dbKXC7v10tLSyhRTYmIi0dHRRVp/evXqxfHjx9m/fz+dO3fm2muvpWPHjtx6663Mnj2bv/76CzDHS91999307duXG2+8kf/+979FxmaJRbZ9Zj7b3M3ntdOsi0VKTC1JIlJmvp7ubJ/c15L7lhd/f/8iX7/66qv85z//YerUqXTs2BF/f3/GjRtHTk7OBa9z7oBvm81mX/G/tBxtz3T2Fkzu7u7ExcWxZs0ali9fzv/+9z8mTZrEunXrCAsL4+2332bs2LF88803LFy4kCeffJK4uDh69OhRpnjkEhnGmSTp2qfgu8mQ9AOkboXQjtbGJhekliQRKTObzYafl0elPypyfM3q1au5+eabGTFiBJ07dyY8PPyCWxZVhHbt2rFmzZoiY6/WrFlDQEAADRs2BMz3vlevXjz33HMkJCTg5eXFZ599Zq/ftWtXJk6cyJo1a+jQoQMffvhhpX4PcpbULXDkD/DwgcsegHY3m8fjp1sbl1yUkiQRkbO0aNHC3kqTmJjIgw8+WGzPyPKSkZFRZBulTZs2kZyczJgxY9i3bx9/+9vf2LFjB59//jnPPPMMsbGxuLm5sW7dOl566SU2bNhAcnIyixYt4s8//6Rt27YkJSUxceJE4uPj2bt3L8uXL+e3337TuCQrFbYitewD3jWgx8Pm179+AscOWReXXJS620REzvLUU0+RlJRE37598fPzY9SoUQwcOJCMjIxyv9fKlSvp2rVrkWOFC1wuXbqUf/zjH3Tu3JnatWtz33338eSTTwIQGBjIDz/8wNSpU8nMzKRp06a8+uqr9OvXj0OHDrFjxw7effddDh8+TP369XnkkUd48MEHyz1+KYGzu9ra32I+N74MGnWH/evh57fgmknWxScXpBW3y0grbkt1o5WZqyb9XCvYgV9g9tXg6Qf/+B28To+B2/YZfHw3+AXD+G1aYLISlebzW91tIiIiFaWwFalV3zMJEkCbGyGoCZw8DFsWWhObXJSSJBERkYpgGLBtsVluX3QtLtw9IOp0F2j8dLOuOB0lSSIiIhXhwEbISAZPf2h5XfHXu90JXjUgfSf8/l3lxycXpSRJRESkIhR2tbXu53jMkU8QdLvLLGtxSaekJElERKS8FRScSZI6DDp/vagHweYGf3wPh7ZXTmxSYkqSREREytv+nyHzAHgFQPNrz1+vVjNoM8Asr9Xiks5GSZKIiEh5K2xFatMfPC+ytEL0I+bzlo/g+J8VG5eUipIkERGR8lRQANsXm+VzZ7U50jgKGnSD/GzYMKdCQ5PSUZIkIiJSnvathWMp4B0Eza++eH2bDaJPb1Xy81uQm1Wx8UmJKUkSEREpT/autgHg4V2yc9rdDIEN4cSfsPXjiotNSkVJkohUWTab7YKPu+++u8zXbtasGVOnTi23elJFFOTD9s/N8oVmtZ3L3RO6jzLLa2docUknoQ1uRaTKSklJsZcXLlzI008/zc6dO+3HfH21X5aUs71r4Pgh8KkJYVeW7tyIkbDqZUjbBrtXlqyrTiqUWpJEpMoKDQ21P4KCgrDZbEWO/fDDD0RERODj40N4eDjPPfcceXl59vOfffZZmjRpgre3Nw0aNGDs2LEAXHXVVezdu5fx48fbW6XKasaMGTRv3hwvLy9at27Ne++9V+T188UAMH36dFq2bImPjw8hISEMGTKkzHFIOSnsamt7A3h4le5c31rQ9Q6zHK/FJZ2BWpJEpOwMA3JPVv59Pf3Mwa6XYNmyZYwYMYLXX3+dmJgY/vjjD0aNMrs7nnnmGT755BP+85//sGDBAtq3b09qaiqbN28GYNGiRXTu3JlRo0bxwAMPlDmGzz77jEcffZSpU6fSu3dvvvzyS+655x4aNWrE1VdffcEYNmzYwNixY3nvvffo2bMnR44cYfXq1Zf0nsglys8709VWklltjkSNhvWz4fc4+HMn1G1dfvFJqSlJEpGyyz0JLzWo/Ps+cbDojupl8OKLL/L4448zcuRIAMLDw3n++ef55z//yTPPPENycjKhoaH07t0bT09PmjRpQvfu3QGoXbs27u7uBAQEEBoaWuYYXnnlFe6++27GjBkDQGxsLGvXruWVV17h6quvvmAMycnJ+Pv7c8MNNxAQEEDTpk3p2rXrJb0ncon2/ggn08G3NoRdUbZrBDeH1v1h51fm4pI3/rd8Y5RSUXebiFRLGzduZPLkydSoUcP+eOCBB0hJSeHkyZPceuutnDp1ivDwcB544AE+++yzIl1x5SExMZFevXoVOdarVy8SExMBLhjDddddR9OmTQkPD+fOO+/kgw8+4ORJC1r15IzCrrZ2N5kDscsq2kya2bwAThy+9LikzNSSJCJl5+lntupYcd9LVFBQwHPPPcegQcW7RXx8fGjcuDE7d+4kLi6Ob7/9ljFjxvDvf/+bVatW4el5CR+A5zh3PJNhGPZjF4ohICCAX375hZUrV7J8+XKefvppnn32WX7++Wdq1qxZbvFJCeXnwvYlZrn9LZd2raa9oH5nSNkMG+fCFf+49PikTNSSJCJlZ7OZ3V6V/bjE8UgA3bp1Y+fOnbRo0aLYw83N/K/R19eXm266iddff52VK1cSHx/P1q1bAfDy8iI/P/+SYmjbti0//vhjkWNr1qyhbdu29q8vFIOHhwe9e/fm5ZdfZsuWLezZs4fvv//+kmKSMkr6AU4dAb860PTyS7uWzQY9Ti8uuX425GVfenxSJmpJEpFq6emnn+aGG26gcePG3Hrrrbi5ubFlyxa2bt3KCy+8wDvvvEN+fj5RUVH4+fnx3nvv4evrS9OmTQFz/aMffviBYcOG4e3tTZ06dc57rwMHDrBp06Yix5o0acI//vEPbrvtNrp168a1117LF198waJFi/j2228BLhjDl19+ye7du7niiiuoVasWS5cupaCggNatNdDXEtsWmc/tbgb3cvhobX8LxD0Nx1Ph10XQZfilX1NKz5AyycjIMAAjIyPD6lBEKsWpU6eM7du3G6dOnbI6lDJ5++23jaCgoCLHvvnmG6Nnz56Gr6+vERgYaHTv3t2YNWuWYRiG8dlnnxlRUVFGYGCg4e/vb/To0cP49ttv7efGx8cbnTp1Mry9vY0L/VfatGlTAyj2ePvttw3DMIzp06cb4eHhhqenp9GqVStj3rx59nMvFMPq1auNK6+80qhVq5bh6+trdOrUyVi4cGGp3xdX/7k6hdxsw5jSxDCeCTSM3T+U33V/eMW85vRehlFQUH7XreZK8/ltMwwt61kWmZmZBAUFkZGRQWBgoNXhiFS4rKwskpKSCAsLw8fnIruai8vQz7Uc7IqDD4ZAjRCITQQ39/K57skj8Fo7yDsFI78o+4w5KaI0n98akyQiInIpfj2rq628EiQAv9rQ5XazHD+9/K4rJWZ5kjR9+nT7XzAREREXXQxt1apVRVbInTlz5nnrLliwAJvNxsCBAy/5viIiIsXkZcOOr8zypc5qc6THQ+bzb19D+u/lf325IEuTpIULFzJu3DgmTZpEQkICMTEx9OvXj+TkZIf1k5KS6N+/PzExMSQkJPDEE08wduxYPv3002J19+7dy4QJE4iJibnk+4qIiDj0xwrIzoCA+tC4R/lfv05LaNnXLK+bUf7XlwuyNEl67bXXuO+++7j//vtp27YtU6dOpXHjxsyY4fgfwsyZM2nSpAlTp06lbdu23H///dx777288sorRerl5+dzxx138NxzzxEeHn7J9xUREXHIPqttILhV0Edq9OnlADZ9aI5TkkpjWZKUk5PDxo0b6dOnT5Hjffr0Yc2aNQ7PiY+PL1a/b9++bNiwgdzcXPuxyZMnU7duXe67775yuS9AdnY2mZmZRR4i1ZHmelQt+nlegtws2LHULFdEV1uhsCsgpIO5DdDGdyruPlKMZUlSeno6+fn5hISEFDkeEhJCamqqw3NSU1Md1s/LyyM9PR2An376iTlz5jB79uxyuy/AlClTCAoKsj8aN2580e+xTE6kmwP0Cvu4RZxE4SrT2vqiasnJyQHA3b0cBxxXF398BznHILAhNLqs4u5js51pTVo/C/JyKu5eUoTli0leaEn+ktYvPH7s2DFGjBjB7NmzL7iwW1nuO3HiRGJjY+1fZ2ZmVkyilPA+fPsMNI6CNgPK//oiZeTu7k7NmjVJS0sDwM/P74K/M+L8CgoK+PPPP/Hz88PDw/KPA9dTOKut/S0V19VWqMNgiHsGjqXA9sXQ6baKvZ8AFiZJderUwd3dvVjrTVpaWrFWnkKhoaEO63t4eBAcHMy2bdvYs2cPN954o/31goICwFy+f+fOnTRu3LjU9wXw9vbG29u7VN9jmXQeBt9Nhn3r4M+dUFer54rzKNzxvjBREtfn5uZGkyZNlPCWVu4p2Pm1Wa7IrrZCHt7Q/QFY8SLET4OOt5bL9jxyYZYlSV5eXkRERBAXF8ctt5z5BxYXF8fNN9/s8Jzo6Gi++OKLIseWL19OZGQknp6etGnTxr6nUaEnn3ySY8eO8d///pfGjRuX6b6VKiAUWvYxp3smvA99nrc6IhE7m81G/fr1qVevXpFxgOK6vLy87HvVSSnsWg65JyCoCTSMqJx7Rt4Lq1+FlE2QHA9Ne1bOfasxS9tXY2NjufPOO4mMjCQ6OppZs2aRnJzM6NGjAbOL68CBA8ybNw+A0aNH88YbbxAbG8sDDzxAfHw8c+bMYf78+YC5c3eHDh2K3KNwN+yzj1/svpbrdqeZJG1eANc+De7lt+O4SHlwd3fXGBap3rZ9Zj63H1h5LTr+daDTUPjlXbM1SUlShbM0SRo6dCiHDx9m8uTJpKSk0KFDB5YuXWrfQDIlJaXI2kVhYWEsXbqU8ePHM23aNBo0aMDrr7/O4MGDy/W+lmvZB/zrwok0c7n7Nv2tjkhERArlnIDflpnlyuhqO1uPMWaStOMrOLIbahdf5kbKj/ZuK6MK37tt+ZOw5n/QegAM/7D8ry8iImXz6yL45B6o1QzGbqr8sUHvD4bfv4XuD0L/lyv33lWA9m6rCrqMMJ9/+waOHbI2FhEROcPe1XaLNYOne4wxnxPeh1NHK//+1YiSJGdVr4257oaRD1sWWB2NiIgAZB83B21D5Xe1FWp+DdRtaw4c/2WeNTFUE0qSnFnX061JCe+DekVFRKz32zeQlwW1m0NoJ2tisNkg+nRr0ro3IT/PmjiqASVJzqz9IPD0g/TfYP/PVkcjIiJWd7UV6ngb+NWBzP2Q+Ll1cVRxSpKcmU+guWkiQMJ7loYiIlLtZWWaM47Buq62Qp4+cNn9Zjl+mnobKoiSJGdX2OX26yJz2qmIiFhj59eQnw11WkFIe6ujgcvuA3cvOLAR9q23OpoqSUmSs2va01wHI+c4bFeTqoiIZZylq61QjXpn9nBbO83aWKooJUnOzmaDLneY5YT3rY1FRKS6OnUU/vjOLFvd1Xa2wuUAEr+Av/ZYGkpVpCTJFXQeDjY32PsTHP7D6mhERKqfnUshP8ecel+vrdXRnBHSHsKvAqMA1s2yOpoqR0mSKwhqCM2vNctqTRIRqXxnd7U5m+hHzOdf5pmDy6XcKElyFd3uNJ83z9eaGCIilenkEfjje7PsjElS82vNweQ5xzQTupwpSXIVrfqBXzAcSznzyyoiIhVvx1dQkAchHaBuK6ujKc7N7czYpHUzoSDf2niqECVJrsLDCzoNNcv6S0FEpPLYu9oGWhrGBXUeBr614Wgy7PjS6miqDCVJrqRwzaSdX8OJdGtjERGpDk4cht0rzXL7QZaGckGevhB5r1mO13IA5UVJkisJaQ8NukJBLmz5yOpoRESqvh1fmBuNh3aC4OZWR3Nh3R8AN0/Ytw72b7A6mipBSZKrsW96+56WoRcRqWjOPKvtXAGh0HGIWVZrUrlQkuRqOgwBDx9I2w4Hf7E6GhGRquv4n5D0g1l2hSQJzgzg3v45HN1nbSxVgJIkV+NbE9reZJa1ZpKISMVJXGIu0tigK9QOszqakqnfCZrFmF2E67W45KVSkuSKCrvctn4COSetjUVEpKpypa62s0U/bD5vfBeyj1sbi4tTkuSKmsVAzSaQnampniIiFeHYIXMrKHC9JKllX6jdHLIzYNMHVkfj0pQkuSI3N+hy1gBuEREpX4VdbQ0jzT9KXYmbG/R4yCyvna7FJS+BkiRX1WU4YDMHFR5JsjoaEZGqxVW72gp1uR18asJfe8y19aRMlCS5qppNzJ2fATZ9aGkoIiJVSmYK7F1jlp15le0L8fKHyHvM8trp1sbiwpQkubLCTW83fajmVBGR8rL9c8CAxlEQ1MjqaMqu+yhw8zDHVh1MsDoal6QkyZW1HmA2p2buP7NsvoiIXJpti8xnV+1qKxTY4MxWKvFqTSoLJUmuzNMHOt1mlrVmkojIpcvYb27rgQ3a3Wx1NJcu+vTiktsWQeZBa2NxQUqSXF3hmkk7voSTR6yNRUTE1W3/3HxuEm22xLi6Bl2haS8oyNPikmWgJMnV1e8MoR0hP8dcXFJERMru19NdbR0GWRtHeSrcqmTD25BzwtpYXIySpKqg6+kB3AnzrI1DRMSV/bUXDmwAbGe2f6oKWveDWs0g66hmQ5eSkqSqoOOt4O4FqVshZbPV0YiIuKbCrrZml0NAiLWxlCc39zOtSWtnQEGBtfG4ECVJVYFfbWhzg1nWAG4RkbKpKrPaHOlyB3gHwZE/YNdyq6NxGUqSqorCAdxbPoLcLGtjERFxNUeSzLWEbG5Vq6utkHcNiBhpluPfsDYWF2J5kjR9+nTCwsLw8fEhIiKC1atXX7D+qlWriIiIwMfHh/DwcGbOnFnk9UWLFhEZGUnNmjXx9/enS5cuvPde0f3Nnn32WWw2W5FHaGhouX9vlSr8KghsZPY57/zK6mhERFzL9sXmc7MYqFHX0lAqTNSDYHOHPashZYvV0bgES5OkhQsXMm7cOCZNmkRCQgIxMTH069eP5ORkh/WTkpLo378/MTExJCQk8MQTTzB27Fg+/fRTe53atWszadIk4uPj2bJlC/fccw/33HMPy5YtK3Kt9u3bk5KSYn9s3bq1Qr/XCufmbu7VA+pyExEprao4q+1cQY3OrP2krUpKxGYYhmHVzaOioujWrRszZsywH2vbti0DBw5kypQpxeo/9thjLFmyhMTERPux0aNHs3nzZuLj4897n27dujFgwACef/55wGxJWrx4MZs2bSpz7JmZmQQFBZGRkUFgYGCZr1OujiTB610AG4zbCjUbWx2RiIjzO/wH/K+b2coyYRf4B1sdUcXZvxHeugbcPGH8rxDg4r0oZVCaz2/LWpJycnLYuHEjffr0KXK8T58+rFmzxuE58fHxxer37duXDRs2kJubW6y+YRh899137Ny5kyuuuKLIa7t27aJBgwaEhYUxbNgwdu/efcF4s7OzyczMLPJwOrXDzKZiDE3zFBEpqW2fmc/hV1btBAmgUYS5J11BLvz8ltXROD3LkqT09HTy8/MJCSk6zTIkJITU1FSH56Smpjqsn5eXR3p6uv1YRkYGNWrUwMvLiwEDBvC///2P6667zv56VFQU8+bNY9myZcyePZvU1FR69uzJ4cOHzxvvlClTCAoKsj8aN3bSVppud5nPm97XNE8RkZIoTJLaV+GutrMVLgfw8xzIPWVtLE7O8oHbNputyNeGYRQ7drH65x4PCAhg06ZN/Pzzz7z44ovExsaycuVK++v9+vVj8ODBdOzYkd69e/PVV+ZA53ffffe89504cSIZGRn2x759+0r8PVaqtjea0zyPJpuD80RE5Pz+/A0O/QpuHtBmgNXRVI42N0DNJnDqCGxeYHU0Ts2yJKlOnTq4u7sXazVKS0sr1lpUKDQ01GF9Dw8PgoPPNJG6ubnRokULunTpwt///neGDBnicIxTIX9/fzp27MiuXbvOW8fb25vAwMAiD6fk6QsdB5tlDeAWEbkwe1fb1eaac9WBuwdEjTbLWlzygixLkry8vIiIiCAuLq7I8bi4OHr27OnwnOjo6GL1ly9fTmRkJJ6enue9l2EYZGdnn/f17OxsEhMTqV+/fim+AydWuGZS4hI4ddTSUEREnFphklSVZ7U50vVO8AqA9J3wx3dWR+O0LO1ui42N5a233mLu3LkkJiYyfvx4kpOTGT3azHAnTpzIXXfdZa8/evRo9u7dS2xsLImJicydO5c5c+YwYcIEe50pU6YQFxfH7t272bFjB6+99hrz5s1jxIgR9joTJkxg1apVJCUlsW7dOoYMGUJmZiYjR46svG++IjXoBvXaQV4W/PrpxeuLiFRHaYnwZ6K5rVPr/lZHU7l8As+MYY2fZm0sTszDypsPHTqUw4cPM3nyZFJSUujQoQNLly6ladOmAKSkpBRZMyksLIylS5cyfvx4pk2bRoMGDXj99dcZPHiwvc6JEycYM2YM+/fvx9fXlzZt2vD+++8zdOhQe539+/czfPhw0tPTqVu3Lj169GDt2rX2+7o8m81sTVr2BCS8B5fdZ3VEIiLOp7AVqfm14FvT0lAsEfUgrJsBu1fAoW0Q0t7qiJyOpeskuTKnXCfpbCfS4dU25jTP0T9BaAerIxIRcR6GAdO6Q/pvcMss6Dz04udURR/dZW7s23UE3Fw9WpRcYp0kqWD+daB1P7O86QNrYxERcTZp280Eyd37zP+V1VGPh83nLR/D8TRrY3FCSpKqsq53ms+bF0BejrWxiIg4k8JtSFpeZ47Pqa4ad4eGkZCfba6bJEUoSarKml8DAfXNtTB++9rqaEREnINhnLWA5C3WxmI1mw2iCxeXfAtys6yNx8koSarK3D2g83CzrDWTRERMqVvhyB/g4QOt+lodjfXa3gyBjeBkOmz9yOponIqSpKqucM2k37+FzIPWxiIi4gy2FXa19QHvAGtjcQbuHuZMN4D46WZLmwBKkqq+4ObQpCcYBdr0VkREXW2OdbsLPP3NdaN2r7A6GqehJKk66HZ6AHfC+/oLQUSqt5RN8Nce8PRTV9vZfGue+azQ4pJ2SpKqg3Y3g1cN+CsJ9q6xOhoREesUzmpr1Re8/K2NxdlEPQjYzOEZf+60OhqnoCSpOvDyP7MvkQZwi0h1ZRiwbbFZVldbcbXDoc0As7x2urWxOAklSdVF4ZpJ2xdDVqaloYiIWOLARshINsfetLjO6micU/TpxSU3L4ATh62NxQkoSaouGl0GdVpB7skzgxZFRKqTwv/7WvcDLz9rY3FWTaKhfhdzg/QNc62OxnJKkqqLwk1vQV1uIlL9FBSoq60kbDaIfsQsr58FednWxmMxJUnVSadhYHOH/es1KE9Eqpf9P0PmfvAKgBa9rY7GubUfCAEN4EQa/Pqp1dFYSklSdRIQAq2uN8sJ71kbi4hIZSrsamvTHzx9rI3F2bl7QvcHzHI1X1xSSVJ1U9jltnkB5OdaG4uISGUoKDAnrYC62koq4m5zLalDWyHpB6ujsYySpOqm5XXgXw9O/Am7llsdjYhIxdu3Fo6lgHeQufG3XJxfbehyu1muxssBKEmqbtw9ofMws6wB3CJSHdi72gaAh7e1sbiSqIcAG/z2DaTvsjoaSyhJqo4Ku9x+WwbHDlkbi4hIRSrIh+2fm2V1tZVOnRZnxrGunWFtLBZRklQd1W0NjbqDkQ9bFlgdjYhIxdm7Bo4fAp+aEH6V1dG4nugx5vOmD+HkEWtjsYCSpOqqcCPDX96r1jMXRKSKK+xqa3sDeHhZG4srahYDoR0h7xRsfNvqaCqdkqTqqv0t5syFw7tg33qroxERKX/5eZC4xCyrq61sbDbocXqrkvWzIS/H2ngqmZKk6so74Mx/GlozSUSqor0/mjN5fWtD2JVWR+O6OgyGGiHmDMHCpRSqCSVJ1VnhAO5tn0H2cWtjEREpb/authvNmb1SNh5eZy0u+Ua1GqKhJKk6axINtcMh5/iZ2R8iIlVBfi5sV1dbuYm4Fzx8IGWzORi+mlCSVJ1p01sRqaqSfoBTR8Cvjjn4WC6NfzB0Hm6W46dZG0slUpJU3XUeDjY3SF4D6b9bHY2ISPko7GprdxO4e1gbS1XR4/RyADuXwuE/rI2lkihJqu4CG0CL68zyJrUmiUgVkJcDiV+Y5faDrI2lKqnb6vTnhQHr3rQ6mkqhJEnOdLltmm9OmRURcWVJqyDrqLlPZdOeVkdTtUSfXg4g4X04ddTSUCqDkiQxl533C4bjqfDHd1ZHIyJyaexdbTeDm7u1sVQ14VdBvfaQewJ+edfqaCqckiQxp3d2Ktz0VmsmiYgLy8uGxC/Ncgd1tZU7m+3MViXrZpmzCKswJUliKuxy2/k1nEi3NhYRkbL6YwVkZ0CNUGjcw+poqqYOQ8C/LmTur/LLx1ieJE2fPp2wsDB8fHyIiIhg9erVF6y/atUqIiIi8PHxITw8nJkzZxZ5fdGiRURGRlKzZk38/f3p0qUL771XvHWktPet8kLaQYNuUJAHWxZaHY2ISNkUdrW1Hwhuln/EVU2ePnDZ/WY5flqVXlzS0n9BCxcuZNy4cUyaNImEhARiYmLo168fycnJDusnJSXRv39/YmJiSEhI4IknnmDs2LF8+umn9jq1a9dm0qRJxMfHs2XLFu655x7uueceli1bVub7Vhva9FZEXFluFuz4yixrVlvFirwP3L3h4C+wb53V0VQYm2FY92kYFRVFt27dmDFjhv1Y27ZtGThwIFOmTClW/7HHHmPJkiUkJibaj40ePZrNmzcTHx9/3vt069aNAQMG8Pzzz5fpvo5kZmYSFBRERkYGgYGBJTrH6WVlwCutIC8L7v8eGkVYHZGISMnt+AoW3A6BDWHcr2pJqmifP2KOY217Ewx1nfGspfn8tuxfUE5ODhs3bqRPnz5Fjvfp04c1axwveR4fH1+sft++fdmwYQO5ucUHjxmGwXfffcfOnTu54oorynxfgOzsbDIzM4s8qhyfIHM2CGgAt4i4HvustoFKkCpD4XIAO76Ev/ZYGkpFsexfUXp6Ovn5+YSEhBQ5HhISQmpqqsNzUlNTHdbPy8sjPf3MYOOMjAxq1KiBl5cXAwYM4H//+x/XXXddme8LMGXKFIKCguyPxo0bl+r7dRmFA7h//RRyTlobi4hISeWeMieegGa1VZZ6baH5NWAUVNnFJS1PtW02W5GvDcModuxi9c89HhAQwKZNm/j555958cUXiY2NZeXKlZd034kTJ5KRkWF/7Nu374Lfl8tqejnUbArZmWdWrBURcXa74szNuoMaQ0MNFag0PU63Jv3ynjlko4qxLEmqU6cO7u7uxVpv0tLSirXyFAoNDXVY38PDg+DgYPsxNzc3WrRoQZcuXfj73//OkCFD7GONynJfAG9vbwIDA4s8qiQ3t7M2vVWXm4i4iG2LzOf2A821fKRytLgW6raBnGNmolTFWJYkeXl5ERERQVxcXJHjcXFx9OzpeBn56OjoYvWXL19OZGQknp6e572XYRhkZ2eX+b7VTufhgA32rIYjSVZHIyJyYTkn4LfTM5g1q61y2WzQ4yGzvO7NKre1laXdbbGxsbz11lvMnTuXxMRExo8fT3JyMqNHjwbMLq677rrLXn/06NHs3buX2NhYEhMTmTt3LnPmzGHChAn2OlOmTCEuLo7du3ezY8cOXnvtNebNm8eIESNKfN9qr2Zjs58ZYNMH1sYiInIxu5ZD7kmo1QwadLU6muqn01Bza6uMZHMQdxXiYeXNhw4dyuHDh5k8eTIpKSl06NCBpUuX0rRpUwBSUlKKrF0UFhbG0qVLGT9+PNOmTaNBgwa8/vrrDB482F7nxIkTjBkzhv379+Pr60ubNm14//33GTp0aInvK5hdbn98B5s+hKsmav8jEXFevxZ2td2irjYrePqa6yb98LK5uGT7gVZHVG4sXSfJlVXJdZLOlpcNr7aGU3/BiE+hRW+rIxIRKS77OPy7ubm+24M/QP3OVkdUPR07BFM7QH4O3P8dNIq0OqLzcol1ksTJeXhDx9vMcsL71sYiInI+v31jJki1wyG0k9XRVF8BIdDxVrMcP83aWMqRkiQ5v8JZbju+gpNHrI1FRMQR+15tg9TVZrXCAdzbP4ejVWOZHCVJcn71O5l/meXnwNaPrY5GRKSorExzfSQwxyOJtUI7QtiVYOTD+qqxuKSSJLmwbqdnF2rTWxFxNr99A/nZENwSQtpbHY3Ama1KNr4L2cesjaUcKEmSC+sw2Nzp+dBWSNlsdTQilWPfekj4AAoKrI5ELqRwVlsHdbU5jRbXmUlrdqb5O+TilCTJhfnVhrY3mGUN4Jbq4MAv8M4A+HwMrHzJ6mjkfE4dNZcpAXW1ORM3t7MWl5wBBfnWxnOJlCTJxRUO4N76EeRmWRuLSEU6eQQ+GmmOwwP44d/mZs/ifHZ+bf6c6rYxN1oV59F5OPjWgr/2wM6lVkdzSZQkycWFXWluGpmVUeVWUxWxKyiARQ+YqwbXCoPL7jePLx4DBxOsjU2Ks+/Vpm1InI6XH0TcY5bjp1sbyyVSkiQX5+YOXW43y+pyk6rqh3/D79+Chw8MfQ/6vQwt+5hr8My/3VwsT5zDqb/gj+/NchVa3blK6T4K3DwheY3Zhe2ilCRJyRQmSbtXwtHkC1YVcTm/fwcrp5jlG/5jTmV2c4fBb0GdVnDsICy8Q93NziLxSyjIg3rtoW5rq6MRRwLrmwPqAda6bmuSkiQpmVrNzG43DHM/N5Gq4ug++PR+wIBuI8/8QQDgEwTDF4BPTdj/M3w5TkthOIPCBSQ7aMC2U+sxxnze9hlkHLA2ljJSkiQl1/VO81lTo6WqyMuGj0fCqSPmnl/9Xi5eJ7g53PoO2Nxh83xY879KD1POcvKI2aINGo/k7Bp0gaaXm61+62dZHU2ZKEmSkmt7A3gHmQNb9/xgdTQil27ZJDiw0Wwpum0eePo4rtf8arj+dHdc3NPw2/JKC1HOkbjEXNE5tJOZwIpziz7dmrTxHcg5YWkoZaEkSUrO0xc6DjHLGsAtrm7LR/DzbLM8aJbZpXwh3UeZ3XEY8Ol98OfOio5QHLHv1aauNpfQ6npz8+Gsoy45VENJkpRO4ZpJ25eYM0xEXFFaInzxqFm+4h/Qqu/Fz7HZoP8r0LSXuZrwh0O18XNlO5EOSadbsZUkuQY3d4g6vbjk2hkuN1RDSZKUToOu5oyS/GwtsieuKSsTFo6A3JMQfhVcNbHk53p4md1yNZvAX0nw8d2Qn1tRkcq5tn8ORoH5/1DtMKujkZLqcrs5CeLIH7BrmdXRlIqSJCkdm+1Ma5K63MTVGAYseQQO/w6BDWHwHPMv3dLwrwPD5oOnPyStgmVPVEysUpy62lyTdw2IuNssx0+zNJTSUpIkpddpqLlI2MEESP3V6mhESm7tdLM1ws0Tbn3XTHjKIrSDOY4JzFk7G94uvxjFsWOHYO9PZrndQEtDkTLoPsqcIbpnNaRssTqaElOSJKXnHwxt+ptltSaJq9gbb85MA+j7EjS+7NKu1/YGuOZJs7x0Auz58dKuJxeWuMTsamsYCbWaWh2NlFZQozMtgC60uKSSJCmbwjWTtiw015oRcWbH08zxQwV50GEwdH+gfK4bM8G8XkEeLLzT3NBTKoa62lxf4XIAWz+BY6nWxlJCSpKkbJpfAwENzEX4dn5tdTQi55efB5/cC8dToU5ruPF1c2xdebDZ4KY3oH4X83dh/nDIPlY+15YzMlNg7xqzrL3aXFfDCGgSDQW5sH621dGUiJIkKRs3d+gy3Cyry02c2YoXzHEQXjVg6PvmINLy5OUHw+dDjRBI2w6LHnS5ac5Ob/vngAGNo8xuG3FdhVuVbJgDOSetjaUElCRJ2XW5w3z+4zuX3ZdHqrgdX8GP/zHLN/0P6raqmPsENoBhH4K7N+z8ykzMpPyoq63qaDMAajY119nbssDqaC5KSZKUXXBzc18eowA2u95KqlLFHdkNn51exC7qoTM7kleURpFw0+tmefWr5rgLuXQZ+2HfWsAG7W62Ohq5VG7u0MN1FpdUkiSX5uw1k5z8H7tUI7mnYOFdkJ1hdtFcN7ly7tt5GPQca5Y/fxgO/FI5963Ktn9uPjeJNlvsxPV1HQHegZD+G/z+rdXRXJCSJLk07W4CrwBzVk/yGqujETF9NQEObQW/OnDrO+ZK2ZWl97PQsi/kZcGCO1xmFo/TUldb1eMdAN3uMstrnXtxSSVJcmm8/M90Y2gAtziDX+bBpvfB5gZD5lR+64ObOwx+y5xJd+wgLLgdcrMqN4aq4mgy7P8Zs6vtJqujkfIU9aD5O7p7JRzaZnU056UkSS5d4ZpJ2xab+2KJWOXgJrMVCcyFHsOvsiYOn0BzxptPTTiwEb4Ya26JIqWzbbH53OxyCAi1NBQpZzWbQNvTiW+88y4uqSRJLl2jSPOv5rxTsG2R1dFIdXXqL/joTnPz5VbXQ6/x1sYT3NzcDNfmbi66+tN/rY3HFdm72gZaGoZUkOhHzOetH5kLvjohJUly6bTprVitoAA+G212z9RsCrfMBDcn+O8t/Ero939m+dtnYec3lobjUo4kwcFfzC6ZtprVViU1vgwaXQb5OfDzW1ZH41CZ/hfZt28f+/fvt3+9fv16xo0bx6xZs8otMHExnYeBm4c5fiBth9XRSHXz42vw2zfmOkVD3wPfWlZHdMZl90PEPYABn94PaYlWR+Qati82n5vFQI26loYiFSj6YfP55zlOOXavTEnS7bffzooVKwBITU3luuuuY/369TzxxBNMnlxJU23FudSoZ3ZxACS8Z20sUr3sXgkrXjTLA16B+p0tDacYmw36/9tcUyznGMwfBiePWB2V89OstuqhzY0Q1AROppvdbk6mTEnSr7/+Svfu3QH46KOP6NChA2vWrOHDDz/knXfeKdW1pk+fTlhYGD4+PkRERLB69eoL1l+1ahURERH4+PgQHh7OzJkzi7w+e/ZsYmJiqFWrFrVq1aJ3796sX7++SJ1nn30Wm81W5BEaqkGBl6ywy23zAsjPtTYWqR4yDsAn95kLmnYdcWZasbNx9zTHJ9Vsai6X8dFd+h25kMN/QMpmczxXW81qq9LcPSBqlFmOn+50ExzKlCTl5ubi7e0NwLfffstNN5n/iNu0aUNKSkqJr7Nw4ULGjRvHpEmTSEhIICYmhn79+pGcnOywflJSEv379ycmJoaEhASeeOIJxo4dy6effmqvs3LlSoYPH86KFSuIj4+nSZMm9OnThwMHim6b0b59e1JSUuyPrVu3lvZtkHO1uM7cv+pkOvy2zOpopKrLy4GP7zb/vYV2hP6vWB3RhfkHw/AF5h5ye1bDN49bHZHzKmxFCr/SfN+kaut2l/l78Wci/PG91dEUUaYkqX379sycOZPVq1cTFxfH9deb3SwHDx4kOLjk/6Bfe+017rvvPu6//37atm3L1KlTady4MTNmzHBYf+bMmTRp0oSpU6fStm1b7r//fu69915eeeXMf44ffPABY8aMoUuXLrRp04bZs2dTUFDAd999V+RaHh4ehIaG2h9166rP+5K5e5hjk0ADuKXixT0F+9eDdxDc9h54+lod0cWFtINBswGbOVD15zlWR+ScCqf+q6utevAJOrOUzFrnWg6gTEnS//3f//Hmm29y1VVXMXz4cDp3NscALFmyxN4NdzE5OTls3LiRPn36FDnep08f1qxxvHJzfHx8sfp9+/Zlw4YN5OY6bro+efIkubm51K5du8jxXbt20aBBA8LCwhg2bBi7d+++YLzZ2dlkZmYWeYgDXU53ue1arpWGpeL8+imsO93VfstMqB1mbTyl0aY/XPuUWf76n5B04SEG1U76LnO1dDcPaHOD1dFIZSlcXPL3b51q8k+ZkqSrrrqK9PR00tPTmTt3rv34qFGjio0ROp/09HTy8/MJCQkpcjwkJITUVMcfrqmpqQ7r5+XlkZ6e7vCcxx9/nIYNG9K7d2/7saioKObNm8eyZcuYPXs2qamp9OzZk8OHD5833ilTphAUFGR/NG7cuETfZ7VTtxU07gFGvjk2SaS8/bkTPv+bWb481kw6XM3lsdBhCBTkmWs7HUmyOiLnYe9quxr8al+4rlQdtcOgzQCz7EStSWVKkk6dOkV2dja1apnTbPfu3cvUqVPZuXMn9erVK9W1bDZbka8Nwyh27GL1HR0HePnll5k/fz6LFi3Cx8fHfrxfv34MHjyYjh070rt3b7766isA3n333fPed+LEiWRkZNgf+/btu/g3V13Z10x6z+kG4YmLyz4OC++E3BPm1PCrJ1kdUdnYbHDzG9Cgq7kI5vzhWq2+0K+nF6RVV1v10+P0cgCbF8AJxw0fla1MSdLNN9/MvHnzADh69ChRUVG8+uqrDBw48Lzjic5Vp04d3N3di7UapaWlFWstKhQaGuqwvoeHR7GxUK+88govvfQSy5cvp1OnTheMxd/fn44dO7Jr167z1vH29iYwMLDIQ86j/UDw9IfDv8O+dVZHI1WFYZjbe6TvhID6MGSuOQ7OVXn6wrAPoUaoOWB10SgoyLc6KmulJZrvhZvnmVYFqT6a9IAG3cxV8zfMvXj9SlCmJOmXX34hJiYGgE8++YSQkBD27t3LvHnzeP3110t0DS8vLyIiIoiLiytyPC4ujp49ezo8Jzo6ulj95cuXExkZiaenp/3Yv//9b55//nm++eYbIiMjLxpLdnY2iYmJ1K9fv0Sxy0V4B5z5K1BrJkl5WT/LHIvk5gG3vmOuzeXqAhuYiZK7N/z2NXz/vNURWatwwHaLa8G3ppWRiBVstjOLS66fDXnZ1sZDGZOkkydPEhAQAJhJyqBBg3Bzc6NHjx7s3bu3xNeJjY3lrbfeYu7cuSQmJjJ+/HiSk5MZPXo0YHZx3XXXmXVPRo8ezd69e4mNjSUxMZG5c+cyZ84cJkyYYK/z8ssv8+STTzJ37lyaNWtGamoqqampHD9+3F5nwoQJrFq1iqSkJNatW8eQIUPIzMxk5MiRZXk7xJHCLrdfPzO7SEQuxb71sOwJs3zd8+ZfnFVFowiz6w3gx//Alo+tjccqhnFm70d1tVVf7W6GwIZwIg22fmJ1NGVLklq0aMHixYvZt28fy5Yts884S0tLK1U31NChQ5k6dSqTJ0+mS5cu/PDDDyxdupSmTZsCkJKSUmTNpLCwMJYuXcrKlSvp0qULzz//PK+//jqDBw+215k+fTo5OTkMGTKE+vXr2x9nLxOwf/9+hg8fTuvWrRk0aBBeXl6sXbvWfl8pB016QO3m5tiRwu0FRMriRDp8NNIc5NxuIPR4yOqIyl+n26DXOLO85BE4sNHScCyRth3SfzNb1Vq74GB8KR/untD99OKSa61fXNJmGKWP4JNPPuH2228nPz+fa665xt4FNmXKFH744Qe+/vrrcg/U2WRmZhIUFERGRobGJ53P6tfgu+egSTTcq409pQwK8uG9WyBpFQS3hFErzO7cqqggHxbcbu5BVyMURq2EwGo0BOD7F+CHf0PrATD8Q6ujESud+gteawe5J+GuzyH8qnK9fGk+v8vUkjRkyBCSk5PZsGEDy5adWVn52muv5T//+U9ZLilVUZfbzW0FkuMh/XeroxFXtOIlM0Hy9DM3rq2qCRKAm7u50GTdtnA81UyYck9ZHVXlMIwzs9o6DLI2FrGeb60zQzbirV0OoExJEpgzzbp27crBgwftW350796dNm3alFtw4uICQqHldWZZA7iltH5bBqtPd5Pf+DrUa2ttPJXBJxCGzzc/JA7+Akv+Znl3Q6VI3QpH/gAPH2jV1+poxBlEjYZG3aHLcEvDKFOSVFBQwOTJkwkKCqJp06Y0adKEmjVr8vzzz1NQUFDeMYors296Ox/y86yNRVzHX3tg0QNmufso6HSrpeFUqtph5ma4bh6w9WNzMHdVV7iAZMvrqnZroZRccHO4P87yQfxlSpImTZrEG2+8wb/+9S8SEhL45ZdfeOmll/jf//7HU089Vd4xiitr2Rf86sDxQ+Zy8yIXk5sFH90FWRnQMBL6vGh1RJUv7Aro939m+bvJsLMKj/MsMqtNXW3iXMqUJL377ru89dZbPPTQQ3Tq1InOnTszZswYZs+ezTvvvFPOIYpL8/A6a9NbdblJCXz9T0jZDL614bZ3zX9D1dFl90PkfYABn94Ph7ZbHVHFSNlkthx6+KqrTZxOmZKkI0eOOBx71KZNG44cOXLJQUkVU9jl9ts3cPxPa2MR55bwAfzyLmCDIXMgqJHVEVmr3/+Z26/kHIf5w+DE+feXdFmFXW2t+oKXv7WxiJyjTElS586deeONN4odf+ONNy66BYhUQ/Xamt0mBXmwZaHV0YizSt0KX8Wa5aufgObXWBuPM3D3NMcn1WwKR/fCxyMhP9fqqMqPYZxJkjSrTZxQmTY+evnllxkwYADffvst0dHR2Gw21qxZw759+1i6dGl5xyhVQdcRcGCD2eUW/bC5/LxIoVNHzY1r87KgxXUQM+Gip1QbfrXh9oXwVm/Ys9rsjryhigzmPvALHE0293pscZ3V0YgUU6aWpCuvvJLffvuNW265haNHj3LkyBEGDRrEtm3bePvtt8s7RqkKOgwyxxz8uaN6riYs52cYsHgM/JUEQU1g0CxwK/PqJFVTvbYw+C3AZm78uX621RGVj8IB262vBy8/a2MRcaBMK26fz+bNm+nWrRv5+VV/J2utuF0Gix6ELQsg4m648b9WRyPO4sep8O0z4O4F9y6Dht2sjsh5Fa5ib3OHOz+D8CutjqjsCgpgakfI3A9DP4C2N1gdkVQTFb7itkiZFA7g3vop5Jy0NhZxDkmrzQ99gH4vK0G6mMvHQ8fbwMg3xycd2W11RGV3YIOZIHnVgBa9rY5GxCElSVJ5mvaCWs0g5xgkLrE6GrFaZgp8cg8YBdD5drOFUS7MZoObXocG3cz9rT4cBlmZVkdVNoXbkLTuD54+1sYich5KkqTyuLlBl9OtSQnvWxuLWCs/10yQTvwJIR1gwKsazF9Snr4w7EMIqA/pO801lApcbIhDQQFsX2yWNatNnFipZrcNGnThf8xHjx69lFikOuhyO6x40Zylc2Q31A63OiKxwrfPmhsfeweaU9w1aLd0AuvDsA/g7f6wa5m5Kvd1z1kdVcntWwfHUsA7SEs9iFMrVUtSUFDQBR9NmzblrrvuqqhYpSoIaggtrjXLCR9YG4tYY9tiiD+9ztrAGeYeTVJ6DSPgptPv409TYbMLrUFWOKutzQDw8LY2FpELKFVLkqb3S7noOsLcx23Th+aigW7uVkcklSV9F3z+iFnuOVYzmi5Vp1shbTv8+Bos+ZuZcDaKtDqqCyvIh+2fm2WLNy8VuRiNSZLK17o/+NaCYwfhjxVWRyOVJeeEuWBkzjFzEP+1z1gdUdVwzVPm71R+Niy4AzIPWh3RhSXHmxte+9SE8KusjkbkgpQkSeXz8IZOQ82yNr2tHgwDvhgHfyZCjRAY8ja4l2nBfzmXm5u5AGe9dnA8FRbcDrmnrI7q/ApntbW9ofpuXiwuQ0mSWKNwzaQdX1XNTTulqA1zYOtH5iKIt74DASFWR1S1eAfA8PngWxsOJsDnD5uJqbPJzzuz/Ie62sQFKEkSa4R2hPpdoCAXtn5sdTRSkfZvhK8fN8vXPQdNe1obT1VVq5k5U9DNA379FFa/anVExe39yVz2wbc2hLnwauFSbShJEusUtiYlvOecf/XKpTtxGD66y0yG294I0Y9YHVHVFhZjrlwO8P3zZkutMymc1db2RnD3tDYWkRJQkiTW6TgE3L3h0K+QssnqaKS8FeTDovvNrSdqN4ebp2vByMpw2X1w2f1m+dMH4NA2a+MplJ8H29XVJq5FSZJYx7eW+RclaAXuqmjVy/DH9+DhC0PfAx9tBF1prv8XNIuB3BMwfxicSLc6IkhaBaeOgF8dMzYRF6AkSaxl3/T2Y+eekSOls+tbWPV/ZvnG/0JIe2vjqW7cPc3xSbXC4Giy2eWZl2NtTNs+M5/b3aSZjeIylCSJtcKuhKDGkJXhfOMnpGyOJpvdbBgQeS90Hmp1RNWTX20YvgC8AswB01//w7qxf/m5kPiFWVZXm7gQJUliLTc36HKHWdaaSa4vL9tstTj1FzToanb7iHXqtYEhcwAbbHwH1s+2Jo7dKyHrKPjXMxcSFXERSpLEel3vAGywexX8tdfqaORSfDPRXKfHt5bZ3aN9uazXqi/0ftYsf/O4mbBUNntX283ahkhcipIksV7NJhB+JWCY+7mJa9q8wFw0EhsMesv8uYpz6PUodBoGRj58NBIO/1F5987LgcQvzbK62sTFKEkS59D1TvN50wdQUGBtLFJ6h7aZ244AXPkYtOxtaThyDpvNHEDfMNLs9po/3BwHWBn++B6yM6BGKDSJrpx7ipQTJUniHNoMAJ8gyNhnThUW15GVaW5cm3cKml8LV/7T6ojEEU8fGPYBBDSA9J3w6f3mWlYVrbCrrf1AcwyiiAvRv1hxDp6+0PFWs6w1k1yHYcDnY+DIHxDYCAbN1pgTZxYQaiZKHj6wazl8+2zF3i83C3YuNcvqahMXZHmSNH36dMLCwvDx8SEiIoLVq1dfsP6qVauIiIjAx8eH8PBwZs6cWeT12bNnExMTQ61atahVqxa9e/dm/fr1l3xfqQSFayYlfmHOjhLnF/+G+fNyO70uj3+w1RHJxTTsBgOnm+U1r8Om+RV3rz++g+xMCGwIjbpX3H1EKoilSdLChQsZN24ckyZNIiEhgZiYGPr160dycrLD+klJSfTv35+YmBgSEhJ44oknGDt2LJ9++qm9zsqVKxk+fDgrVqwgPj6eJk2a0KdPHw4cOFDm+0olqd8FQjpCfjZs/cTqaORi9q6BuGfMcr9/QaMIa+ORkuswGGImmOUvxsK+nyvmPvZZbQPV1SYuyWYY1u0sGhUVRbdu3ZgxY4b9WNu2bRk4cCBTpkwpVv+xxx5jyZIlJCYm2o+NHj2azZs3Ex8f7/Ae+fn51KpVizfeeIO77rqrTPd1JDMzk6CgIDIyMggM1HYL5WbtTPjmMTNhelBjk5zWsUPwZgwcPwQdb4NBs7Qvm6spKICFI2DnV+b6RaNWQlDD8rt+7in4dwvIOQ73fQuNLyu/a4tcgtJ8fluW2ufk5LBx40b69OlT5HifPn1Ys2aNw3Pi4+OL1e/bty8bNmwgNzfX4TknT54kNzeX2rVrl/m+Uok63QbuXuaGt6lbrY5GHMnPg0/uMROkum3hxqlKkFyRmxsMehPqtYMTabBgOOScLL/r74ozE6SgxtAosvyuK1KJLEuS0tPTyc/PJyQkpMjxkJAQUlNTHZ6TmprqsH5eXh7p6Y43cHz88cdp2LAhvXv3LvN9AbKzs8nMzCzykArgVxta9zfLGsDtnL6fbG5z4RVgblzr5W91RFJW3gEwfD74BUPKZvj84fLbuuTsWW1KosVFWd5JbDvnl8cwjGLHLlbf0XGAl19+mfnz57No0SJ8fHwu6b5TpkwhKCjI/mjcuPF568olKlwzactCc5sLcR6JX8BP/zXLN78BdVpaG49culrNzEH3bh6wbRH88MqlXzPnBPz2jVnWrDZxYZYlSXXq1MHd3b1Y601aWlqxVp5CoaGhDut7eHgQHFx0Vs0rr7zCSy+9xPLly+nUqdMl3Rdg4sSJZGRk2B/79u0r0fcpZdD8anMtl1N/nZk+LNY7/AcsHmOWox8xWwikamh2OfQ/nRyteOHMZrRltWs55J6Emk2hQbdLj0/EIpYlSV5eXkRERBAXF1fkeFxcHD179nR4TnR0dLH6y5cvJzIyEk9PT/uxf//73zz//PN88803REYW7Qsvy30BvL29CQwMLPKQCuLmDl1uN8vqcnMOOSfNjWuzM81Vkwv3ApOqI/Ie6D7KLC96EFJ/Lfu17F1tt6irTVyapd1tsbGxvPXWW8ydO5fExETGjx9PcnIyo0ePBszWm8IZaWDOZNu7dy+xsbEkJiYyd+5c5syZw4QJE+x1Xn75ZZ588knmzp1Ls2bNSE1NJTU1lePHj5f4vuIEut5hPv/+HWTstzaW6s4w4KtYOPQr+NeFIW+Du+fFzxPX03cKhF0JuSfMrUuO/1n6a2Qfh9+Wm2V1tYmrMyw2bdo0o2nTpoaXl5fRrVs3Y9WqVfbXRo4caVx55ZVF6q9cudLo2rWr4eXlZTRr1syYMWNGkdebNm1qAMUezzzzTInvWxIZGRkGYGRkZJTqPCmFtwcYxjOBhrHqZasjqd5+nmv+HJ6taRi7f7A6GqloJw4bxn+7mD/zOdcbRm526c7f8rF57n+7GEZBQcXEKHIJSvP5bek6Sa5M6yRVgs0L4LMHzYGlf0vQYnRWOPALzO0L+TlmF9vl462OSCrDnzvhrd5m92q3u+DG10vebbbgDtjxJcT8Ha59umLjFCkDl1gnSeSi2t5kTjP/a4855Vwq18kj8NFIM0FqPQB6jbM6IqksdVvD4DmADX6ZB+veLNl5WZnm+kgA7QdVWHgilUVJkjgvLz/oONgsawB35SooMFvxMpKhVpi515cG4FYvrfrAdZPN8rKJ8Mf3Fz/nt2/MbYWCW0JI+4qNT6QSKEkS51a4ZtL2zyErw9pYqpPVr5rTuD18zAUjfWtaHZFYoeffoPNwMArg47vNZSAuRLPapIpRkiTOrWGEufVF3in4dZHV0VQPf3wPK140ywNeg9CO1sYj1rHZ4Iap0Ogy84+U+cPO/8fKqaPw+7dmuYO62qRqUJIkzs1mg64jzLK63Cpexn749H7AgG4jzyzFINWXpw8Mfd9c4DX9N/jkXijIL15v59fm+LW6baBe28qPU6QCKEkS59dpqLllwoENkJZodTRVV16OOVD75GGo3xn6vWx1ROIsAkJh+Ifg4Wu2FsU5mLV2dlebSBWhJEmcX4260Op6s6zWpIqzfJKZiPoEmXt5efpc/BypPhp0hYHTzHL8G7DpwzOvnfrrzMBuJUlShShJEtdQOIB78wKzxUPK19ZPYP0sszxotrk2lci5OgyGK/5hlr94FJLXmeUdX0FBLtRrby4fIFJFKEkS19CiN9QIgZPpsGuZ1dFULWmJsORvZjlmArTqa2084tyuegLa3GCOP1o4whzHVjipQq1IUsUoSRLX4O5hTkUGdbmVp+xjsPBOc8f2sCvh6iesjkicnZsb3PImhHSAE2nwwW2we6X5mpIkqWKUJInrKOxy27UcMlOsjaUqMAyzBenwLghsCEPmgpu71VGJK/CuAcM+BL9gSNsGRr65VESdFlZHJlKulCSJ66jTAppEmwvbbVlgdTSub91Mc0aSmwfc+g7417E6InEltZqaSwO4eZpfqxVJqiAlSeJazl4zSXszl13yWlj+pFnu+xI07m5tPOKamvaE2941l+mIvM/qaETKnZIkcS3tBoKnPxz+3fygl9I7/qe5xURBnjlbqfsoqyMSV9ZmAAyapa1rpEpSkiSuxbsGdDjdrK8B3KWXnwef3APHUqBOa7jxde2xJSJyHkqSxPUUDuDe9pk5O0tKbsWLsGe12Ro39D0z6RQREYeUJInraRwFwS0h9wRsW2x1NM4pPw+yMuF4Gvy1B9J2QMIH8ONr5us3/0+L/omIXISH1QGIlFrhprffPmN2uXW70+qISiY/D/JOQW6WuS5R3unnIl+fOutRgjp5p875+nS9grzzxxE12hyLJCIiF6QkSVxT52Hw3WTYtxbSd0GdlmW7TkF+0eSipAnMucnJBesUJi655fselJSHL3iefoRfDdc9b00cIiIuRkmSuKaAUGjZB377GpZNgkaRF29dKUxWzq6Tb9E+cB4+ZtJydgLj6Xv6uJ+5uayn3zlfO6pfWD73nLOup4HZIiJloiRJXFfXEWaStGtZ+ezn5u59ngTk3ATGUR1HSc15vvbwMbd2EBERp6YkSVxX637mhqwZ+8rQKnPO1x6+SlxERKQIJUniutzc4dqnrI5CRESqKP3pLCIiIuKAkiQRERERB5QkiYiIiDigJElERETEASVJIiIiIg4oSRIRERFxQEmSiIiIiANKkkREREQcUJIkIiIi4oDlSdL06dMJCwvDx8eHiIgIVq9efcH6q1atIiIiAh8fH8LDw5k5c2aR17dt28bgwYNp1qwZNpuNqVOnFrvGs88+i81mK/IIDQ0tz29LREREXJylSdLChQsZN24ckyZNIiEhgZiYGPr160dycrLD+klJSfTv35+YmBgSEhJ44oknGDt2LJ9++qm9zsmTJwkPD+df//rXBROf9u3bk5KSYn9s3bq13L8/ERERcV2W7t322muvcd9993H//fcDMHXqVJYtW8aMGTOYMmVKsfozZ86kSZMm9tahtm3bsmHDBl555RUGDx4MwGWXXcZll10GwOOPP37ee3t4eKj1SERERM7LspaknJwcNm7cSJ8+fYoc79OnD2vWrHF4Tnx8fLH6ffv2ZcOGDeTm5pbq/rt27aJBgwaEhYUxbNgwdu/efcH62dnZZGZmFnmIiIhI1WVZkpSenk5+fj4hISFFjoeEhJCamurwnNTUVIf18/LySE9PL/G9o6KimDdvHsuWLWP27NmkpqbSs2dPDh8+fN5zpkyZQlBQkP3RuHHjEt9PREREXI/lA7dtNluRrw3DKHbsYvUdHb+Qfv36MXjwYDp27Ejv3r356quvAHj33XfPe87EiRPJyMiwP/bt21fi+4mIiIjrsWxMUp06dXB3dy/WapSWllastahQaGiow/oeHh4EBweXORZ/f386duzIrl27zlvH29sbb2/vMt9DREREXItlLUleXl5EREQQFxdX5HhcXBw9e/Z0eE50dHSx+suXLycyMhJPT88yx5KdnU1iYiL169cv8zVERESkarG0uy02Npa33nqLuXPnkpiYyPjx40lOTmb06NGA2cV111132euPHj2avXv3EhsbS2JiInPnzmXOnDlMmDDBXicnJ4dNmzaxadMmcnJyOHDgAJs2beL333+315kwYQKrVq0iKSmJdevWMWTIEDIzMxk5cmTlffMiIiLi1CxdAmDo0KEcPnyYyZMnk5KSQocOHVi6dClNmzYFICUlpciaSWFhYSxdupTx48czbdo0GjRowOuvv26f/g9w8OBBunbtav/6lVde4ZVXXuHKK69k5cqVAOzfv5/hw4eTnp5O3bp16dGjB2vXrrXfV0RERMRmFI58llLJzMwkKCiIjIwMAgMDrQ5HRERESqA0n9+Wz24TERERcUZKkkREREQcUJLkhFbsTCMrN9/qMERERKo1JUlOZnHCAe5952fuf3cDJ3PyrA5HRESk2lKS5GRCg3zw83Tnx9/TGTl3PceySrcnnYiIiJQPJUlOpkd4MO/dH0Wgjwc/7/mLO95ax9GTOVaHJSIiUu0oSXJC3ZrU4sMHelDb34st+zMYNmstfx7LtjosERGRakVJkpPq0DCIhaN6UC/Amx2pxxj6ZjwpGaesDktERKTaUJLkxFqGBPDRg9E0rOnL7vQT3DoznuTDJ60OS0REpFpQkuTkmtXx56PR0TQL9mP/X6e47c14fk87bnVYIiIiVZ6SJBfQsKYvHz0YTauQGqRmZjFsVjyJKZlWhyUiIlKlKUlyEfUCfVgwKpoODQNJP57DsFlr2bzvqNVhiYiIVFlKklxIbX8vPri/B92a1CTjVC53vLWO9UlHrA5LRESkSlKS5GKCfD15774oosODOZ6dx11z17F6159WhyUiIlLlKElyQf7eHrx9z2Vc3bouWbkF3PfOBr7dfsjqsERERKoUJUkuysfTnTfvjKRfh1By8gsY/f5Gvth80OqwREREqgwlSS7My8ON/w3vyi1dG5JXYPDoggQ+3rDP6rBERESqBCVJLs7D3Y1Xb+3M8O5NKDDgH59s4b34PVaHJSIi4vKUJFUBbm42XrqlA/f2CgPgqc+38eaqPyyOSkRExLUpSaoibDYbT93Qlr9d0wKAKV/v4D9xv2EYhsWRiYiIuCYlSVWIzWbj731a84++rQH473e7mPL1DiVKIiIiZaAkqQp6+OoWPHNjOwBm/bCbpz7/lYICJUoiIiKloSSpirqnVxj/GtQRmw3eX5vMPz7ZQl5+gdVhiYiIuAwlSVXYsO5NmDq0C+5uNj79ZT+PLtxErhIlERGRElGSVMXd3KUh027vhqe7ja+2pPDQ+xvJys23OiwRERGnpySpGri+Qyiz74rE28ONbxPTuP/dDZzMybM6LBEREaemJKmauKp1Pd65pzt+Xu78+Hs6I+eu51hWrtVhiYiIOC0lSdVIdPNg3r8/igAfD37e8xd3vLWOoydzrA5LRETEKSlJqma6NanF/Ad6UNvfiy37Mxg2ay1/Hsu2OiwRERGnoySpGurQMIiFo3pQL8CbHanHGPpmPCkZp6wOS0RExKkoSaqmWoYE8NGD0TSs6cvu9BPcOjOe5MMnrQ5LRETEaVieJE2fPp2wsDB8fHyIiIhg9erVF6y/atUqIiIi8PHxITw8nJkzZxZ5fdu2bQwePJhmzZphs9mYOnVqudy3KmpWx5+PRkfTLNiP/X+d4rY34/k97bjVYYmIiDgFS5OkhQsXMm7cOCZNmkRCQgIxMTH069eP5ORkh/WTkpLo378/MTExJCQk8MQTTzB27Fg+/fRTe52TJ08SHh7Ov/71L0JDQ8vlvlVZw5q+fPRgNC3r1SA1M4uhb8aTmJJpdVgiIiKWsxkW7n4aFRVFt27dmDFjhv1Y27ZtGThwIFOmTClW/7HHHmPJkiUkJibaj40ePZrNmzcTHx9frH6zZs0YN24c48aNu6T7OpKZmUlQUBAZGRkEBgaW6BxnduREDnfOWce2g5kE+Xoy797udG5c0+qwREREylVpPr8ta0nKyclh48aN9OnTp8jxPn36sGbNGofnxMfHF6vft29fNmzYQG5uydb8Kct9q4Pa/l58+EAPujWpScapXO54ax3rk45YHZaIiIhlLEuS0tPTyc/PJyQkpMjxkJAQUlNTHZ6TmprqsH5eXh7p6ekVdl+A7OxsMjMzizyqmiBfT967L4ro8GCOZ+dx19x1rN71p9VhiYiIWMLygds2m63I14ZhFDt2sfqOjpf3fadMmUJQUJD90bhx41Ldz1X4e3vw9j2XcXXrumTlFnDfOxv4dvshq8MSERGpdJYlSXXq1MHd3b1Y601aWlqxVp5CoaGhDut7eHgQHBxcYfcFmDhxIhkZGfbHvn37SnQ/V+Tj6c6bd0ZyfftQcvILGP3+Rr7YfNDqsERERCqVZUmSl5cXERERxMXFFTkeFxdHz549HZ4THR1drP7y5cuJjIzE09Ozwu4L4O3tTWBgYJFHVebl4cYbt3fllq4NySsweHRBAh9vqLqJoYiIyLk8rLx5bGwsd955J5GRkURHRzNr1iySk5MZPXo0YLbeHDhwgHnz5gHmTLY33niD2NhYHnjgAeLj45kzZw7z58+3XzMnJ4ft27fbywcOHGDTpk3UqFGDFi1alOi+YvJwd+PVWzvj4+nO/PXJ/OOTLWTl5nNndDOrQxMREal4hsWmTZtmNG3a1PDy8jK6detmrFq1yv7ayJEjjSuvvLJI/ZUrVxpdu3Y1vLy8jGbNmhkzZswo8npSUpIBFHuce50L3bckMjIyDMDIyMgo1XmuqKCgwHhuyTaj6WNfGk0f+9KYufJ3q0MSEREpk9J8flu6TpIrq2rrJF2MYRi8uvw33ljxOwCPXtuScb1blnrAvIiIiJVcYp0kcS02m40JfVvzj76tAfjvd7uY8vUOlGOLiEhVpSRJSuXhq1vw9A3tAJj1w26e+vxXCgqUKImISNWjJElK7d7Lw/jXoI7YbPD+WnNAd15+gdVhiYiIlCslSVImw7o3YerQLri72fj0l/08umATOXlKlEREpOpQkiRldnOXhky7vRue7ja+2prCQ+9vJCs33+qwREREyoWSJLkk13cIZfZdkXh7uPHdjjTuf3cDJ3PyrA5LRETkkilJkkt2Vet6vHNPd/y83Pnx93TumrOezKxcq8MSERG5JEqSpFxENw/m/fujCPDxYMPevxjx1jqOnsyxOiwREZEyU5Ik5aZbk1rMf6AHtf292LI/g2Gz1vLnsWyrwxIRESkTJUlSrjo0DGLhqB7UC/BmR+oxhr4ZT0rGKavDEhERKTUlSVLuWoYE8NGD0TSs6cvu9BPcOjOe5MMnrQ5LRESkVJQkSYVoVsefj0ZH0yzYj/1/neK2N+P5Pe241WGJiIiUmJIkqTANa/ry0YPRtKxXg9TMLIa+GU9iSqbVYYmIiJSIkiSpUPUCfVj4YDTtGwRy+EQOw2atZfO+o1aHJSIiclFKkqTC1fb34sMHetCtSU0yTuVyx1vrWJ90xOqwRERELkhJklSKIF9P3rsviujwYI5n53HX3HWs3vWn1WGJiIicl5IkqTT+3h68fc9lXNW6Llm5Bdz3zga+3X7I6rBEREQcUpIklcrH050374zg+vah5OQXMPr9jXyx+aDVYYmIiBSjJEkqnbeHO2/c3pVbujYkr8Dg0QUJfLxhn9VhiYiIFKEkSSzh4e7Gq7d2Znj3xhQY8I9PtvBe/B6rw6rS8vILyC8wrA5DRMRleFgdgFRfbm42XrqlIz6e7rz90x6e+nwbJ3PyefDK5laH5tIKCgz2/XWSnanH+O3QMX47dJzfDh3jjz+P4+XuRmSz2vQIDya6eTAdGgTi4a6/lUREHFGSJJay2Ww8fUM7/L08eGPF70z5egcnc/IZ17slNpvN6vCcmmEYpGRksfPQMX5LPZMM7Uo7RlZugcNzcvPzWfXbn6z6zZxZWMPbg8ua1bInTe0bBOHupvddRASUJIkTsNlsTOjbGl8vd/69bCf//W4Xp3LzmdivjRIlzGToz+PZ7Dp0/KzWoWPsOnScY9l5Ds/x8nCjZb0atAoJoFVIAK1Da9CyXgDHsvJYu/sw8bsPs273YTKz8lix809W7DSTpgBvD7qHnWlpals/UEmTiFRbNsMwNEihDDIzMwkKCiIjI4PAwECrw6ky5v6YxOQvtwMwokcTJt/UAbdq9CF99GQOvx06flbrkPn462Suw/oebjbC6/rTMiSA1qcTolYhNWga7H/R5Ca/wCAxJZO1uw+zdvdh1iUd4VhW0aQr0MeD7mHB9AivbSZNoYHV6uchIlVPaT6/lSSVkZKkirNgfTITP9uKYcDgbo34v8Edq9y4mePZeew6nQDtTD3OrrRj7Ew9RtqxbIf1bTZoFuxPy3o1aB0aYG8hCqvjj5dH+bw3+QUG2w9m2lua1icd4fg5LVVBvp5EhZkJU4/wYFqHBChpEhGXoiSpEihJqliLEw7w9483k19gMKBjff4ztEu5JQOVKSs3n9/TzLFCO093ke1MPcaBo6fOe07Dmr60CqlBq9AzrUPN69bA18u9EiM3Z8NtOytp+jnpCCdy8ovUqeXnSVRYsD1pahVSQ12kIuLUlCRVAiVJFe+bX1P52/xfyM03uLZNPabd0Q0fz8pNFEoqJ6+APYdPFBkz9Nuh4+w9fILzzbqvF+BddMxQSAAt69UgwMezcoMvobz8ArYeyGDt7iPE7z7Mhj1HOHlO0hTs70VUeG2iw82kqUU9JU0i4lyUJFUCJUmVY+XONB58byPZeQVc3qIOs+6KwM/LuvkG+QUGew+fsM8kK3zs/vMEeefJhmr6eZqJUEgArUIDaHV6QHUtf69Kjr585eYXsGV/hn1M0897jhSbVVenhhdR4cH2pKl5XX8lTSJiKSVJlUBJUuWJ/+Mw9737Mydz8olsWou591xGYAW3thQUGBw4eur0WKEzCdHvacfJznM8vb6GtwctQ2qcNYA6gFahNahbw7taJAY5eQVs2X+U+D8OszbpMBv2/FXsvaob4G3OnAs3B4OH1VHSJCKVS0lSJVCSVLl+Sf6LkXPXcywrj06Ngph3b3dq+l16S4xhGKQdyz49gPpMN9muQ8eKjb8p5OPpRovTrUH2hCg0gAZBPvrAP0t2Xj6b92WYSdPuw2xM/oucc5KmkMCzk6Zgmgb76T0UkQqlJKkSKEmqfL8eyOCuues5ciKHNqEBvHdfFHUDvEt8/pETOfYWoZ2ppwdRHzpGxinH0+s93W00r1vj9PT6M2sONa7tp7WDyiArN59N+47ak6aE5KPk5BdNmuoH+RRJmhrX9lXSJCLlSklSJVCSZI1dh45xx1vrSDuWTXgdfz54IIr6Qb5F6mRm5bLr9JihnanH7F1m6ccdT693s0GzOv60qhdw1oyyGjSr449nFVt6wJlk5ebzS/JfrP3jMGt3HyFh31/k5hf976hhTV96hJ9Zp6lRLT+LohWRqsKlkqTp06fz73//m5SUFNq3b8/UqVOJiYk5b/1Vq1YRGxvLtm3baNCgAf/85z8ZPXp0kTqffvopTz31FH/88QfNmzfnxRdf5JZbbrG//uyzz/Lcc88VOSckJITU1NQSx60kyTp70k9wx1vrOHD0FI1q+fLw1S1ISj9hthKlHuNgRtZ5z21c27dIMtQypAbN69Zw2llz1cmpnHw27v3LvuTA5n1Hiw2Gb1TL197KFN08mAY1fc9zNRERx0rz+W3ptiQLFy5k3LhxTJ8+nV69evHmm2/Sr18/tm/fTpMmTYrVT0pKon///jzwwAO8//77/PTTT4wZM4a6desyePBgAOLj4xk6dCjPP/88t9xyC5999hm33XYbP/74I1FRUfZrtW/fnm+//db+tbu7PiRdRbM6/ix8sAcj3lrHnsMnmbhoa7E6oYE+ZwZRn158sWW9Gvh7ayceZ+Xr5c7lLetwecs6AJzMyWPDnjNJ05b9Gez/6xQfb9zPxxv3A9Cktp+ZNDWvTXR4HUKDfKz8FkSkirG0JSkqKopu3boxY8YM+7G2bdsycOBApkyZUqz+Y489xpIlS0hMTLQfGz16NJs3byY+Ph6AoUOHkpmZyddff22vc/3111OrVi3mz58PmC1JixcvZtOmTWWOXS1J1kvLzOK5L7dz+Hh2kWSoVb0Agvycc60hKbsT2Xn8vOeIfZ2mXw9kkH9OS1OzYD/7wpY9woMJCVTSJCJFuURLUk5ODhs3buTxxx8vcrxPnz6sWbPG4Tnx8fH06dOnyLG+ffsyZ84ccnNz8fT0JD4+nvHjxxerM3Xq1CLHdu3aRYMGDfD29iYqKoqXXnqJ8PDw88abnZ1NdvaZMS2ZmZkl+TalAtUL9GHa7d2sDkMqib+3B1e1rsdVresBcCwrt0hL068HMthz+CR7Dp9k/vp9AITX8aeHPWmqTb0AJU0iUnKWJUnp6enk5+cTEhJS5PiFxgalpqY6rJ+Xl0d6ejr169c/b52zrxkVFcW8efNo1aoVhw4d4oUXXqBnz55s27aN4OBgh/eeMmVKsXFMImKdAB9Prm5Tj6vbmElTZlYuPycdsSdN2w5msjv9BLvTT/DhumQAWtSrYQ4CD69DVHht6tQo+ezI6s4wDPIKDHLyCsxHvvmcnVdAfoGBp7sNLw83vDzc8HZ3x9PDhpe7W5Xbd1EurqDAICe/gKzcfLLzCsjOLSA7zyzbj+Xlnz5ulrNyix/LziugQ8MgbotsbNn3YvkAjXOn9xqGccEpv47qn3v8Ytfs16+fvdyxY0eio6Np3rw57777LrGxsQ7vO3HixCKvZWZm0rixdT84ESkq0MeTa9uGcG1b84+kjFO5rC9Mmv44TGJqJr+nHef3tOO8v9ZMmlqF1LAvORAVHkxtJ1oFvfCDJvucpORMkpJ/5rVzXz8rgXF87lmv5xeQk5d/3npnX6MsgzPcbJjJk7tb0efTD0/3M8e8HRyzPxwc83Q/fY77Odc7fcz73GNnXaeqb8ycl1+YbJxJPrLOTUJOl4skLqeTmjN1889cJzefrNPP51777Oudu7THpbipc4PqmSTVqVMHd3f3Yq1GaWlpxVqCCoWGhjqs7+HhYW8BOl+d810TwN/fn44dO7Jr167z1vH29sbbW391iriKIF9PrmsXwnXtzN/9oydzWJd0xL5O047UY6e3lznOvPi9ALQJDbCPZ2oTGkBeQcEFE5HSJSnFE5Hs85yXk1dw3m1unIW7m82enHi42c7Efk4yVWBAVm5BsS1rrObhZiuaOJ2bwLkXT7C8HRy72Lne5yR67m42cvPPTU6KJh7na20pkrTkntMCc851nOXfj5sNfDzd8fZwsz97e7jj7elmL/t4nj7m4Xb6uLv9uW1ogKXxW5YkeXl5ERERQVxcXJHp+XFxcdx8880Oz4mOjuaLL74ocmz58uVERkbi6elprxMXF1dkXNLy5cvp2bPneWPJzs4mMTHxgksPiIhrq+nnRd/2ofRtHwqYi4uuTzp8Omk6ws5Dx9iRaj7eWbPH2mAdOPtDutgH9Fllb4evuZ/5oD/PeecmAo5e9z7rOudbULWwWy7XQTKYe05LVXZ+AbnnSxQdtGrlOkhMHd0nJ++ce+UXFFuDK6/AIC8nv9gmzVWRp7utWDLi5eGGd7Hk5UyC4nNOIlOk3tlJTeFxR8c8XL+71dLuttjYWO68804iIyOJjo5m1qxZJCcn29c9mjhxIgcOHGDevHmAOZPtjTfeIDY2lgceeID4+HjmzJljn7UG8Oijj3LFFVfwf//3f9x88818/vnnfPvtt/z444/2OhMmTODGG2+kSZMmpKWl8cILL5CZmcnIkSMr9w0QEcvU9vfi+g71ub5DfQDSj2ez/nRLU/zuwxw8esph1835kpNzExBvD/eL1nH8mnuxJMXT3eYyK4/bbDY83W14urtRDjsHlZuCAoPcguLJmKPEq9hxB4lX9nmSscJkLddBspebbyaPhT/rIolLCRISx0mK42sUHrtQQisXZ2mSNHToUA4fPszkyZNJSUmhQ4cOLF26lKZNmwKQkpJCcnKyvX5YWBhLly5l/PjxTJs2jQYNGvD666/b10gC6NmzJwsWLODJJ5/kqaeeonnz5ixcuLDIGkn79+9n+PDhpKenU7duXXr06MHatWvt9xWR6qdODW/6d6xP/471rQ5FKoCbmw1vN3e8PbQmnpSc5StuuyqtkyQiIuJ6SvP57dqdhSIiIiIVREmSiIiIiANKkkREREQcUJIkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSRERERBxQkiQiIiLigJIkEREREQc8rA7AVRmGAZi7CYuIiIhrKPzcLvwcvxAlSWV07NgxABo3bmxxJCIiIlJax44dIygo6IJ1bEZJUikppqCggIMHDxIQEIDNZivXa2dmZtK4cWP27dtHYGBguV67qtF7VXJ6r0pO71XJ6b0qOb1XpVNR75dhGBw7dowGDRrg5nbhUUdqSSojNzc3GjVqVKH3CAwM1C9SCem9Kjm9VyWn96rk9F6VnN6r0qmI9+tiLUiFNHBbRERExAElSSIiIiIOKElyQt7e3jzzzDN4e3tbHYrT03tVcnqvSk7vVcnpvSo5vVel4wzvlwZui4iIiDigliQRERERB5QkiYiIiDigJElERETEASVJIiIiIg4oSXIy06dPJywsDB8fHyIiIli9erXVITmlH374gRtvvJEGDRpgs9lYvHix1SE5rSlTpnDZZZcREBBAvXr1GDhwIDt37rQ6LKc0Y8YMOnXqZF+8Ljo6mq+//trqsFzClClTsNlsjBs3zupQnM6zzz6LzWYr8ggNDbU6LKd14MABRowYQXBwMH5+fnTp0oWNGzdaEouSJCeycOFCxo0bx6RJk0hISCAmJoZ+/fqRnJxsdWhO58SJE3Tu3Jk33njD6lCc3qpVq3j44YdZu3YtcXFx5OXl0adPH06cOGF1aE6nUaNG/Otf/2LDhg1s2LCBa665hptvvplt27ZZHZpT+/nnn5k1axadOnWyOhSn1b59e1JSUuyPrVu3Wh2SU/rrr7/o1asXnp6efP3112zfvp1XX32VmjVrWhKPlgBwIlFRUXTr1o0ZM2bYj7Vt25aBAwcyZcoUCyNzbjabjc8++4yBAwdaHYpL+PPPP6lXrx6rVq3iiiuusDocp1e7dm3+/e9/c99991kdilM6fvw43bp1Y/r06bzwwgt06dKFqVOnWh2WU3n22WdZvHgxmzZtsjoUp/f444/z008/OU0vilqSnEROTg4bN26kT58+RY736dOHNWvWWBSVVEUZGRmA+eEv55efn8+CBQs4ceIE0dHRVofjtB5++GEGDBhA7969rQ7Fqe3atYsGDRoQFhbGsGHD2L17t9UhOaUlS5YQGRnJrbfeSr169ejatSuzZ8+2LB4lSU4iPT2d/Px8QkJCihwPCQkhNTXVoqikqjEMg9jYWC6//HI6dOhgdThOaevWrdSoUQNvb29Gjx7NZ599Rrt27awOyyktWLCAX375RS3dFxEVFcW8efNYtmwZs2fPJjU1lZ49e3L48GGrQ3M6u3fvZsaMGbRs2ZJly5YxevRoxo4dy7x58yyJx8OSu8p52Wy2Il8bhlHsmEhZPfLII2zZsoUff/zR6lCcVuvWrdm0aRNHjx7l008/ZeTIkaxatUqJ0jn27dvHo48+yvLly/Hx8bE6HKfWr18/e7ljx45ER0fTvHlz3n33XWJjYy2MzPkUFBQQGRnJSy+9BEDXrl3Ztm0bM2bM4K677qr0eNSS5CTq1KmDu7t7sVajtLS0Yq1LImXxt7/9jSVLlrBixQoaNWpkdThOy8vLixYtWhAZGcmUKVPo3Lkz//3vf60Oy+ls3LiRtLQ0IiIi8PDwwMPDg1WrVvH666/j4eFBfn6+1SE6LX9/fzp27MiuXbusDsXp1K9fv9gfJG3btrVsApOSJCfh5eVFREQEcXFxRY7HxcXRs2dPi6KSqsAwDB555BEWLVrE999/T1hYmNUhuRTDMMjOzrY6DKdz7bXXsnXrVjZt2mR/REZGcscdd7Bp0ybc3d2tDtFpZWdnk5iYSP369a0Oxen06tWr2BIlv/32G02bNrUkHnW3OZHY2FjuvPNOIiMjiY6OZtasWSQnJzN69GirQ3M6x48f5/fff7d/nZSUxKZNm6hduzZNmjSxMDLn8/DDD/Phhx/y+eefExAQYG+tDAoKwtfX1+LonMsTTzxBv379aNy4MceOHWPBggWsXLmSb775xurQnE5AQECxcW3+/v4EBwdrvNs5JkyYwI033kiTJk1IS0vjhRdeIDMzk5EjR1odmtMZP348PXv25KWXXuK2225j/fr1zJo1i1mzZlkTkCFOZdq0aUbTpk0NLy8vo1u3bsaqVausDskprVixwgCKPUaOHGl1aE7H0fsEGG+//bbVoTmde++91/77V7duXePaa681li9fbnVYLuPKK680Hn30UavDcDpDhw416tevb3h6ehoNGjQwBg0aZGzbts3qsJzWF198YXTo0MHw9vY22rRpY8yaNcuyWLROkoiIiIgDGpMkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSREQugc1mY/HixVaHISIVQEmSiLisu+++G5vNVuxx/fXXWx2aiFQB2rtNRFza9ddfz9tvv13kmLe3t0XRiEhVopYkEXFp3t7ehIaGFnnUqlULMLvCZsyYQb9+/fD19SUsLIyPP/64yPlbt27lmmuuwdfXl+DgYEaNGsXx48eL1Jk7dy7t27fH29ub+vXr88gjjxR5PT09nVtuuQU/Pz9atmzJkiVL7K/99ddf3HHHHdStWxdfX19atmxZLKkTEeekJElEqrSnnnqKwYMHs3nzZkaMGMHw4cNJTEwE4OTJk1x//fXUqlWLn3/+mY8//phvv/22SBI0Y8YMHn74YUaNGsXWrVtZsmQJLVq0KHKP5557jttuu40tW7bQv39/7rjjDo4cOWK///bt2/n6669JTExkxowZ1KlTp/LeABEpO8u21hURuUQjR4403N3dDX9//yKPyZMnG4ZhGIAxevToIudERUUZDz30kGEYhjFr1iyjVq1axvHjx+2vf/XVV4abm5uRmppqGIZhNGjQwJg0adJ5YwCMJ5980v718ePHDZvNZnz99deGYRjGjTfeaNxzzz3l8w2LSKXSmCQRcWlXX301M2bMKHKsdu3a9nJ0dHSR16Kjo9m0aRMAiYmJdO7cGX9/f/vrvXr1oqCggJ07d2Kz2Th48CDXXnvtBWPo1KmTvezv709AQABpaWkAPPTQQwwePJhffvmFPn36MHDgQHr27Fmm71VEKpeSJBFxaf7+/sW6vy7GZrMBYBiGveyojq+vb4mu5+npWezcgoICAPr168fevXv56quv+Pbbb7n22mt5+OGHeeWVV0oVs4hUPo1JEpEqbe3atcW+btOmDQDt2rVj06ZNnDhxwv76Tz/9hJubG61atSIgIIBmzZrx3XffXVIMdevW5e677+b9999n6tSpzJo165KuJyKVQy1JIuLSsrOzSU1NLXLMw8PDPjj6448/JjIykssvv5wPPviA9evXM2fOHADuuOMOnnnmGUaOHMmzzz7Ln3/+yd/+9jfuvPNOQkJCAHj22WcZPXo09erVo1+/fhw7doyffvqJv/3tbyWK7+mnnyYiIoL27duTnZ3Nl19+Sdu2bcvxHRCRiqIkSURc2jfffEP9+vWLHGvdujU7duwAzJlnCxYsYMyYMYSGhvLBBx/Qrl07APz8/Fi2bBmPPvool112GX5+fgwePJjXXnvNfq2RI0eSlZXFf/7zHyZMmECdOnUYMmRIiePz8vJi4sSJ7NmzB19fX2JiYliwYEE5fOciUtFshmEYVgchIlIRbDYbn332GQMHDrQ6FBFxQRqTJCIiIuKAkiQRERERBzQmSUSqLI0mEJFLoZYkEREREQeUJImIiIg4oCRJRERExAElSSIiIiIOKEkSERERcUBJkoiIiIgDSpJEREREHFCSJCIiIuKAkiQRERERB/4fARWiuzn0XeEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Step 5 - Model Training\n",
"\n",
"#Printing the learning curve\n",
"plt.plot(train_losses, label='Train Loss')\n",
"plt.plot(test_losses, label='Test Loss')\n",
"plt.xlabel('Epochs')\n",
"plt.ylabel('Loss')\n",
"plt.title('Learning Curve')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "55e3a217-8042-4676-a203-55e4441ee2cf",
"metadata": {},
"source": [
"Learning Curve Chart: Die Lernkurve zeigt den Verlust von Trainings- und Testdaten über die Anzahl der Epochen. Der kontinuierliche Abwärtstrend beider Kurven deutet darauf hin, dass das Modell im Laufe der Zeit besser wird und keine Anzeichen von Überanpassung zeigt, da der Testverlust (orange Linie) dem Trainingsverlust (blaue Linie) folgt. Das Konvergieren beider Kurven ist ein gutes Zeichen dafür, dass das Modell generalisiert und nicht nur die Trainingsdaten auswendig lernt."
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "a22fa477-6ab6-4e77-827e-8bb770345c44",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error (MSE): 36304.058488096474\n",
"Mean Absolute Error (MAE): 162.9043857530535\n",
"Root Mean Square Error (RMSE): 190.53623930396148\n",
"Mean Absolute Percentage Error (MAPE): 22.51108406593072%\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAIUCAYAAACjJN/cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8M9JmqRNR7onpWWWspdsZYMiCKKiogiCe11UXFcZXhGvqMgVtzIUEFF/gCjKEgGRPYrsWUbp3nsk+f7+SM5p073T8Xm/XlWanJzzTZr55BmSEEKAiIiIiIiIiKgcKnsvgIiIiIiIiIgaPgYQiIiIiIiIiKhCDCAQERERERERUYUYQCAiIiIiIiKiCjGAQEREREREREQVYgCBiIiIiIiIiCrEAAIRERERERERVYgBBCIiIiIiIiKqEAMIRERERERERFQhBhCIqEb++ecfPPzww2jVqhUcHR3h4uKCnj17YuHChUhOTrb38urctGnTEBoaau9l1NixY8cwePBgGAwGSJKExYsXV3iZxMRE6HQ6SJKEw4cPV/vYn376KVasWFHty1fFihUrIEkSrly5Ui/Hq4whQ4ZgyJAhFW4XGhoKSZKUHxcXF/Tt2xfffvtt3S8Spd92lV17cQsWLMCGDRtqbW2yK1euQJKkcu9Pzz//PCRJwtmzZ8vc5vXXX4ckSTh69Giljx0aGopp06ZVYbX2s3PnTpv7Unk/Dc2SJUvQtm1baLVaSJKE1NRUey+JSpGTk4P27dtDkiS8//77Jc6/ePEipkyZgpYtW8LJyQlt2rTBCy+8gKSkpAr3LT8XlfW6M3bs2CbxukzUUDnYewFE1Hh99dVXeOqppxAWFoaXXnoJHTt2REFBAQ4fPozPP/8c+/btw/r16+29zDo1e/Zs/Otf/7L3Mmps+vTpyMrKwvfffw8PD49KvflauXIl8vPzAQBLly5F7969q3XsTz/9FN7e3o3mw5c9DRw4UHkzHhUVhffffx9Tp05FVlYWnnzyyXpfz6efflqtyy1YsAB33303JkyYULsLqoQZM2Zg8eLFWLZsGRYuXFjifLPZjG+//Rbdu3dHz54963199aFnz57Yt2+fzWl33nkn2rRpU+qHvYYiIiICzz33HB555BFMnToVDg4OcHV1tfeyqBSzZ89GVlZWqeclJCSgX79+cHNzw1tvvYWWLVvi2LFjmDt3Lv78808cOXIEKhW/4yRqqBhAIKJq2bdvH5588kmMHDkSGzZsgE6nU84bOXIkXnzxRWzevNmOK6xb2dnZ0Ov1aNOmjb2XUitOnjyJRx99FLfddlulL7Ns2TL4+voiJCQEa9aswaJFi+Dk5FSHqyR3d3f069dP+X3EiBEICQnBokWLygwgmEwmGI1Gm8dobenYsWOt77Oude7cGX369MHKlSuxYMECODjYvhXaunUroqKi8Morr9hphXXPzc3N5n4EADqdrsT9qzghBHJzc+32OD916hQA4NFHH0WfPn1qZZ/yc7k9NYQ1VEZln0sOHjyIJUuWYPXq1bjnnntKnP/zzz8jKSkJa9euxfDhwwEAQ4cORV5eHv7973/j+PHj6NGjR51ch7qUk5MDR0fHBpm5Q1SbGN4jompZsGABJEnCl19+WeqbCa1WizvuuEP53Ww2Y+HChejQoQN0Oh18fX3x0EMPISoqyuZyQ4YMQefOnbFv3z4MGDAATk5OCA0NxfLlywEAmzZtQs+ePaHX69GlS5cSQYp58+ZBkiQcO3YMEydOhJubGwwGAx588EEkJCTYbLt27VqMGjUKAQEBcHJyQnh4OF599dUS35pMmzYNLi4uOHHiBEaNGgVXV1flTU9pJQw//vgj+vbtC4PBAL1ej9atW2P69Ok221y7dg0PPvggfH19odPpEB4ejg8++ABms1nZRk7Hfv/997Fo0SK0atUKLi4u6N+/P/bv31/en0dx8uRJjB8/Hh4eHnB0dET37t3xzTffKOfLqaBGoxGfffZZpdOWDxw4gJMnT2LKlCl49NFHkZaWhv/7v/8rsZ3ZbMaSJUvQvXt3ODk5KR9QNm7cCMCS9n3q1Cns2rVLObZ8e5ZVbiCnX+/cuVM5bdu2bRg/fjxatGgBR0dHtG3bFo8//jgSExMrdTsVd/HiRTz88MNo164d9Ho9goKCMG7cOJw4caLUtaxZswavv/46AgMD4ebmhhEjRuDcuXM22wohsHDhQoSEhMDR0RE9e/bE77//Xq31ydzd3REWFoarV68CKLzPLFy4EPPnz0erVq2g0+nw559/AgAOHz6MO+64A56ennB0dESPHj3www8/lNjv/v37MXDgQDg6OiIwMBCvvfYaCgoKSmxXWglDXl4e/vOf/yA8PByOjo7w8vLC0KFDsXfvXgCAJEnIysrCN998o/zNi+4jNjYWjz/+OFq0aAGtVotWrVrhzTffhNFotDlOdHQ0Jk2aBFdXVxgMBtx7772IjY2t1O02Y8YMxMbGlnr7L1++HDqdDg888AByc3Px4osvonv37jAYDPD09ET//v3x888/V3iMqtx/AWD79u0YPnw43NzcoNfrMXDgQPzxxx822yQkJOCxxx5DcHAwdDodfHx8MHDgQGzfvr1S17uqJEnCM888g88//xzh4eHQ6XTK88ebb76Jvn37wtPTE25ubujZsyeWLl0KIYTNPkJDQzF27Fhs3rwZPXv2hJOTEzp06IBly5bZbJednY1Zs2Yp5XCenp7o3bs31qxZA8ByX3vwwQcBAH379oUkSTZZS8uWLUO3bt2Uy9555504c+aMzTHKey6Xr+vy5csRFhYGJycn9O7dG/v374cQAu+9957yHDxs2DBcvHixxO1Vmb+h/Bp19OhR3H333fDw8KgwEF3R83hCQgK0Wi1mz55d4rJnz56FJEn46KOPlNMq8xir6LmkLPn5+Zg+fTqefvrpMrPSNBoNAMBgMNic7u7uDgBwdHQs9xjVkZubi9deew2tWrWCVqtFUFAQnn766RIlMJIkYd68eSUuX7xESX58b926FdOnT4ePjw/0ej3y8vLq/XFKVO8EEVEVGY1GodfrRd++fSt9mccee0wAEM8884zYvHmz+Pzzz4WPj48IDg4WCQkJynaDBw8WXl5eIiwsTCxdulRs2bJFjB07VgAQb775pujSpYtYs2aN+O2330S/fv2ETqcTN27cUC4/d+5cAUCEhISIl156SWzZskUsWrRIODs7ix49eoj8/Hxl27feekt8+OGHYtOmTWLnzp3i888/F61atRJDhw61WfvUqVOFRqMRoaGh4p133hF//PGH2LJli3JeSEiIsu3evXuFJEnivvvuE7/99pvYsWOHWL58uZgyZYqyTXx8vAgKChI+Pj7i888/F5s3bxbPPPOMACCefPJJZbvIyEgBQISGhopbb71VbNiwQWzYsEF06dJFeHh4iNTU1HJv87NnzwpXV1fRpk0b8e2334pNmzaJ+++/XwAQ7777rrKWffv2CQDi7rvvFvv27RP79u2r8O/56KOPCgDi1KlTIj09Xej1ejFkyJAS202ZMkVIkiQeeeQR8fPPP4vff/9dvP322+J///ufEEKIo0ePitatW4sePXooxz569KgQQojly5cLACIyMtJmn3/++acAIP7880/ltM8++0y88847YuPGjWLXrl3im2++Ed26dRNhYWE2f/Oy9lncrl27xIsvvih++uknsWvXLrF+/XoxYcIE4eTkJM6ePVtiLaGhoeKBBx4QmzZtEmvWrBEtW7YU7dq1E0ajUdlWvm/OmDFD/P777+LLL78UQUFBwt/fXwwePLjC2zwkJETcfvvtNqfl5+cLX19fERgYKIQovM8EBQWJoUOHip9++kls3bpVREZGih07dgitVituvvlmsXbtWrF582Yxbdo0AUAsX75c2eepU6eEXq8XHTt2FGvWrBE///yzGD16tGjZsmWJ227w4ME2ay8oKBBDhw4VDg4OYtasWeK3334TGzduFP/+97/FmjVrhBBC7Nu3Tzg5OYkxY8Yof/NTp04JIYSIiYkRwcHBIiQkRHzxxRdi+/bt4q233hI6nU5MmzZNOU52drYIDw8XBoNBLFmyRGzZskU899xzyhqLXp/SyPfZCRMm2JyenJwsdDqduO+++4QQQqSmpopp06aJlStXih07dojNmzeLWbNmCZVKJb755psSf5+pU6cqv1fl/rty5UohSZKYMGGCWLdunfjll1/E2LFjhVqtFtu3b1e2Gz16tPDx8RFffvml2Llzp9iwYYOYM2eO+P7770vsf+7cueXeBsWVdv+S70tdu3YV3333ndixY4c4efKkEEKIadOmiaVLl4pt27aJbdu2ibfeeks4OTmJN998s8R+W7RoITp27Ci+/fZbsWXLFnHPPfcIAGLXrl3Kdo8//rjQ6/Vi0aJF4s8//xS//vqr+O9//yuWLFkihLDcL9944w3l77tv3z5x8eJFIYQQCxYsEADE/fffLzZt2iS+/fZb0bp1a2EwGMT58+eVY5T3XC6/bgwYMECsW7dOrF+/XrRv3154enqK559/XowfP178+uuvYvXq1cLPz0907dpVmM3mKv8Ni75GvfLKK2Lbtm1iw4YNZf5dKvM8LoQQd955pwgODhYmk8nm8i+//LLQarUiMTFRCFH5x1h5zyXlef3110VoaKjIzMxU9vHee+/ZbJOamipatmwpbrnlFnHy5EmRkZEhdu3aJVq2bCnGjRtX7v6FKHxs7d+/XxQUFJT4GTNmjM3rstlsFqNHjxYODg5i9uzZYuvWreL9999X3hfk5uYq25b12Cnr8R0UFCQee+wx8fvvv4uffvpJGI3GSj1OiRozBhCIqMpiY2MFAOVNdkXOnDkjAIinnnrK5vQDBw4IAOLf//63ctrgwYMFAHH48GHltKSkJKFWq4WTk5NNsCAiIkIAEB999JFymvzm7Pnnn7c51urVqwUAsWrVqlLXaDabRUFBgdi1a5cAII4fP66cN3XqVAFALFu2rMTligcQ3n//fQGg3A/3r776qgAgDhw4YHP6k08+KSRJEufOnRNCFL6B69Kli80H0YMHDwoAygeystx3331Cp9OJa9eu2Zx+2223Cb1eb7NGAOLpp58ud3+yrKws4ebmJvr166ecNnXqVCFJkvKGXgghdu/eLQCI119/vdz9derUqdQP0FX5AFaU/Le8evWqACB+/vnnCvdZEaPRKPLz80W7du1s7lvyWsaMGWOz/Q8//CAAKMGYlJQU4ejoKO68806b7f7++28BoNIBhDFjxihvkiMjI5X75ksvvSSEKLzPtGnTxiZwIoQQHTp0ED169BAFBQU2p48dO1YEBAQoHzzuvfde4eTkJGJjY22uf4cOHSoMIHz77bcCgPjqq6/KvS7Ozs42b8Zljz/+uHBxcRFXr161OV1+XMmBhs8++6zE31aIwsBWRQEEIQo/TMbFxSmnLVmyRAAQ27ZtK/UyRqNRFBQUiBkzZogePXrYnFfdAEJWVpbw9PQs8cHJZDKJbt26iT59+iinubi4iJkzZ5Z7vXbu3CnUanWJD/IVKSuAYDAYRHJycrmXNZlMoqCgQPznP/8RXl5eNh+sQ0JChKOjo83fNCcnR3h6eorHH39cOa1z584lAjrFybfpoUOHlNNSUlKUgFRR165dEzqdTkyePFk5rbzncgDC399fZGZmKqdt2LBBABDdu3e3uU6LFy8WAMQ///wjhKja31B+jZozZ06511VW2efxjRs3CgBi69atyjZGo1EEBgaKu+66Szmtso+x8p5LynLs2DGh0WjE5s2bbfZRPIAghBDR0dGif//+AoDyc88999h8mC+LfD8o76fo6/LmzZsFALFw4UKb/axdu1YAEF9++aVyWlUDCA899FCJbSvzOCVqzFjCQER1Tk55LN4kr0+fPggPDy+R4hkQEIBevXopv3t6esLX1xfdu3dHYGCgcnp4eDgAKOnbRT3wwAM2v0+aNAkODg426ZeXL1/G5MmT4e/vD7VaDY1Gg8GDBwNAidRXALjrrrsqvK433XSTcrwffvgBN27cKLHNjh070LFjxxI1vNOmTYMQAjt27LA5/fbbb4darVZ+79q1K4DSr3fx4wwfPhzBwcEljpOdnV2iiVpl/fDDD0hPT7cpy5g+fTqEEEqpCQAlPfzpp5+u1nGqIj4+Hk888QSCg4Ph4OAAjUaDkJAQAKX/LStiNBqxYMECdOzYEVqtFg4ODtBqtbhw4UKp+ytargOU/Bvt27cPubm5Je6XAwYMUNZZGb/99hs0Gg00Gg1atWqFH374Ac8++yzmz59fYj1ymjBgKck4e/ascnyj0aj8jBkzBjExMUrJxZ9//onhw4fDz89Pubxarca9995b4fp+//13ODo6lijZqaxff/0VQ4cORWBgoM0a5d4cu3btUtbo6upa4nafPHlypY81Y8YMFBQUYOXKlcppy5cvR0hIiJLWDlhKkgYOHAgXFxflvrV06dJq3a9Ks3fvXiQnJ2Pq1Kk219lsNuPWW2/FoUOHlLKqPn36YMWKFZg/fz72799falnJ4MGDYTQaMWfOnFpZ37Bhw+Dh4VHi9B07dmDEiBEwGAzK8+ecOXOQlJSE+Ph4m227d++Oli1bKr87Ojqiffv2Ns9hffr0we+//45XX30VO3fuRE5OTqXWt2/fPuTk5JR4fQkODsawYcNKvL4AZT+XDx06FM7Ozsrv8mvMbbfdZlPaVfy1pyp/w4rWUFxln8dvu+02+Pv72zwHb9myBdHR0TaPx8o+xmTFn0vKYjQaMX36dNx7770YPXp0udumpKRg/PjxSE9Px+rVq7F79258+umn2LNnD+64444S5Upl+fbbb3Ho0KESP4MGDbLZTn5NLX4fueeee+Ds7FzqfaSySvs7VuZxStSYMYBARFXm7e0NvV6PyMjISm0vj2UKCAgocV5gYGCJsU2enp4lttNqtSVO12q1ACy1jcX5+/vb/O7g4AAvLy/lWJmZmbj55ptx4MABzJ8/Hzt37sShQ4ewbt06ACjx5lWv18PNza3c6wkAt9xyCzZs2ACj0YiHHnoILVq0QOfOnZU6XsBye5R1W8jnF+Xl5WXzu9xzoqI32FU9TmUtXboUjo6OuPXWW5GamorU1FR07doVoaGhWLFiBUwmEwBLXa5arS7xt6htZrMZo0aNwrp16/Dyyy/jjz/+wMGDB5U+EZX9IFLUCy+8gNmzZ2PChAn45ZdfcODAARw6dAjdunUrdX8V/Y3k27q026Iqt8+gQYNw6NAhHD58GKdPn0Zqaio++ugj5bEgK/53j4uLAwDMmjVLCUDIP0899RQAKP0ikpKSqr3OhIQEBAYGVruDelxcHH755ZcSa+zUqVOJNRYNcFRljbKbb74Z7du3Vz5w/fPPPzh69Cgefvhh5cPiunXrMGnSJAQFBWHVqlXYt28fDh06hOnTp5f6vFMd8t/m7rvvLnG93333XQghlJG4a9euxdSpU/H111+jf//+8PT0xEMPPVTp3g/VUdpzyMGDBzFq1CgAlmk8f//9Nw4dOoTXX38dQMnHXPHHB2B5jBTd7qOPPsIrr7yCDRs2YOjQofD09MSECRNw4cKFctdX1deX8p7Ly3qNqei1pyp/Q1lp6y3r+lXmedzBwQFTpkzB+vXrlbr+FStWICAgwOYDfWUfY1Vd5+LFi3H58mXMnTtXeV1IT08HYLmdUlNTldeGd999FxEREdi2bRsmT56Mm2++GU8++SRWr16NrVu3YvXq1ZU6Znh4OHr37l3ip3hvhaSkJDg4OMDHx8fmdEmS4O/vX+3XQqD028cej1Oi+sQpDERUZWq1GsOHD8fvv/+OqKgotGjRotzt5TePMTExJbaNjo6Gt7d3ra8xNjYWQUFByu9GoxFJSUnKWnbs2IHo6Gjs3LlTyToAUOZM8ap0VR4/fjzGjx+PvLw87N+/H++88w4mT56M0NBQ9O/fH15eXoiJiSlxuejoaACotdujLo5z/vx57NmzBwBsvlEsasuWLRgzZgx8fHxgMpkQGxtb6TehRcmNtPLy8mxOL/4G9+TJkzh+/DhWrFiBqVOnKqeX1uSsslatWoWHHnoICxYsKHFsudFXVcj3u9LeQMbGxlZ6ZrnBYKjUuMzi91f5b/3aa69h4sSJpV4mLCxMWWtZ66yIj48P9uzZA7PZXK0ggre3N7p27Yq333671PPlD01eXl44ePBgtdZY1PTp0/Hqq6/i4MGD+O6776BSqWy+pVy1ahVatWqFtWvX2tymxe+Tpans/Vf+2yxZsqTMCQhysMTb2xuLFy/G4sWLce3aNWzcuBGvvvoq4uPj62zqTWnPfd9//z00Gg1+/fVXm4Z3GzZsqPZxnJ2d8eabb+LNN99EXFycko0wbtw4nD17tszLFX19Ka6015e66JBflb9hVddRlefxhx9+GO+99x6+//573Hvvvdi4cSNmzpxpk8FW2cdYVdd58uRJpKWloV27diXOmz17NmbPno1jx46he/fuiIiIQFBQUInXBTmD7+TJk5U6ZmV5eXnBaDQiISHBJogghEBsbKxyXMAS2Crt8V1WkKG028cej1Oi+sQMBCKqltdeew1CCDz66KPIz88vcX5BQQF++eUXAJYUWMDyZryoQ4cO4cyZMzbpwrWl+DcYP/zwA4xGo9LtXX7RLz5B4osvvqi1Neh0OgwePBjvvvsuAODYsWMAgOHDh+P06dM4evSozfbffvstJEnC0KFDa+X4w4cPVwIlxY+j1+vLHddWlqVLlwKwfOv4559/2vzI6fVyd3U5Jfazzz4rd5/Fv4mUyR+q//nnH5vT5QkOsrr4W0qSVGJ/mzZtKrUkpTL69esHR0fHEvfLvXv3VliKUhvCwsLQrl07HD9+vNRv7Hr37g1XV1cAljTuP/74Q/lWFbCMb1u7dm2Fx7ntttuQm5uLFStWlLtdWX/zsWPH4uTJk2jTpk2pa5Q/3AwdOhQZGRkl7gvfffddhWssaurUqXBwcMAXX3yB1atXY/jw4TYlJZIkQavV2nxIiI2NrdQUhsrefwcOHAh3d3ecPn26zL9N8QwTwBLAe+aZZzBy5MgSzyV1TZIkODg42HwwzcnJsSkHqQk/Pz9MmzYN999/P86dO4fs7Owyt+3fvz+cnJxKvL5ERUUp6f91rbp/w8qoyvN4eHg4+vbti+XLl+O7775DXl4eHn74YZvLVfYxVlWvvvpqidcEOfPuiSeewJ9//om2bdsCsAQpoqKiSjyfyuUYFX0pUVXyfaD4feT//u//kJWVZXMfCQ0NLfGY3bFjBzIzM6t1bHs+TonqCjMQiKha+vfvj88++wxPPfUUevXqhSeffBKdOnVCQUEBjh07hi+//BKdO3fGuHHjEBYWhsceewxLliyBSqXCbbfdhitXrmD27NkIDg7G888/X+vrW7duHRwcHDBy5EicOnUKs2fPRrdu3TBp0iQAltpzDw8PPPHEE5g7dy40Gg1Wr16N48eP1+i4c+bMQVRUFIYPH44WLVogNTUV//vf/2z6Kzz//PP49ttvcfvtt+M///kPQkJCsGnTJnz66ad48skn0b59+xpffwCYO3euUu86Z84ceHp6YvXq1di0aRMWLlxYIs2zIkajEd9++y3Cw8PxyCOPlLrNuHHjsHHjRiQkJODmm2/GlClTMH/+fMTFxWHs2LHQ6XQ4duwY9Ho9nn32WQBAly5d8P3332Pt2rVo3bo1HB0d0aVLF9x0000ICwvDrFmzYDQa4eHhgfXr1ysZELIOHTqgTZs2ePXVVyGEgKenJ3755Rds27atejccLG+yV6xYgQ4dOqBr1644cuQI3nvvvWq/sfXw8MCsWbMwf/58PPLII7jnnntw/fp1zJs3r85LPGRffPEFbrvtNowePRrTpk1DUFAQkpOTcebMGRw9ehQ//vgjAOCNN97Axo0bMWzYMMyZMwd6vR6ffPJJiRru0tx///1Yvnw5nnjiCZw7dw5Dhw6F2WzGgQMHEB4ejvvuuw+A5W++c+dO/PLLLwgICICrqyvCwsLwn//8B9u2bcOAAQPw3HPPISwsDLm5ubhy5Qp+++03fP7552jRogUeeughfPjhh3jooYfw9ttvo127dvjtt9+wZcuWKt0m/v7+GDNmDJYvXw4hBGbMmGFz/tixY7Fu3To89dRTuPvuu3H9+nW89dZbCAgIqDC1vrL3XxcXFyxZsgRTp05FcnIy7r77bvj6+iIhIQHHjx9HQkICPvvsM6SlpWHo0KGYPHkyOnToAFdXVxw6dAibN2+2ySrZtWsXhg8fjjlz5tRaH4Tibr/9dixatAiTJ0/GY489hqSkJLz//vuljvStrL59+2Ls2LHo2rUrPDw8cObMGaxcuRL9+/eHXq8v83Lu7u6YPXs2/v3vf+Ohhx7C/fffj6SkJLz55ptwdHTE3Llzq72myqrs37A6qvo8Pn36dDz++OOIjo7GgAEDlMwiWWUfY1XVoUMHdOjQweY0eYRpmzZtbEa1Pv3001i9ejVGjhyJV199FcHBwTh58iTmz58PPz+/Er1iamrkyJEYPXo0XnnlFaSnp2PgwIH4559/MHfuXPTo0QNTpkxRtp0yZQpmz56NOXPmYPDgwTh9+jQ+/vjjSr9eVvZxStSo2a9/IxE1BREREWLq1KmiZcuWQqvVKmOR5syZI+Lj45XtTCaTePfdd0X79u2FRqMR3t7e4sEHHxTXr1+32d/gwYNFp06dShyntA7hQpScHiB3uD5y5IgYN26ccHFxEa6uruL++++36bYuhGXkYv/+/YVerxc+Pj7ikUceEUePHi3RxX3q1KnC2dm51OtffArDr7/+Km677TYRFBQktFqt8PX1FWPGjBF//fWXzeWuXr0qJk+eLLy8vIRGoxFhYWHivffesxnBVV4Ha1RyTNuJEyfEuHHjhMFgEFqtVnTr1q3UDvXFb8fSyB3JFy9eXOY2crfrDz74QAhh+bt/+OGHonPnzkKr1QqDwSD69+8vfvnlF+UyV65cEaNGjRKurq4lumefP39ejBo1Sri5uQkfHx/x7LPPik2bNpWYwnD69GkxcuRI4erqKjw8PMQ999wjrl27VuJ2quwUhpSUFDFjxgzh6+sr9Hq9GDRokPjrr79KTB2QO+r/+OOPNpeX/3ZFb2uz2SzeeecdERwcLLRarejatav45ZdfSuyzLGU9Bko7bmn3GSGEOH78uJg0aZLw9fUVGo1G+Pv7i2HDhonPP//cZru///5bGZPq7+8vXnrpJfHll19WOIVBCEuH/Tlz5oh27doJrVYrvLy8xLBhw8TevXuVbSIiIsTAgQOFXq8vMYUiISFBPPfcc6JVq1ZCo9EIT09P0atXL/H666/bdMiPiooSd911l/IYv+uuu8TevXsrPYVB9vPPPwsAwtPTs9QO8P/9739FaGio0Ol0Ijw8XHz11VfK80xRxbu0C1H5+68QltGht99+u/D09BQajUYEBQWJ22+/Xblv5ebmiieeeEJ07dpVuLm5CScnJxEWFibmzp0rsrKylP3U9hjHsp4Xli1bJsLCwoROpxOtW7cW77zzjli6dGmJ+0hZ99vi951XX31V9O7dW3h4eCj7fP7555Xxg0KUPoVB9vXXX4uuXbsqzzPjx49XJgrIynsuL+26lvV4KutxX9HfUIjC16ii44srUtnncSGESEtLE05OTuVOQ6nMY6yi55LKKG8fR48eFXfeeado0aKF8vd+5JFHSkybKE159wMhhLj99tttXkeEsDwvvfLKKyIkJERoNBoREBAgnnzySZGSkmKzXV5ennj55ZdFcHCwcHJyEoMHDxYRERFlTmEovobKPk6JGjNJCCHqOkhBRFRf5s2bhzfffBMJCQl10luBiIiIiKi5Yg8EIiIiIiIiIqoQAwhEREREREREVCGWMBARERERERFRhZiBQEREREREREQVYgCBiIiIiIiIiCrEAAIRERERERERVcjB3gsgW2azGdHR0XB1dYUkSfZeDhERERERETVxQghkZGQgMDAQKlXZeQYMIDQw0dHRCA4OtvcyiIiIiIiIqJm5fv06WrRoUeb5DCA0MK6urgAsfzg3Nzc7r4aIiIiIiIiauvT0dAQHByufR8vCAEIDI5ctuLm5MYBARERERERE9aaiMno2USQiIiIiIiKiCjGAQEREREREREQVYglDI2UymVBQUGDvZVAzptFooFar7b0MIiIiIiKqJwwgNDJCCMTGxiI1NdXeSyGCu7s7/P39OXKUiIiIiKgZYAChkZGDB76+vtDr9fzgRnYhhEB2djbi4+MBAAEBAXZeERERERER1TUGEBoRk8mkBA+8vLzsvRxq5pycnAAA8fHx8PX1ZTkDEREREVETxyaKjYjc80Cv19t5JUQW8n2R/TiIiIiIiJo+BhAaIZYtUEPB+yIRERERUfPBAAIRERERERERVYgBBCIiIiIiIiKqEAMI1OxJkoQNGzbU6TGGDBmCmTNn1ukxiIiIiIiI6hIDCFRv9u7dC7VajVtvvbXKlw0NDcXixYtrf1EVGDduHEaMGFHqefv27YMkSTh69Gg9r4qIiIiIiKj+MYBA9WbZsmV49tlnsWfPHly7ds3ey6mUGTNmYMeOHbh69WqJ85YtW4bu3bujZ8+edlgZERERERFR/WIAoRETQiAnP88uP0KIKq01KysLP/zwA5588kmMHTsWK1asKLHNxo0b0bt3bzg6OsLb2xsTJ04EYEn/v3r1Kp5//nlIkqR0/p83bx66d+9us4/FixcjNDRU+f3QoUMYOXIkvL29YTAYMHjw4CplDIwdOxa+vr4l1pudnY21a9dixowZSEpKwv33348WLVpAr9ejS5cuWLNmTbn7La1swt3d3eY4N27cwL333gsPDw94eXlh/PjxuHLlinL+zp070adPHzg7O8Pd3R0DBw4sNdBBRERERERUGxzsvQCqvtyCfNz65it2Ofbmue/CSaur9PZr165FWFgYwsLC8OCDD+LZZ5/F7NmzlWDApk2bMHHiRLz++utYuXIl8vPzsWnTJgDAunXr0K1bNzz22GN49NFHq7TOjIwMTJ06FR999BEA4IMPPsCYMWNw4cIFuLq6Vnh5BwcHPPTQQ1ixYgXmzJmjrPfHH39Efn4+HnjgAWRnZ6NXr1545ZVX4Obmhk2bNmHKlClo3bo1+vbtW6X1yrKzszF06FDcfPPN2L17NxwcHDB//nzceuut+Oeff6BSqTBhwgQ8+uijWLNmDfLz83Hw4EGOVSQiIiIiAMDqXdux48QxfPDwk3B3drH3cqiJYACB6sXSpUvx4IMPAgBuvfVWZGZm4o8//lD6C7z99tu477778OabbyqX6datGwDA09MTarUarq6u8Pf3r9Jxhw0bZvP7F198AQ8PD+zatQtjx46t1D6mT5+O9957Dzt37sTQoUMBWMoXJk6cCA8PD3h4eGDWrFnK9s8++yw2b96MH3/8sdoBhO+//x4qlQpff/21EhRYvnw53N3dsXPnTvTu3RtpaWkYO3Ys2rRpAwAIDw+v1rGIiIiIqGkxmc34bvcfyMzNwZFL5zG8K0tuqXYwgNCIOWq02Dz3Xbsdu7LOnTuHgwcPYt26dQAs3+rfe++9WLZsmRJAiIiIqHJ2QWXEx8djzpw52LFjB+Li4mAymZCdnV2lHgwdOnTAgAEDsGzZMgwdOhSXLl3CX3/9ha1btwIATCYT/vvf/2Lt2rW4ceMG8vLykJeXB2dn52qv+8iRI7h48WKJLInc3FxcunQJo0aNwrRp0zB69GiMHDkSI0aMwKRJkxAQEFDtYxIRERFR03A+OgqZuTkAgLjUZDuvhpoSBhAaMUmSqlRGYC9Lly6F0WhEUFCQcpoQAhqNBikpKfDw8ICTk1OV96tSqUr0YigoKLD5fdq0aUhISMDixYsREhICnU6H/v37Iz8/v0rHmjFjBp555hl88sknWL58OUJCQjB8+HAAlrKIDz/8EIsXL0aXLl3g7OyMmTNnlnsMSZLKXbvZbEavXr2wevXqEpf18fEBYMlIeO6557B582asXbsWb7zxBrZt24Z+/fpV6boRERERUdNy5NI55d9xqan2Wwg1OWyiSHXKaDTi22+/xQcffICIiAjl5/jx4wgJCVE+IHft2hV//PFHmfvRarUwmUw2p/n4+CA2Ntbmg3hERITNNn/99Reee+45jBkzBp06dYJOp0NiYmKVr8ekSZOgVqvx3Xff4ZtvvsHDDz+slBb89ddfGD9+PB588EF069YNrVu3xoULF8rdn4+PD2JiYpTfL1y4gOzsbOX3nj174sKFC/D19UXbtm1tfgwGg7Jdjx498Nprr2Hv3r3o3LkzvvvuuypfNyIiIiJqWo5eKnwvygwEqk0MIFCd+vXXX5GSkoIZM2agc+fONj933303li5dCgCYO3cu1qxZg7lz5+LMmTM4ceIEFi5cqOwnNDQUu3fvxo0bN5QAwJAhQ5CQkICFCxfi0qVL+OSTT/D777/bHL9t27ZYuXIlzpw5gwMHDuCBBx6oVraDi4sL7r33Xvz73/9GdHQ0pk2bZnOMbdu2Ye/evThz5gwef/xxxMbGlru/YcOG4eOPP8bRo0dx+PBhPPHEE9BoNMr5DzzwALy9vTF+/Hj89ddfiIyMxK5du/Cvf/0LUVFRiIyMxGuvvYZ9+/bh6tWr2Lp1K86fP88+CERERETNXF5BPk5cvaz8HpeaYsfVUFPDAALVqaVLl2LEiBE235rL7rrrLkRERODo0aMYMmQIfvzxR2zcuBHdu3fHsGHDcODAAWXb//znP7hy5QratGmjpPCHh4fj008/xSeffIJu3brh4MGDNs0MAUuzw5SUFPTo0QNTpkzBc889B19f32pdlxkzZiAlJQUjRoxAy5YtldNnz56Nnj17YvTo0RgyZAj8/f0xYcKEcvf1wQcfIDg4GLfccgsmT56MWbNmQa/XK+fr9Xrs3r0bLVu2xMSJExEeHo7p06cjJycHbm5u0Ov1OHv2LO666y60b98ejz32GJ555hk8/vjj1bpuRERERNRwGItl3lbFyWtXkG80wkGtBgDEpzGAQLVHEsULscmu0tPTYTAYkJaWBjc3N5vzcnNzERkZiVatWsHR0dFOKyQqxPskERERUe3ae/YU/r3qa7xwx924o8/AKl/+yy2/YPXuPzC4czfsOnkcALBp9jtwcax6Fi41H+V9Di2KGQhEREREREQNxJ4zJyCEwDc7tlYrE+HwpfMAgIEdOsOgt0wFYxkD1RYGEIiIiIiIiBqI64nxAIDEjDT8feZklS6bkZON89FRAIBebdrDz90DABDPAALVEgYQiIiIiIiIGohrCfHKv9cf2FOlyx67fAFCCIT4+MHbzQBfgyWAEMsAAtUSBhCIiIiIiIgagPTsLKRmZQIAVJKEY5cv4Ep8+dO9ijp80VK+0KttewAozEBgI0WqJQwgEBERERERNQDXrOULPgZ3DOjQGQCwYX/lsxCOXrYEEHq3CQNQGECITU2uzWVSM8YAAhERERERUQMgly+09PbFnf0GAQC2RBxCdl5uhZeNT03B9cQEqCQJ3Vq1AVAkAyE1tW4WTM0OAwhEREREREQNwLWEOABASx8/9GrTHi29fZGdl4ctxw5XeNkj1uyDDi1aKiMb/aw9EOJYwkC1hAEEIiIiIiKiBkCewBDi4wtJkjC+70AAwIYDeyCEKPeyRy7ali8AgJ+HJwAgKT2tWiMhiYpjAIGIiKiSzkdHcRQWERHVGbmEIdjbFwBwa88+cNJqcSU+FhGRF8u8nBACRy5dAAD0bNNOOd1d7wytgwPMQiAhPbXuFk7NBgMI1KTMmzcP3bt3V36fNm0aJkyYUO/ruHLlCiRJQkRERJ0eJzQ0FIsXL67TYxCRRWJ6Gp74bBFeXPGZvZdCRERNkNFkwo3kRACWEgYAcHF0wshuvQEAGw78XeZlT1+/iuTMdOg0GnRq2Uo5XaVSKaMc2QeBagMDCFTnpk2bBkmSIEkSNBoNWrdujVmzZiErK6vOj/2///0PK1asqNS29fWhHwC6dOmCRx55pNTz1qxZA41Gg7i4uDpfBxFV3pX4WJjMZlxLiEe+0Wjv5RARURNzIzkRJrMZTlotfNwMyukTrM0Ud586jnM3rpe4nBACn23+GQAwpHN3aB0cbM7nJAaqTQwgUL249dZbERMTg8uXL2P+/Pn49NNPMWvWrFK3LSgoqLXjGgwGuLu719r+asuMGTPwww8/IDs7u8R5y5Ytw9ixY+Hn52eHlRFRWeKKlC4kMg2UiIhq2fUi5QuSJCmnt/EPxLCuPWAWAu9vWFuil8GOE8dw4mokHDVaPDry9hL79TW4AwBL8KhWMIDQiAkI5MNslx+B8pu4FKfT6eDv74/g4GBMnjwZDzzwADZs2ACgsOxg2bJlaN26NXQ6HYQQSEtLw2OPPQZfX1+4ublh2LBhOH78uM1+//vf/8LPzw+urq6YMWMGcnNtR9wUL2Ewm81499130bZtW+h0OrRs2RJvv/02AKBVK0u6V48ePSBJEoYMGaJcbvny5QgPD4ejoyM6dOiATz/91OY4Bw8eRI8ePeDo6IjevXvj2LFj5d4eU6ZMQV5eHn788Ueb069du4YdO3ZgxowZuHTpEsaPHw8/Pz+4uLjgpptuwvbt28vcZ2kZFKmpqZAkCTt37lROO336NMaMGQMXFxf4+flhypQpSExMVM7/6aef0KVLFzg5OcHLywsjRoyol2wRooau6Dc38Wmp1d6P2WzGoQtnkZufXwurIiKipuJaYuEEhuKevX0iXJ30OB8dhf/bt1s5PTc/H59t3ggAeGDwCPhYgwVF+btbGinGMoBAtcCh4k2ooSqAwHzE2+XYb8AXWkgVb1gGJycnm0yDixcv4ocffsD//d//Qa1WAwBuv/12eHp64rfffoPBYMAXX3yB4cOH4/z58/D09MQPP/yAuXPn4pNPPsHNN9+MlStX4qOPPkLr1q3LPO5rr72Gr776Ch9++CEGDRqEmJgYnD17FoAlCNCnTx9s374dnTp1glarBQB89dVXmDt3Lj7++GP06NEDx44dw6OPPgpnZ2dMnToVWVlZGDt2LIYNG4ZVq1YhMjIS//rXv8q9/l5eXhg/fjyWL1+OqVOnKqcvX74cfn5+uO2223Dy5EmMGTMG8+fPh6OjI7755huMGzcO586dQ8uWLat1u8fExGDw4MF49NFHsWjRIuTk5OCVV17BpEmTsGPHDsTExOD+++/HwoULceeddyIjIwN//fVXhV1/iZqDot/cxNXgTdhvRw7gvQ1rMb7PQLww/p7aWBoRETUBV60ZCC2tDRSL8nRxxZO33oGF67/Hsu2/45aOXRHg6YXv/9qBhLRU+Lt74N5BQ0rdr6+1hCGeoxypFjCAQPXu4MGD+O677zB8+HDltPz8fKxcuRI+Pj4AgB07duDEiROIj4+HTqcDALz//vvYsGEDfvrpJzz22GNYvHgxpk+frvQSmD9/PrZv314iC0GWkZGB//3vf/j444+VD+1t2rTBoEGWujL52F5eXvD391cu99Zbb+GDDz7AxIkTAVgyFU6fPo0vvvgCU6dOxerVq2EymbBs2TLo9Xp06tQJUVFRePLJJ8u9HaZPn44xY8bg8uXLaN26NYQQWLFiBaZNmwa1Wo1u3bqhW7duyvbz58/H+vXrsXHjRjzzzDOVv8GL+Oyzz9CzZ08sWLBAOW3ZsmUIDg7G+fPnkZmZCaPRiIkTJyIkJASApV8DEdl+c1OTDAS5i/bOkxH417i7oFYxGZCIiApHOAb7lAwgAMCYXn2xNeIwIiIvYtHGHzFrwr347q8/AABP3DoeOo221MvJPRBqEvwmkjGA0IhpIOENlP4EUx/Hropff/0VLi4uMBqNKCgowPjx47FkyRLl/JCQEOUDPAAcOXIEmZmZ8PLystlPTk4OLl26BAA4c+YMnnjiCZvz+/fvjz///LPUNZw5cwZ5eXk2gYuKJCQk4Pr165gxYwYeffRR5XSj0QiDwaDst1u3btDr9TbrqMioUaPQokULLF++HG+99RZ27NiBK1eu4OGHHwYAZGVl4c0338Svv/6K6OhoGI1G5OTk4Nq1a5Vef3FHjhzBn3/+CRcXlxLnXbp0CaNGjcLw4cPRpUsXjB49GqNGjcLdd98NDw+Pah+TqKmIswkgVP9N2IWYGwCAtOwsnIm6is5FumUTEVHzJIRQRjiGlFLCAACSJGHWhEmYvmQhDl44ixeWfYq8ggJ0C22DIZ27lXoZwDaAIISw6a9AVFUMIDRiEqQalRHUp6FDh+Kzzz6DRqNBYGAgNBqNzfnOzs42v5vNZgQEBNjU7suq2xTRycmpypcxm80ALGUMffv2tTlPLrWobnq/SqXCtGnTsGLFCrz55ptYvnw5brnlFrRrZ5nd+9JLL2HLli14//330bZtWzg5OeHuu+9Gfhl10yrrt5hF11O8IaXZbMa4cePw7rvvlrh8QEAA1Go1tm3bhr1792Lr1q1YsmQJXn/9dRw4cEDpEUHUHJnMZpv52dUdhZWbn49rCYUTVvaePcUAAhERITUrExk52ZAkCS28vMvcLtjbFw8NGYWvt/+GqKQESJKEZ26/s9yggI+bOwAgtyAf6TnZMOidy9yWqCLMm6R64ezsjLZt2yIkJKRE8KA0PXv2RGxsLBwcHNC2bVubH29vy5NqeHg49u/fb3O54r8X1a5dOzg5OeGPP/4o9Xy554GpSGdbPz8/BAUF4fLlyyXWIX+g7tixI44fP46cnJxKraOohx9+GFFRUVi3bh3WrVuHGTNmKOf99ddfmDZtGu6880506dIF/v7+uHLlSpn7kjM4YmJilNOKj6Ts2bMnTp06hdDQ0BLXRw7iSJKEgQMH4s0338SxY8eg1Wqxfv36Sl0foqYqOSPdput1dTMQLsVGw1wkyLfv7Kkar42IiBq/a9byBT93jzJLEWT33TwMrfwCAAC39+qH9oEtyt1ep9HA08UNAMsYqOYYQKAGacSIEejfvz8mTJiALVu24MqVK9i7dy/eeOMNHD58GADwr3/9C8uWLcOyZctw/vx5zJ07F6dOlf1m3NHREa+88gpefvllfPvtt7h06RL279+PpUuXAgB8fX3h5OSEzZs3Iy4uDmlpaQAsUyLeeecd/O9//8P58+dx4sQJLF++HIsWLQIATJ48GSqVCjNmzMDp06fx22+/4f3336/U9WzVqhWGDRuGxx57DBqNBnfffbdyXtu2bbFu3TpERETg+PHjmDx5spIRURonJyf069cP//3vf3H69Gns3r0bb7zxhs02Tz/9NJKTk3H//ffj4MGDuHz5MrZu3Yrp06fDZDLhwIEDWLBgAQ4fPoxr165h3bp1SEhIQHh4eKWuD1FTJb/hUlm/4aluD4QLMVEAgI7BIVBJEi7HxSA2hXO5iYiaC5PZjN+OHEBMSpLN6dfKaaBYnMbBAe88+AgeGzUWT4+ZUKnj+lkzeONS+ZpDNcMAAjVIkiTht99+wy233ILp06ejffv2uO+++3DlyhX4+Vnqwu69917MmTMHr7zyCnr16oWrV69W2Lhw9uzZePHFFzFnzhyEh4fj3nvvRXy85QnbwcEBH330Eb744gsEBgZi/PjxAIBHHnkEX3/9NVasWIEuXbpg8ODBWLFihZKB4OLigl9++QWnT59Gjx498Prrr5daIlCWGTNmICUlBffdd59NH4UPP/wQHh4eGDBgAMaNG4fRo0ejZ8+e5e5r2bJlKCgoQO/evfGvf/0L8+fPtzk/MDAQf//9N0wmE0aPHo3OnTvjX//6FwwGA1QqFdzc3LB7926MGTMG7du3xxtvvIEPPvgAt912W6WvD1FTFGfNOGjjHwQAyMzNQXZe6Q1by3M+2hJA6Nm6PTqHWJ5D9p1jFgIRUXOx4cAevLtuDf698mubL4bk8ray+h8UF+DphQcGj4De2my8Ir5spEi1RBLNYD7b7t278d577+HIkSOIiYnB+vXrMWHCBOX8devW4YsvvsCRI0eQlJSEY8eOoXv37jb7yMvLw6xZs7BmzRrk5ORg+PDh+PTTT9GiRWHKUEpKCp577jls3GiZxXrHHXdgyZIlVarZT09Ph8FgQFpaGtzc3GzOy83NRWRkJFq1agVHR8cq3w5EtY33SWouvtu9HV9s+RWjuvfG3rMnkZmbi2/+9SpCff0rvnARj33yAc5FX8eb909DdHISvtjyC/q064D3pj1R8YWJiKhRM5nNeGDR20r2wX/ufxiDrc0PX/32S+w7dxovjr8Hd/QZWOvH/vT3n7F2z5+YNHBIpbMWqHkp73NoUc0iAyErKwvdunXDxx9/XOb5AwcOxH//+98y9zFz5kysX78e33//Pfbs2YPMzEyMHTvWpl5+8uTJiIiIwObNm7F582ZERERgypQptX59iIiofsWmWL6x8XP3gK+hevO0jSYTLsdFAwDaB7bAgA6dAADHLl9Adl5eLa6WiIgaor/PnLQpXfjmzy1KFoJcwhBciRKG6vA1uAMozKgjqq5mMYXhtttuKzcFW/6QX1aDurS0NCxduhQrV67EiBEjAACrVq1CcHAwtm/fjtGjR+PMmTPYvHkz9u/fr3Tr/+qrr9C/f3+cO3cOYWFhtXuliIio3sjBAj93T/gaPHA5LqbKkxiuxMeiwGSCi6MjAjwsI2oDPb0QnZyEI5fO4eaOXWt72URE1ID8uHcnAOCOmwZg+z9HcCk2GnvOnES/sI5KYKFlJUsYqkoe5RjPEgaqoWaRgVBTR44cQUFBAUaNGqWcFhgYiM6dO2Pv3r0AgH379sFgMNiM+uvXrx8MBoOyTWny8vKQnp5u80NERA1LrPUNl7+7R7W/xZEbKLYNaAFJkiBJEvqHWbIQ9nIaAxFRk3buxnX8c+Uy1CoVHho6ChP73QLAkoUQlZQAsxBwcXSEp4trnRzfz90TAHsgUM0xgFAJsbGx0Gq18PDwsDndz88PsbGxyja+viVTjnx9fZVtSvPOO+/AYDAoP8HBwbW7eCIiqhEhhNK12tfdQ2lEVdVJDHIDxXaBQcppchnD/nOny52yQkREjduPf+8EAAzr0gM+BndMGjQETlodLsbcwJrdlhHjwd6+kKzTfmqbnIGQnJmBvIKCOjkGNQ8MINSAEMLmQV7aA774NsW99tprSEtLU36uX79eqeMSNQS8L1JzYJm4YOlR4GcozEBIqGIA4UL0DQBAu4DC5rvdQttAr9MhOTMD525U/PxPRESNT0JaKnacOAYAuGfgEACAQe+Mif1vBgBsjbCMKK+r8gUAcHPSw0mrtawnPbXOjkNNHwMIleDv74/8/HykpNim/MTHxysjBf39/REXF1fisgkJCco2pdHpdHBzc7P5KYtGowEAZGdnV+dqENU6+b4o3zeJmiI53dPd2QWOWm1hCUMV0kDNZjMuxlgCCO0DCwMIGgcH3NSuAwBgL8c5EhE1SesP7IHJbEbX0NYICyrMNp40cIjyoR4AWvrUTQNFwPJFp9wEuLzXL5PZjKOXziOvIL/O1kKNW7NoolhTvXr1gkajwbZt2zBp0iQAQExMDE6ePImFCxcCAPr374+0tDQcPHgQffr0AQAcOHAAaWlpGDBgQK2sQ61Ww93dHfHxli6ter2+ztKciMojhEB2djbi4+Ph7u4OtVpt7yUR1Rn5jZaf9Y1X4RSG1AqzzGQ3khORk58HrYOmRIftAWGdsOvkcew9ewozRoyp5dUTEZE95eTnYeNBSz+0ewYMsTnP3dkFd/a7Gd9ZSxha1tEEBpmfuweuJsSVG0BYtXMblv3xOx4ZeTumDBlZp+uhxqlZBBAyMzNx8eJF5ffIyEhERETA09MTLVu2RHJyMq5du4boaMt4rXPnzgGwZBX4+/vDYDBgxowZePHFF+Hl5QVPT0/MmjULXbp0UaYyhIeH49Zbb8Wjjz6KL774AgDw2GOPYezYsbU6gcHf3zJzXA4iENmTu7u7cp8kaqqUAIK1D46PNQMh31iAtOwsuDu7VLiPC9FyA8VAOBQLuPUL6wgAuBhzA5m5OXBxdKqtpRMRkZ1tOXYIGTnZCPT0wsDwziXOv3fQUKzf/xdy8vPR2j+wTtci90GQ+/oUZzab8evhfQCgZM0RFdcsAgiHDx/G0KFDld9feOEFAMDUqVOxYsUKbNy4EQ8//LBy/n333QcAmDt3LubNmwcA+PDDD+Hg4IBJkyYhJycHw4cPx4oVK2y+eV29ejWee+45ZVrDHXfcgY8//rhWr4skSQgICICvry8K2ACF7Eij0TDzgJoF+Y2WnIGgdXCAp4srkjMzEJ+WahNAiElJwlOf/w9Du3THc2MnKqdfsL4RaxsQhOLcnV3grHNEVl4uEtPTGEAgImpCth8/CgCY2O9mqFUlq8fdnV2waPpTSMpIRwsvnzpdi18FJQwRkReVBsHsk0BlaRYBhCFDhpTb7G3atGmYNm1auftwdHTEkiVLsGTJkjK38fT0xKpVq6q7zCpRq9X88EZEVA/kEY7yNzeAJQshOTMD8akpNj0Ndp08juTMdPzfvt3o0botbu7YFUCRCQxFGigW5eXqhqy8XCRnpCPUl1k9RERNRWxKEgCgc0jrMrfpGBxaL2sJ8rYEKI5FXoTRZCqREbfl2CHl31VtFEzNB5soEhERlSM+TQ4geCqn+ZUxyvH4lUvKvz/Y8ANSszIhhFBKGIoGG4rydLU00E3KSK+1dRMRkX0ZTSbled3XzWDn1QADO3SCh7MLYlOSlakQspz8POw6dVz5PSkjHSaOF6ZSMIBARERUjtiUkhkI8iQGObgAWGpH/7lyGYBlPFdKViYW//ITEtJSkZadBbVKhVZ+AaUew4sBBCKiJic5MwNmIaBWqeDu4mrv5UCn0eLugYMBAKt3bYe5SIDgr9MnkJOfj0BPL6hVKpjMZqRkZthrqdSAMYBARERUhryCAiRnWj7U2wYQrHWkRQIIkfGxyMzNgZNWi/8+9CjUKhX+PBGBL7dtAgCE+vpDV8bIUzmAkMw3a0RETYZcBuDtZii1/4E9TOg7CM46R1yJj8Xes4Xjg+XyhdE9blKy4ljGQKVpGPdkIiKiBkhuIqXTaGDQOyunywGEom+u/rGWL3Ru2Qodg0PxwGDLlJ5tEYcBAO1KaaAoYwYCEVHTI7+G+Li523UdRbk4OmFCv0EAgFW7tkEIgYS0VBy5dB4AMLr7TfCxlluwkSKVhgEEIiKiMsQVaaAoSZJyemEJQ6pymtz/oGtoGwDAQ0NGoW2RkVztyuh/ADCAQETUFMlBZh+D/fsfFHXPgMHQOmhwJuoajl2+gG3HD0MIgW6hbRDg6aWMKy7e54cIYACBiIioTLEplhGO/kUaKAKFAYTE9DSYzGYIIXA80tL/oJs1gKBxcMBrdz+gpK2GBQWXeZzCAEJara6fiIjsJyHd8pzekDIQAMDDxRW39+4HAFi1azu2HLNkyo3ucRMAwNe6Xnn9REU1izGORERE1SE3SZRLFmSerm5Kk6mkjHTkW3slaNRqdGjRUtmubUAQ3po8HVcTYtG5ZasyjyPXmyYzA4GIqMkozEBwt+s6SnPfoKHYePBvpXRB66DB4M7dABSulz0QqDTMQCAiIipDrLWEwd/dNoCgVqmUGtH4tBSlfKFDi5ASjRIHhnfG5FtG2JRAFCdnIGTm5iKvIL/W1k9ERPYj9xDwbYABBH8PT4zs1kv5fVDHznBxdAIA9kCgcjGAQEREVAalB4KHZ4nzfKxZCfFpqUoDRbl8oapcHJ2gdbAkBbIPAhFR06BkIDSwEgbZ/bcMV4Lbo7vfpJxemIHAEgYqiSUMREREZYiXAwjFShiAIo0UU1Nw/Iq1/0Gr1tU6jiRJ8HR1Q2xKMpIy0hHo6V29BRMRUYNgNpsLeyA0wAwEwDJe+Nnb70R8agpuatdBOV0OeCSmp8JsNkPVQEZQUsPAAAIREVEpzGaz0gPBz71kAEE+7dT1K4hJSYJKktApuOw+BxXxsgYQkjMyqr0PIiJqGFKyMmEym6GSJHi6uNp7OWW6q/8tJU7zcnWDJEkoMJmQlp0Fjwa8fqp/DCcRERGVIjkzAwUmE1SSBG+3kiO45AyE/edOAwDaBbSAs6NjtY/HUY5ERE2HPALRy9UNDmq1fRdTRRoHB3g4W4IGbKRIxTGAQEREVAq5/4G3m6HUN3/yZIZ8oxEA0LWa5QsyLxcGEIiImoqGPIGhMnwMciNF9kEgWwwgEBERlSIuNRkA4OdesoEiULKrdteQ6jVQlBVmIPDNGhFRYydPMGioDRQrIq87nhkIVAwDCERERKWQRziW1v8AAHyLnd41tGYZCJ4sYSAiajIKMxBKlsA1BsokBo5ypGIYQCAiIipFXAUBBDcnPXQaDQBLJ2t3Z5caHU/OQEhmAIGIqNFTJjA00gwEX7mEgRkIVAwDCERERKW4lhAHAAj29in1fEmSlPGOXUNqln0AMAOBiKgpafQ9EJRRjiyrI1sMIBAREZXiWkI8AKClt1+Z27T2DwQA9GnfocxtKkvOQEjNzoLRZKrx/oiIyH4afQ8EljBQGRhAICIiKiYzNweJ1maGLX18y9zuubET8e5Dj2FQeJcaH9Pd2QUqSYIQAqlZmTXeHxFRbcgryMf/7duNlMwMey+l0RBCNP4eCNbAR0JaGoQQ9l0MNSgMIBARERUjly94urjB1Ulf5nZerm7oF9YRkiTV+JhqlQoeLpa52yxjIKKG4rcjB/DRr+vwyW8b7L2URiMtOwsFJhMkSYK3a+MMIHi7WdadW5CPzNwcO6+GGhIGEIiIiIqRyxdCfMsuX6gLXuyDQEQNTHRyEgDg0MVz/Ca6kuTRhx7OrtA4ONh3MdWk02hg0DsD4ChHssUAAhERUTFXrRkIIT4MIBBR85ZiLalKzcpEZHysnVfTODT28gWZ0geBAQQqggEEIiKiYuQShvL6H9SFwkkM7HpNRA1D0d4HRy+dt+NKLGJTkhGbkmzvZZSrsTdQlCl9EDiJgYpgAIGIiKgYZiAQEVmkFgkgHLt8wY4rAfIKCvD4Z4sw4+OFDbqpY0Ka5QN3Yx3hKJMzKJiBQEUxgEBERFREgdGo1PzaK4CQzAACETUQKUWmwkREXoTJbLbbWqKTE5GalYnM3Fz8uHeX3dZRETkDwbeRlzD4KhkIqXZdBzUsDCAQEREVcSM5ESazGXqdTulCXV88XawBhAb8zRoRNR9ms1kZK6tWqZCZm4sL0VF2W8+NpETl3xv270FGTrbd1lIepQdCYy9hYA8EKgUDCEREREVcjbf2P/D2q5XxjFXBEgYiakgycnOUjINebdoDAI7asYzhRnJhACErLxcbDvxtt7WUR+mB0OhLGNwBsAcC2WIAgYiIqAh7NVAEbEsYOC6NiOxN7jPg6qRH3/bhAOzbByEqKQEA0NLb8vz84987kZufb7f1lEYIUdgDobFnILixBwKVxAACERFREUoDRd/67X8AFE5hKDCZkN5AU3OJqPmQAwgezi7o0bodAOCfK5dRYDTaZT1yCcO9g4Yi0NMLadlZ+PXwvlrZ9+5T/2Dlzm01Dt5m5uYgt8AS1KjvMrja5m0NgGTl5SIrN9e+i6EGgwEEIiKiIq4lxAOo/waKAKB1cICbkx4AyxiIyP7kBoruLi5o5esPd2cX5Bbk40zUNbusRy5haOnjh/tvHg4A+P6vHTUOaAghsHD99/h62yZExsfWaF/x1m/rDXpn6DSaGu3L3vQ6HVwcnQCwkSIVYgCBiIjIymw241qiXMJQ/wEEgH0QiKjhUDIQXFyhUqnQo3VbAMDRy+frfS35RiPiU1MAAEFe3ri1Zx94uxqQkJ6GrRGHa7Tv5MwMpSGjfIzqUhooNvL+BzL2QaDiGEAgIiKySkhPQ05+PtQqFYI8ve2yBk8lgMA3a0RkX6mZlgwED2dXAEBPaxmDPfogxKYkwSwEnLQ6eLq4QuvggHtvHgoAWL17O4wmU7X3Lfe+AYDEGn5Qjm8iExhkpfVBMJnNOBN1DdcT45FX0LB6UFDdc7D3AoiIiBoK+U1kkJc3HNRqu6yhaCNFIiJ7Sskq7IEAAD1bWyYxnLp2Bbn5+XDUauttLXL/gyAvb2VCzrib+mPVzm24kZSIv8+cxODO3aq17+uJ8cq/E2sYvJVT/X2bWgaCNYCQlZuLl775HKeuXVG2Meid4efugQl9B+H23v3qf5FUr5iBQEREZKU0UPTxt9saCgMIGXZbAxERYFvCAFg+vPsY3FFgMuHktch6XYs8gSHIqzA7zEmrw5DO3QEA56Ojqr3va0UCCEnpNQveNrUSBl9rJkVCeioyc3Mwa8VnOHXtCrQOGjhZA0hp2Vk4Hx2FJZvWN7ipGFT7mIFARERkVRhAsE//A6BoCQMzEIjIvuQmih4ulgwESZLQs3U7bDl2CEcvX0DvtmH1thY5A6FFsfIy+YN6TTIH5Oa5QM1r/eXL+xga9wQGmXz7XomPw0srPsfp61fh6qTHooefRLvAFsjMzUFcagpeX70UsSnJ+PvsSQzv2tO+i6Y6xQwEIiIiK7mEoaWPr93WwCaKRNRQyD0Q3K09EAD79UGQJzAEefnYnO7tVvOyr6IlDDXtPyNnIPg2lR4I1kDIiauXcfr6Vbg56bFo+lNoHxQMSZLg6qRH24AgjOzWCwCwLeKIPZdL9YABBCIiIqur8fbPQGAAgYgaimRrCYOnS8kAwtmoa0iqx878RXsgFCU/Z1a3+WFeQQFiU5KV3xNrWsJg7YHQVEoYijaDNOid8eGMp9E+sEWJ7UZYAwgHL5xBqjVzhZomBhCIiIgApGdnKem69hrhCDCAQEQNQ25+PnLy8wAA7tYSBgDwdfdA55atYBYCGw78XS9rMZpMiE21fMgvPiHHy9XyDXl1nzNvJCfCLATUKsvHopSsjGpPdMjKzUV2nuU283ZrGiUMgZ5eMOid4e7sgkXTn0LbgKBStwv19Uf7wBYwmc3480RE/S6S6hUDCERERCisgfUxuEOv09ltHXIAISc/T3kjSkRU3+RvkTVqNZx1jjbn3TNwMADg54N/18sYv9jUZJjMZug0GuU5Uib/npadhQKjscr7vm597m8bEAS1SgUhhNI8sqri01IAAK5Oejhp7fc6Upt0Gi1Wv/A61rz4RpnBA5mchbD9OMsYmjIGEIiIiNAwGigCgF7nqHS25ihHIrKXohMY5LGJskHhXeDv7oG07CxsrYead7l8IdDTGyqV7ccXg95ZGbubXI0P/vIEhhAfP6WJbWI1n3vlSREBHp7VunxD5eqkh75YEKk0w7v2hCRJOHktEjHJSfWwMrIHBhCIiIjQMBooyjiJgYjsTZnAUKSBosxBrcbE/rcAAH7auwtCiDpdizKBoVgDRcAyGaImfRAKn/v94C0/91azn4ISiPa13yhge/J2Myg9MpiF0HQxgEBERISGk4EAFOmDkMkAAhHZh5yBULT/QVG39+4HJ60OV+JjcfjiuTpdy41kyzf7xRsoymrSO0aewNDS21fpp1DdkZBXrI14Q33t/zpiL3IZw7bjR+o8sET2wQACERERCnsgNKQAgjwOjIiovqVkFZYwlMbF0Qm39+4LAPjh7511uhZlAoNnWQGE6jVSFEIoAYRgH1+l8WFSNScxXI2PBQCE+jTPDAQAuKVTV2gdHHA1IQ4XYm7YezlUB5pFAGH37t0YN24cAgMDIUkSNmzYYHO+EALz5s1DYGAgnJycMGTIEJw6dcpmm7y8PDz77LPw9vaGs7Mz7rjjDkRFRdlsk5KSgilTpsBgMMBgMGDKlClITU2t42tHREQ1lW80IibFUq9pzwkMsjb+lkZVf53+p8xt9p09hbd/XMVGi0RUJ1Iz5RKG0jMQAOCu/rdAkiQcvHAWV6wfnutCYQlDRRkIVcscSM7MQGZuLlSShCBPb6WEQR7FWBVms7kwEN2MMxBcHJ3Qv0MnACxjaKqaRQAhKysL3bp1w8cff1zq+QsXLsSiRYvw8ccf49ChQ/D398fIkSORkVHYiGXmzJlYv349vv/+e+zZsweZmZkYO3YsTEXGvEyePBkRERHYvHkzNm/ejIiICEyZMqXOrx8REdVMtHWMl7PO0Wbeub2M6dkHapUKJ65G4mIp3+Bk5+VhwU+rsTXiMP48ccwOKySipk7pgVDOc2KgpzcGhXcBYOmFUBdMZjOirQHeoFJ6IAAo7F1QxQwEOfvA38PTMuHBrfojIePSUpBbkA+NWo0AD68qX74pGWktY/jj+FGYzGY7r4ZqW7MIINx2222YP38+Jk6cWOI8IQQWL16M119/HRMnTkTnzp3xzTffIDs7G9999x0AIC0tDUuXLsUHH3yAESNGoEePHli1ahVOnDiB7du3AwDOnDmDzZs34+uvv0b//v3Rv39/fPXVV/j1119x7lzZdWF5eXlIT0+3+SEiovolv4ls4eVTotu4PXi5GXBLp64AgPX795Q4/9fD+5Cekw0AuBjLFFEiqn1FpzCU554BlpGOW44dVkY/1qb4tBQYTSZoHRzgY/2AX5xnNZsoyhkDwd6W5rnebtVvxnjV2v8g2NtXmQrRXPVt3xGuTnokZqTh6OUL9l4O1bJmEUAoT2RkJGJjYzFq1CjlNJ1Oh8GDB2Pv3r0AgCNHjqCgoMBmm8DAQHTu3FnZZt++fTAYDOjbt6+yTb9+/WAwGJRtSvPOO+8oJQ8GgwHBwcG1fRWJiKgCUXJ6rHfp327Zw519bwZgSQHNsAYLAEu5xQ97/lR+vxwbXe9rI6KmTwkglFPCAABdQ1ujfWAL5BsL6iRlXX5+DvDwKjHCUSaXMFR19O21ROsEBiWA4A6gehkIhRMYmm/5gkzr4IARXXsCADYe/NvOq6Ha1uwDCLGxlnotPz/bB7ufn59yXmxsLLRaLTw8PMrdxte35OgvX19fZZvSvPbaa0hLS1N+rl+/XqPrQ0REVVc0A6Gh6BraGq38ApBbkI/NRw8qp2+LOIyE9DRoHTQAgIsx0ex0TUS1Ts4mcK8ggCBJEm7uaMmYOnej9t/H3kgqfwIDAKX5YWJVSxgSLPuWx/fKpRBp2VnINxqrtK8rbKBoY3zfgQCAv8+cZEPgJqbZBxBkxVNWhRAVprEW36a07Svaj06ng5ubm80PERHVL/kNanADykCQJAl39h0EANhw4G+YzWaYzGZ8t/sPAMDUYaOgVqmQmZvDN2dEVKtMZrMSQKhMX5hWfpYPzZFxtd9IUZnAUE4AQc5ASM3KhLFIf7KKKBMYrBkIrk56aB0cAFS9IaMcQAjxZQABAFr5BaBbaBuYzGb8enifvZdDtajZBxD8/S0P8uJZAvHx8UpWgr+/P/Lz85GSklLuNnFxcSX2n5CQUCK7gYiIGpbriZYAQkPKQACAkd17w1nniKikBBy5dB67Th1HVFIC3Jz0mNjvFmXk5EWWMRBRLcrIyYbZmtlkqCADAQBa+wUCAK4mxFbpA3xlFE5gKPv52aB3htpa3pCcmVHmdkXZTN+xBhAkSSocCVmFvmRCCFxjCUMJchbCr4f21/r9guyn2QcQWrVqBX9/f2zbtk05LT8/H7t27cKAAQMAAL169YJGo7HZJiYmBidPnlS26d+/P9LS0nDwYGGa6YEDB5CWlqZsQ0REDU92Xp5S79qQeiAAgF6nw+ieNwEA1u3/C6t3Wl6HJva/GXqdDm38LW/aLzGAQES1SO5/4Oakr1RDwAAPTzhqtMg3GhGdnFjt4+YV5JcIANxIljMQyn5+VqlUSiPFpEo2QLyRlFA4fce1MANYaaRYhQyEpIx0ZObmQq1SNbhAtD3d0rErPJxdkJiRhr1nT9p7OVRLmkUAITMzExEREYiIiABgaZwYERGBa9euQZIkzJw5EwsWLMD69etx8uRJTJs2DXq9HpMnTwYAGAwGzJgxAy+++CL++OMPHDt2DA8++CC6dOmCESNGAADCw8Nx66234tFHH8X+/fuxf/9+PProoxg7dizCwsLsddWJiKgCUdbyBXdnF7g66e28mpImWMsY9p49hYux0XDSajGx/y0AgDYBQQCAS5zEQES1qLITGGQqlQqh1tT9y3Ex1T7uC8s+w93vzsWav3bAbDbDbDYrAYkWnmWXMACAl0vVRjkWLV8oWm4sZyBUZRKDXL4Q5OmtlEAQoHFwwJje/QBYSvGoaWgWAYTDhw+jR48e6NGjBwDghRdeQI8ePTBnzhwAwMsvv4yZM2fiqaeeQu/evXHjxg1s3boVrq6FT5offvghJkyYgEmTJmHgwIHQ6/X45ZdfoC4SlV29ejW6dOmCUaNGYdSoUejatStWrlxZv1eWiIiqJKoBNlAsKsTHD73atFd+H3fTABj0zgCANv4BAJiBQES1K8Xa/8DDpeLyBVlr6/NRZDUDCFm5uTh5LRImsxmfb96IV1d+hYsxN5BvNMJBrYaPwb3cy1c1c+CqPMLRx7YJuryfqkxikCcwtPRh+UJx427qD0mScOTSeSVoQ41bswiRDRkypNwO1ZIkYd68eZg3b16Z2zg6OmLJkiVYsmRJmdt4enpi1apVNVkqERHVs4Y4wrG4CX0H4cil83BQqzFp4BDl9Db+lgyEqMQE5BXkQ6fR2mmFRNSUyBkI7s6Vy0AALE3zgOpnIFyMsWRS6XU6GE1mHDh/BhGRFwFYSiQqKqVQShiqmIEQ4m0bQJAzEBKqkYEQygaKJQR4eKFf+3DsO3caPx/8G8+MudPeS6IaahYZCERERGVpiCMcixsU3hmPjBiDN+6ZYvMtnKeLK9ydXWAWok66nxNR85SSKWcgVD6A0FoOIMRWL4BwPtoyArJn6/b4/MnnEeLjh7yCAgBAkGfFz8/eVWx+qJQwFMtA8HGT91P5AMLVeEsGQigbKJZqfB9LM8XNRw8hNz/fzquhmmIAgYiImrWoBjjCsTiVSoUpQ0dhaJfuNqdLksRGikRU61KyrD0QKjGBQSZnINxITkReQdU/JJ6PjgIAtA9sgTb+gfjiqRcwpldfAEDPNu0qvLxXFTIQik5NCC6egWANIFSliaJcwhDCEoZS9WkfDn8PT2TkZGPHiWP2Xg7VEAMIRETUrEU10BGOlcUAAhHVtsImipUPIHi6uMKgd4YQAlfiS442r0jRAAIAOGl1eGXi/fj1jQW4d9DQCi/vLWcOVCKAkJKViczcXEiSVOK531uZ5lC5TIbUrEykZmVCkiT2QCiDWqXC2N79AQC7Tx2382qophhAICKiZistOwvpOdkAgCCv8jt8N1QMIBBRbUvNqnoJgyRJaG19PqpqI8Wc/DwlI0AOIMgqOx2nsAdCxZkD8rH83T2h02hszpMDEVl5ucjOy6twX3L5gr+7Jxy17ENTlk7BIQAKs/6o8WIAgYiImi05+8DHzQAnrc7Oq6meogGE8hoGExFVltIDoQpNFAGglV/1Rjleio2GWQh4urgpJQRVJZcwpGRlwmgylbvtD3t2AgDCgoJLnKfXOSqvB8mVyGYobKDI7IPyBFrHcMakJMNkNtt5NVQTDCAQEVGzdT3J2kCxWA1sYxLi6w+1SoWMnOwqdQ0nIiqLMoWhCiUMANDazxLQvFzFjKgLxcoXqsPd2QVqlQpCCGX9pdl79hT+PnsSapUKDw+/tdRtqjISkv0PKsfH4A4HtRpGkwkJaan2Xg7VAAMIRETUbN1ItIxwDG6k/Q8AQOvgoNTdXrKOQaus1KxMfPLbBnyx5ZdqNT0joqYnJz8PudbnA88qlDAAhRkIVZ0KU7z/QXWoVSolY6KsPgh5Bfn46Nd1AIBJA4eUOXZRHuWYWImgrJyBEMIRjuVSq1QI8PAEAEQnJ9p5NVQTDCAQEVGzVZiB0HgDCECRMoa4yn3rZzSZ8H/7duOBRW/jh7934rvdf+CpzxcrJR1E1HylWssXtA6aKpd2yaMcEzPSkJ6dVenLyQGEdjUIIACAl1v5kxhW7/oDMSlJ8DG446Gho8vcT1UaMnKEY+UFeHgBAG4kJ9l5JVQTDCAQEVGzFWXNQGisExhkSgAhpuIAwtHLF/DIJ+/jo1/XITM3B239A+Hh7IKLsdF49NP3seskO2QTNWfJRSYwSJJUpcvqdY7wt37LXNkshHyjUWm6WJMMBKDoKMeSmQNRSQlY89cfAIBnxkyAXld2cEQOICSkp5Z7vMzcHKXMgRMYKhZk7YPADITGjQEEIiJqloQQiGpqGQgV1B3vOX0Czy/9BJFxMXBz0uPF8ffgy6dn4etnXkLX0NbIzsvDnDXLsWTTugqbkBFR06RMYKhiA0VZK19LFsLlSmZERcbFwGQ2w81JDz93j2odUyYHEBKLjWAUQuCjX9ch32jETW3DMLhTt3L3U9lRjnL2gY+bAS6OTtVddrMRaJ12dIMBhEaNAQQiImqWkjPSkZOfD5UkIdCaVtlYyQGE64nxyCsoKHO7jYf2AgAGd+qG1S+8jjv6DIRapYK3mwEfTn8a9988DADw097d+HHvrrpfOBE1OClFMhCqo7W/HECo3CSGouULVc14KM7btfTSg79On8CB82egUasxc9zdFR5HngRRURNF9j+oGiUDIYklDI0ZAwhERNSkGE0mfLV1E45evlDudtets6j9PTyhcXCoj6XVGS9XNxj0zjALobyhLS4rNxdHL50HAEwfcRvc9M425zuo1Xji1jvw7O13AgA2HvwbZo7aImp2lAkMztULILSy9kGIrHQA4TqAmpcvAICna8keCEIILP/jdwDAfTcPq1TGmRKIqCAD4RonMFRJoKclWB+dnMixw40YAwhERNSk7D17Cqt2bcO/V36NuNSUMre7bm0Y2Nj7HwCAJEkVljHsP38aBSYTgr19yn2ze3vvfnDWOSI6OanCIAwRNT0p1hKGqk5gkLUuEkCozIfE2hjhKCtsfliYOXAx5gYux8VA6+CAewcNreR+Csc4lncdOMKxauQAQlZeLtKq0GSTGhYGEIiIqEm5aB1lmJOfh/c3rC3zzV+UNQMh2Nu33tZWl9oEyAGE0kc5/nX6HwDALR27lpu+66TVYUS3XgCAXw/vq+VVElFDl5JlzUCoZgChpbcv1CoVMnNzkZCWWu62RpNJCXq2Dwyu1vGK8iolA2HLsUMAgIHhneHqpK/SfvIKCpCZm1PmdtcSLH10QjiBoVJ0Gq2S3cFGio0XAwhERNSkRMYXps0evHAWWyIOlbpdVKK1gWITyEAACvsgHI+8XCJokldQgP3nzgAAbu7YtcJ9jbupPwBL3bDcUI2ImoeUTLmJYvVKGDQODmhpDcxW1AfhakIc8o1G6HU65dvpmpA/+KdkZsBkNsNoMmH78SMAgNHdb6r0fnQarRJsKGuUY15BAWJSLLX8nMBQeYFeHOXY2DGAQERETYpcd9u7bRgA4ONNG0p9AxiVZPn2I7iRT2CQ9WvfETqNBhdionDE2utAduTSeeTk58HHzYCwoIq/5WsX2AIdglrCaDJh89GDdbVkImqAUpUmitXLQACAVpVspCiXL7QLaAGVquYfS9ydXaCSJJiFQGpmBg5dOIuUrEx4OLvgpnYdqrQvb2WiQ+mNFG8kJ8IsBFwcnaodbGmOApVGisxAaKwYQCAioiYjryAfN6xvSl658z60C2iBjJxs/O+X/7PZzmQ240ZS0+mBAFje7I/tbckcWLlzq815cvnCoPAulX6TPtaahfDr4X1sdkXUTJjNZsSmJgMo7CdQHa19KxdAOF+L/Q8ASzNYd+v4ycSMdCUDbUS3XnBQq6u0L+8KJjHIDRRb+vjWeHpEc6JMYkhhBkJjxQACERE1GVfj42AWAga9M3wM7nhl4n1Qq1TYdeo4dp6MULaLT0tBgckEjVoN3xrOHW9I7rt5GBzUakREXsKJq5cBWGqM/z5zEgBwS6eKyxdkw7v2gJNWh+uJCTh+5VKdrJeIGpaYlGTk5OdD6+BQo+Bqa2tJ1YXoqHIDkEVHONYWuQHi1YQ45blvdI/Kly/IlFGOZWQgyP0PWL5QNUUnMVDjxAACERE1GZet/Q9a+QVAkiS0C2yBybcMBwAsXPc9Xv7mCyz6+Ues2rkdgCWVUl0LabMNha/BHbf26AMAWLlzGwDg5LVIpGVnwc1Jj66hbSq9L73OEcO79gQA/HKIzRSJmgO5oWGor3+Vv7EvKjw4BBq1GlfiY/HT3l2lbmM2m3ExpnYzEIDCPgg/7d2FfKMRrf0C0DYgqMr7kZv9xaemlnp+4QjHptGIt74oGQhJzEBorJrOuyYiImr2IuNiARTOIQeAh4aORruAFsjKy8WB82fw88G/lekCTaX/QVGTbxkOlSThwPkzOHfjulK+MKBDpyp/IJCbKe46GcGRW0TNwGVrAEHOIKguTxdXPD1mAgDg8y2/4EzUtRLbXE9KQE5+PnQaTa1Ow/G0BhDO3bgOwJJ9UJ0SA3mywuW40kfjKhkI3sxAqIpAL0sAITEjDXkF+XZeDVUHAwhERNRkKG9+/fyV07QODvj0iZl4/+En8dKEezFlyEiM7NYLfduH476bh9lrqXUmyMsbw61jGFfu3Ia/Tp8AULnpC8WFBQWjXUALFJhM2Hqs9GkWRNR0XLJ+WG5TwwACAEzoOwiDO3eD0WTCvO9XICMnWzkvOjkR89asAGAZ31iTbIfi5MwBAFBJEkZanw+rSm44ez46CkaTyeY8IQSuJRb2QKDKc3PSw8XREQAQzUkMjZKDvRdARERUWyLjLRkIrf1s3/xqHRxwk3UqQ3Pw4OAR2BZxWMk+cNRocVO7ql9/SZIw9qZ++HDjT9h89CDuGTiklldKRA2JXMJQGwEESZLw8p334fyNKMSkJGHh+u/xn/sfxpFL5zHv+2+QkZMNTxc3PHv7nTU+VlFyCQNgmcbjVc1mkMFePtDrdMjOy8PVhDib2yQhPQ05+flQq1TKVAGqHEmSEOjpjfPRUYhOTrLJGKTGgRkIRETUJGTkZCMhLRUAEFokA6E5CvX1t2mY2Ld9OHQabbX21bd9OABLQzKz2Vwr6yOihic7L0/5Rrg2AggA4OLohHn3TYWDWo3dp/7BG6uX4qUVnyMjJxvhLVriy6deqNRo2aooOj2iOs0TZSqVCu0DLWuTyyFkcv+DIC/vWs2eaC7koMsNNlJslBhAICKiJkHuf+BrcIeLo5OdV2N/UwaPVP59c8cu1d6Pj5s7VJKEApMJKdb58ETU9FyJj4EQAp4ubnB3dqm1/XZo0RJP3noHAGDPmZMwC4Fbe/bB/x55Fj4G91o7jszfwxMAoNfpMCi8+s99ANDBGtw4W6yHA/sf1EyQPIkhiQGExoglDERE1CREWueNFy9faK7aBwXj3kFDcTHmBgbVIIDgoFbDy82AhLRUxKWlVDsdmIgatkuxlufQNv61n1J+V/9bcDbqGnadOo7HR4/DXf1vqVZjw8po4x+IF8ffg2BvXzhqq5d5JZOzI8rKQOAEhuphBkLjxgACERE1CXIAoVUzL18o6qnbxtfKfvzdPZCQlorY1BR0DA6tlX0SUcNSm/0PipMkCa/f8yBenng/tA51//Hjjj4Da2U/YUEtAQCXYm+gwGiExrr2a4nWDAQfZiBUhzyJgU0UGyeWMBARUZNwWQkgsCFTbfM1eAAA4lNT7LwSIqortTXCsSySJNVL8KA2BXp6wdVJjwKTSXmNAYCr8ZzAUBNB1gyE2NRkmNhbp9FhAIGIiBo9IUSREgYGEGqbn7slgBCXxgACUVMkhKjTDITGSpKkImUMlj4IWbm5SMxIAwAEezOAUB3ebgZo1GoYTSbE83Wl0WEAgYiIGr3kjHSk52RDJUlMKa0DSgAhhW/0iJqihLRUZObmQK1S8Tm0GDmAcNbaB0EuX/B0cYOrk95u62rM1CoVAjysjRRroYwhJjkJ2Xl5Nd4PVQ4DCERE1OhdjrdMYGjh5QOdRmPn1TQ9fgZmIBA1ZXL2QUsfv0ZXZlDXOlj7IJyzTmKQGyiyfKFmlEaKNZzE8NfpfzB50XzMXbO8NpZFlcAAAhERNXpy7W6rOugeToCfdSxaHHsgEDVJl+JYvlAWeZRjZHws8gryC0c4MoBQI4FecgZC9QMIUUkJeOen72AWAievRUIIUVvLo3IwgEBERI2e0v/AlwGEuiBnIGTkZCM7L9fOqyGi2lbY/4DPocX5GNzh4ewCk9mMizHRuJYoj3BkqUdNyI0UyythMJpMeGHZp3j12y+RlJ5mc15eQT7mfrccWdbXpOy8PKRmZdbdgknBAAIRETV6kXGWEgZOYKgbzo6OcHF0AgDEp6XadzFEVOsux8pNaJmBUJylkaKljOHsjWvMQKglSglDORkI56Ov48il89h37jQe+eQDHL9ySTlv8S//h4ux0XB3doFB72zZVw3LIahyGEAgIqJGzWw244q1B0JrfntWZ+RGirEpyXZeCRHVpryCAly3NgZkCUPpOrSwlDGcvn4VUUkJAICW3sxAqIlAz8IShrJKD05fv6r8OzkzHc8v/QRr9/yJTYf347cjB6CSJMy59yHlfhuVnFD3CycGEIiIqHGLSUlGbkE+tA4OyjcaVPt8rWUMHLlF1LRcTYiDyWyGm5Me3m4Gey+nQZIzEPaePQmjyQSdRgNfg7t9F9XIBXh4QZKkcksPzlgbVz5wy3CM7NYLJrMZn/7+Mxau/x4AMH34bejVpj2CvKzlEEk1n+hAFWMAgYiIGjW5/0GIjz/UKr6s1RV/OQOBjRSJmhS5CW1r/0BIkmTn1TRMYYEtAEAZFRjs7QsVX29qRKfRINjLB4BtpkFRZ6yn92jdDq/f8yBmjrsLDmo1AKBf+454YPAIAECQdT/llUNQ7eGcFiIiatQuyw0UWb5Qp3ytAYR4BhCImpTCBoosXyiLl5sBPm4GJFgb+bH/Qe3o3qotriXG41jkBQwM72xzXmpWphIQ6NCiJSRJwp39bkZ4ixAcungOd/YbpARxgpSRkCxhqA8MnRERUaMmZyCwgWLdkjMQ4ljCQNSkMIBQOXIZAwCEsP9Brejeui0AIOLypRLnydkHLb194eqkV07v0KIlpgwZqTT2BaCUMLCJYv1gAIGIiBo1eSpAoIeXfRfSxMkZCHHMQCBqUoqWMFDZOgQFK/9mBkLt6B7aBgBwMfYGMnKybc47HWUJIIQHh1S4H7khY3pONtKzs2p5lVQcAwhERNSopWRlAAA8XFztvJKmzc/aRDExPQ1Gk8nOqyGi2pCcmYGUrExIkoRWvv72Xk6DFtaiaACBGQi1wcvNgJbevhBC4J8rl23OkzMQOlYigOCk1cHL1Q0AcCOZjRTrGgMIRETUqKVmWro3e7i42HklTZuXqxsc1GqYzGYkZaTbezlEVAvkD2ktvLzhqNXaeTUNW4egltA6aOCk1aGFtWkf1Vz3VpYyhmORF5TTzGazMoGhY4uKAwhA0TIG9kGoawwgEBFRo5VvNCIrLxcA4O7MAEJdUqlU8HFzB8AyBqKm4ueDfwMA+rQLt/NKGj43vTM+ePhJfPDwkwy21CK5D8LxyMI+CNeTEpCZmwOtg6bSpTWFjRTZB6GuMYBglZGRgZkzZyIkJAROTk4YMGAADh06pJwvhMC8efMQGBgIJycnDBkyBKdOnbLZR15eHp599ll4e3vD2dkZd9xxB6Kiour7qhARNRvy7Gi1SmXTUInqhh8bKRI1GVfiY3Hg/BlIkoS7B9xi7+U0Cl1DW6NTy1B7L6NJkfsgXIgp7IMgZ8aEBbVQxjZWhKMc6w8DCFaPPPIItm3bhpUrV+LEiRMYNWoURowYgRs3bgAAFi5ciEWLFuHjjz/GoUOH4O/vj5EjRyIjI0PZx8yZM7F+/Xp8//332LNnDzIzMzF27FiYWCtKRFQnUjOt/Q+cXTm/vB4oAYTUZDuvhIhq6oe/dwIAbu7YBYHWb2+J6puXmwHB3j42fRBOWwMI4ZUsXwA4iaE+MYAAICcnB//3f/+HhQsX4pZbbkHbtm0xb948tGrVCp999hmEEFi8eDFef/11TJw4EZ07d8Y333yD7OxsfPfddwCAtLQ0LF26FB988AFGjBiBHj16YNWqVThx4gS2b99e5rHz8vKQnp5u80NERJWTYs1AcGf/g3ohN1JkCQNR45aSmYFtEYcBAJMGDrHvYqjZk/sgREReBACcqcIEBlkLT/ZAqC8MIAAwGo0wmUxwdHS0Od3JyQl79uxBZGQkYmNjMWrUKOU8nU6HwYMHY+/evQCAI0eOoKCgwGabwMBAdO7cWdmmNO+88w4MBoPyExwcXOa2RERkSy5hYP+D+uHHUY5ETcLPB/5GvtGI8BYt0bllK3svh5q5ogGE3Px8XLKOFu0UHFrpfQRaMxBSsjKRlZtb62ukQgwgAHB1dUX//v3x1ltvITo6GiaTCatWrcKBAwcQExOD2NhYAICfn+3IFj8/P+W82NhYaLVaeHh4lLlNaV577TWkpaUpP9evX6/la0dE1HTJAQQPBhDqhRxAiGcAgajRyivIx/oDewAAkwYNZfkX2Z0cQLgQcwNHL1+AyWyGp4sbfA3uld6Hi6OT8mUC+yDULQYQrFauXAkhBIKCgqDT6fDRRx9h8uTJUBdp3FH8CVYIUeGTbkXb6HQ6uLm52fwQEVHlpFh7ILCEoX7IAYTY1BQIIey8GiKqjm0RR5CalQk/dw/c0rGrvZdDBO8ifRDW7tkBAOgY3LLKwS32QagfDCBYtWnTBrt27UJmZiauX7+OgwcPoqCgAK1atYK/vz8AlMgkiI+PV7IS/P39kZ+fj5SUlDK3ISKi2pWiZCC42nklzYOvtQdCTn4eMnNz7LwaIqoqIYTSPPGu/rdUusM9UV0rLGOwjHOsSv8DmTLKMZl9EOoSAwjFODs7IyAgACkpKdiyZQvGjx+vBBG2bdumbJefn49du3ZhwIABAIBevXpBo9HYbBMTE4OTJ08q2xARUe1KYw+EeuWo1cKgdwbAPghEjdHBC2dxNSEOep0OY3v3t/dyiBTdrAEEWccqTGCQMQOhfjjYewENxZYtWyCEQFhYGC5evIiXXnoJYWFhePjhhyFJEmbOnIkFCxagXbt2aNeuHRYsWAC9Xo/JkycDAAwGA2bMmIEXX3wRXl5e8PT0xKxZs9ClSxeMGDHCzteOiKhpSslkAKG++bt7Ii07C3GpKWgbEGTv5RBRFazd8ycAYGzv/nAu1jycyJ66h7ZR/i1JEsKCWlZ5H0FePgAYQKhrDCBYpaWl4bXXXkNUVBQ8PT1x11134e2334ZGowEAvPzyy8jJycFTTz2FlJQU9O3bF1u3boWra2Ha7IcffggHBwdMmjQJOTk5GD58OFasWGHTR4GIiGpPapalB4IHeyDUG193D5yLvs4MBKJG5lJsNI5cOg+VJOGu/rfYezlENnwM7mjh5YOopASE+vpXK8BVOMqRAYS6xACC1aRJkzBp0qQyz5ckCfPmzcO8efPK3MbR0RFLlizBkiVL6mCFRERUHHsg1D9/eZRjGgMIRI2J3PtgcOdu8PfwtO9iiErRo3VbRCUloGM1+h8AhSUMiRlpyMnPg5NWV5vLIysGEIiIqFHKyc9DXkEBAMDAEoZ64ysHEFKT7bwSIqqspPQ0bD9+BABw78Chdl4NUemmDh0NlaTCA4OrV/7tpneGq5MeGTnZiE5OQhv/wFpeIQFsokhERI1UqrX/gU6jgZNWa+fVNB9+BjmAwAwEosZi/YE9MJpM6BLSqlrd7Ynqg4/BHS+Mv0cZGVwdQSxjqHMMIBARUaOUIvc/cHap8qxoqj4/dwYQiBqT3Px8/HzgbwDApIFD7LsYojqmTGJIZgChrjCAQEREjVLhBAb2P6hPcgAhKSMd+UajnVdDRBXZcuwQ0nOyEejphYHhXey9HKI6VTjKMcHOK2m6GEAgIqJGKTWLIxztwd3ZBVoHy4SixPRU+y6GiMplNpvx496dAIC7BwyGWsW3/tS0FQYQmIFQV/gsQkREjZISQOAIx3olSRL83N0BALEsYyBq0PadO43riQlwcXTEbT372ns5RHWuhacPAJYw1CUGEIiIqFEq2gOB6pe/u2UEXExykp1XQkTlkUc3jrtpAPQ6jrSjpk/OQIhPS1UmNVHtYgCBiIgaJXkKg4cLeyDUtxZelm94olhjStRgxaYkIyLyItQqFSb2v8XeyyGqF+7OLtDrdBBCICaFQe66wAACERE1SnIJg8HZ2c4raX5aeDOAQNTQxaVZSowCPLzga3C372KI6okkSQj08AJgCaJR7WMAgYiIGqUUawDBg1MY6p2SgZDIAAJRQ5WSaS3zYpYWNTOerm4AgGTrY4BqFwMIRETUKCklDOyBUO/kAMKN5ESYzWY7r4aISpOilHnxOZKaFzmAkJSRbueVNE0MIBARUaMjhEBqtjyFgd+u1Td/D0+oVSrkFRQgkW/QiBqkVGujWY66pebGS8lA4OtTXWAAgYiIGp3M3BwYTSYAfHNsDw5qNQKsNaZRifF2Xg0RlUZO32aZFzU3ntYvFpIzWMJQFxhAICKiRkduoOisc4TWwcHOq2meOImBqGGTnyfZA4GaG09mINQpBhCIiKjRkWt73VnbazctvC2ztqOSEu28EiIqDXsgUHPl5cIeCHWJAQQiImp05NpepubaDycxEDVsfJ6k5krpgcAShjrBAAIRETU6SgaCs7OdV9J8sYSBqGGTxzgyU4uaG09XS9AsJz8P2Xl5dl5N08MAAhERNTpyba87v1mzGzmAEJ2cCBNHORI1KPlGIzJzcwEUNpQjai6ctDo4arQACgNpVHsYQCAiokYnJYu1vfbm6+4BjVqNApMJ8Wkp9l4OERUhB1nVKhVcHJ3svBqi+iVJklLGwD4ItY8BBCIianQ439z+1CoVAjytoxwr0UgxNz8fW44dUj7YEFHdSS0ywlGSJDuvhqj+yWUMnMRQ+xhAICKiRqewBwIDCPZUlUaKP/69Ewt+Wo1HP3kfF6Kj6nppRM1aMvsfUDPn6cJGinWFAQQiImp00jjfvEEobKQYX+G2f505AQCIT0vFM19+hL9O/1OnayNqzuRMH/Y/oOZKvu8zA6H2MYBARESNTkoWMxAagmBvOQOh/BKGpIx0nLtxHQDQLbQNcgvy8cbqZVi1axuEEHW+TqLmhs+R1NyxB0LdYQCBiIgaFZPZjLTsLADMQLC3yo5yPHjhDAAgLDAYi6Y/hTv73QwA+GrrJiza+GPdLpKoGVJ6IPA5kpopT1eWMNQVBhCIiKhRSc/OUr61dnPS23k1zZscQIhJSYLRZCpzu33nTgMA+oV1hINajZnj7sLzd9wNSZKw8eBexKVyigNRbVJ6IDADgZopljDUHQYQiIioUZFrew16Zzio1XZeTfPm7WaA1kEDk9mM2NTkUrcxmkw4fOEcAKB/WEfl9Al9B6FjcAgA4PDFc3W/WKJmhD0QqLnzYgZCnWEAgYiIGhXW9jYcKpUKQV7eAMqexHDi6mVk5eXC3dkFYUHBNuf1bhMGADh8iQEEotrESTXU3MklDClZGTCZzXZeTdPCAAIRETUqhbW9fGPcEFTUB2G/tXyhb/twqFS2bzt6tW0PADhy8TzMfINHVGtSs9gDgZo3d2cXSJIEk9mMdGvfpKrIK8jHk59/iDe//6YOVte4MYBARESNipyBYOA3aw1CCzkDIan0SQxF+x8U1yk4FE5aHdKys3AxNrruFknUjAghlOdJDz5PUjPloFbDoHcGUNgTpCoOXzyP09evYseJY8jNz6/t5TVqDCAQEVGjkqq8MeY3aw2BnIFwo5QMhJjkJFxNiINapcJNbcNKnO+gVqN7q7YAgCOXztftQomaiczcHKWpqTszEKgZKxzlmFbly+49e0r5d1k9fporBhCIiKhRSc3kN2sNSQtvSwDheik9EPaft2QfdG7ZCq5lTMzobS1jYCNFotqRYv221cXREVoHBzuvhsh+lEkMVWykKIRQyu8AIDaFAYSiGEAgIqJGRWmiyB4IDUKwNQMhLjUZBUajzXnllS/IelszE/65chl5BQV1tEqi5qOw0SyzD6h5kxspVnWU44WYG0gskrUQwwCCDQYQiIioUZGbg7G7eMPg6eoGJ60OZiEQnZKknJ6bn49jly8CsB3fWFyIjx+8XQ3INxbgxNXLdb5eoqYuhY1miQBUPwNhX5HyBQCILfLaRgwgEBFRI8MeCA2LJEmljnI8dvkC8o0F8HP3QKivf7mXl8sY2AeBqObkEY6cwEDNXWEPhKplIOw7ZwkgtPYLAMAMhOIYQCAiokZFmW/Ob9cajOKjHE1mM3af/gcA0K99R0iSVO7l5TIG9kEgqjlmaRFZVKeEITkzA2eirgEA7uw3CAB7IBTHzipERNRoFBiNyMzNAcAmig2JHED47cgB7D71Dy7G3EBugWXsVXnlC7KebSwZCBdibiA1K5MffIhqQMlAYJYWNXPVKWE4YG3+GxYYjE4tWwEAYljCYIMZCERE1GjIzcHUKhVcHJ3svBqStfTxBQBciY/FyWuRyC3Ih5NWi5s7dlWyC8rj5eqG1n4BEELg6OULdb1coiYtJUvugcAAAjVvXtXIQNh31hJA6N+hIwI8PAEA6TnZyMrNrf0FNlLMQCAiokbj0IWzAICW3r5QqRgDbyiGdO6GM1HXoFGr0T4oGO0DW6CFlw/UVfgb9W4bhstxMTh88RyGdelRh6slatoKeyAwk4eaN7mEITM3F3kF+dBptOVuX2A04qD1fUb/sE7Q6xxh0DsjLTsLsanJaOMfWOdrbgz47ouImqUVOzZjyuIFSkM+ahw2HzsIABjVo7edV0JF6TRazBx3F54eMwEju/VCiI9flYIHQGEfhCMXz0EIURfLJGoW5B4ILGGg5s5Z5witgwZA5coYjl+5hJz8PHi6uKF9YAsAgL+7JQshJpllDDIGEIioWfr9yAFcS4jHP1c4Nq6xiEpKwD9XLkMlSRjZjQGEpqZraGto1GrEpqbgRlKivZdD1GjJYxzZaJaaO0mS4OlqCaQlVaKMYf85S/lCv7BwJcvR39MSQIhNZSNFGQMIRNTsGE0mxKelAgAzEBqRLUcPAbB8U+1jcLfvYqjWOWl1SsMqjnMkqp58oxGZ1lptT/ZAICrsg1BBBoIQAnvPWsY39g/rpJweIGcgsJGiggEEImp24lJTYLamSKdlZ9l5NVQZZrNZKV+4rWcfO6+G6kpnawDhQkyUnVdC1DilstEskQ1PF0sAISmj/AyE64nxuJGcCI1ajd5t2yun+3t4AQBikpmBIGMAwcpoNOKNN95Aq1at4OTkhNatW+M///kPzGazso0QAvPmzUNgYCCcnJwwZMgQnDp1ymY/eXl5ePbZZ+Ht7Q1nZ2fccccdiIriGyGihqRoFDmNGQiNwrHIi4hPS4WLoyMGhnex93KojrQJsDSouhQbbeeVEDUsWbm5+Oz3n3EtIa7c7VIzC/sfSJJUH0sjatCUUY4VlDDss5YvdG/VFnqdo3K6PImBJQyFGECwevfdd/H555/j448/xpkzZ7Bw4UK89957WLJkibLNwoULsWjRInz88cc4dOgQ/P39MXLkSGQUSYmZOXMm1q9fj++//x579uxBZmYmxo4dC5PJZI+rRUSliEkpfBFgCUPj8PtRS/bBsK49odNo7LwaqittrR2uL8fGwFQkgE/U3P18cA++3/Mnvt7+W7nbJbP/AZGNypYwnL1xDQDQvXVbm9P9PQpLGNjg14IBBKt9+/Zh/PjxuP322xEaGoq7774bo0aNwuHDhwFYsg8WL16M119/HRMnTkTnzp3xzTffIDs7G9999x0AIC0tDUuXLsUHH3yAESNGoEePHli1ahVOnDiB7du32/PqEVERRTMQGEBo+LJyc7H71HEALF9o6oK8fKDTaJBbkI/oZDZSJJJdio0BAFyMuVHudvJrGvsfEFnIoxwrKmG4Gm/J7mnlG2BzupyBkJ2Xh4yc7DpYYePDAILVoEGD8Mcff+D8eUvjpuPHj2PPnj0YM2YMACAyMhKxsbEYNWqUchmdTofBgwdj7969AIAjR46goKDAZpvAwEB07txZ2aa4vLw8pKen2/wQUd2yDSCwB0JDt/NkBPIKCtDSxxfhLULsvRyqQ2qVCq39LG/eLsawjIFIdiXOEkCITk5CTn5emdulWAMI7s7MQCACKlfCYDSZlPKgVn7+NufpNFqlj0LRDNbmjAEEq1deeQX3338/OnToAI1Ggx49emDmzJm4//77AQCxsbEAAD8/P5vL+fn5KefFxsZCq9XCw8OjzG2Ke+edd2AwGJSf4ODg2r5qRFRMbNEShmxmIDR0cvnCbT37sKa3GWjjHwQAuBRb/jetRM2FyWzGtcR4AJaM2Ctxpb+nBIr0QGAGAhGAwgwEubynNNHJiSgwmaDTaOBvnbpQlL/1sx0nMVgwgGC1du1arFq1Ct999x2OHj2Kb775Bu+//z6++eYbm+2Kv3kVQlT4hra8bV577TWkpaUpP9evX6/ZFSGiCsUk2zZRZE1bwxWVlIATVy9DJUkY2a23vZdD9aCttZEiMxCILGKSk5BvNCq/l9dkVOmBwAwEIgCFPRBSMjNsmuMXdcVavhDi4weVquTH4wDrJIZYZiAAABzsvYCG4qWXXsKrr76K++67DwDQpUsXXL16Fe+88w6mTp0Kf39LOktsbCwCAgprY+Lj45WsBH9/f+Tn5yMlJcUmCyE+Ph4DBgwo9bg6nQ46na6urhYRFZOTn6ekeAKWmdk5+Xk2HXepdvxz5TICPDzhY3Cv9j62HD0EAOjdNqxG+6HGo7W/PImBGQhEABAZH2Pz++W4mDK2ZA8EouI8rME0o8mE9JzsUoNrV+ItWT2hvv4lzgOKNlJkAAFgAEGRnZ1dIuKkVquVSFWrVq3g7++Pbdu2oUePHgCA/Px87Nq1C++++y4AoFevXtBoNNi2bRsmTZoEAIiJicHJkyexcOHCerw2RFQWOXrs4uiIfKMJ+cYCpGZlMoBQy/46/Q/eWL0Mep0Ob9wzBQPDO1d5H2azGZuPFZYv1KZcmLEbWXCGCkHQIAAO0NViUp6AQApMiIYRMShABgon8UiQoALgBQcEwAGB0MCpjGNnw4w4GBGPAsTDCC1UCIQDAqCBJ9RQoWR2mxkCiTAhBgWIQQEyYYYWEjSQoIUEHVTwgBreUMMTDtCUsg8AKIBAHAoQAyPiYIQWEgKhQRAc4A41pHIulwYTkmFCJkzIg1B+jBAwQA0fqOFj3Y8KEswQyIFADszwCLAE5ePTUpGenQU3vXMVb32ipkUuWdBpNMgrKCg3AyElkz0QiIrSODjAoHdGWnYWkjMzSn1syEG64v0PZMxAsMUAgtW4cePw9ttvo2XLlujUqROOHTuGRYsWYfr06QAspQszZ87EggUL0K5dO7Rr1w4LFiyAXq/H5MmTAQAGgwEzZszAiy++CC8vL3h6emLWrFno0qULRowYYc+rR0RWcvTY38ML6dlZiE9LRWpWJgI9ve28sqZDCIEVO7YAsHQt/veqr/Hw8Fvx0JBRpaYGluVY5EXEp6XCxdEJA8O71Ooa9yILe1DYQFMClA+0ACCs/5WLW4RyWtH/i1JOA8wAEmFEHipfGuMBNVyhggmAEQImCORCIBNljzLUQoKX9QO4vBIzgCQYUVDJ40oA3KGGM1Q21ysfAskwlXl0J0jwhgNUKLxtBIB0mJABc6WvuYP1euQUuS2hA3pOvRf//PAzLsVGo0frdpXcG1HjcCU+Fn+dPoH7Bg2FxqHit+KR1m9HB3TohD9PROBybHSZ5bGpWeyBQFScp4urJYCQka406i1KnsAQ6lvyPKBwEgN7IFgwgGC1ZMkSzJ49G0899RTi4+MRGBiIxx9/HHPmzFG2efnll5GTk4OnnnoKKSkp6Nu3L7Zu3QpX18In6Q8//BAODg6YNGkScnJyMHz4cKxYsQJqtdoeV4uIipGf/AM8vKCSJGsAgZMYatO+c6dxMeYGnLQ6DO/aE78e3oflf2zGhegb+PfdD8DZsXLZHnLzxOFde0Kn0dTqGs/B0sU8CBpkwIR0mBEPI+JhrOCSlecAwNeaYeBh/cZe/phsBBCPAkTDiBSYlJ/SuEMFX2jgBwfkwmzNCChAPgRiylivFhL8rZkK7lCjwBoUyIdALsxIhgmJMCLXmilR1rGdoVL2kwszolGAOBiRA4Hr5YQptJDgATXcoIIOKuggQQcJakhIgQkJMCIRRhhhCZjIHCEhHwKu7Vuh1zMP45/rKehRqVubqHEoMBrx2sqvEJ2chAAPT4zo1qvCy1y1BhAGd+qOXSePIz0nG0kZ6fB2M9hsJ4RQSvQ8mIFApPB0dUNkfGypjRSLTmAI9fUrcT5QWMIQm5pcqf53TR0DCFaurq5YvHgxFi9eXOY2kiRh3rx5mDdvXpnbODo6YsmSJViyZEntL5KIaqwwgOCJvIJ8AIU1o1RzQgis3LkVADCh70A8cesd6NQyFIt+/gF7zpzA01/+D188+Tx0Gm25+8nKzcXuU8cB1H75QjpMiIEREoAH4A4XqJEBE26gAFkwK4n5kvW/kvJv2/8XPd/2NEtGgQ8coC4jzb+oHOsH81wIqAE4WD9oyxkGjqWUN5ggkAQjkq0f/CXrSiTrscsqbyhKQCALZiTChFxrroF8CTUk+MIBrlCVKFUwQiDeGvgofpu4QAVPOECvrKZsJgikwgQjBJyhghNUUENCNArwdfYNOLobcMnghj+RicFwrvD6EDUGvx7eh2hrI9/Y1IrToYtOYAgLaoEW3j64lhCPS7HRJQIImbk5MJosj0t3ZiAQKeRJDEkZJUc5yhMYHDXaUicwAICfwQOSJCGvoAApWZnNvscIAwhE1KzEJFvesAV4eCnf1KRl2zcD4Up8LOatWYH7bh6GW2v5w3J9O3LpPE5fvwqdRoNJg4YCAMb06otWvv545dsvERkXgyOXLmBAh07l7mfnyQjkFRQgxMcPHVq0rNU1ni+SfeBiLVlwhRodYJ9MMSeo0AZVa6Zr+YCvgS+qn5khQYIL1MptUFkO1l4IgTU4NmC5Dl6lvA0JhAaDrqbj+5wL8O/ZBX8iE0eRjVBolR/PcnowEAGFBUjC5rTS/132eSX3IVmDe9WRnZeHb//cqvxe2oeZ4qKTE5FvNCrj5dr4B+JaQjwux8Wgb/twm21TrN+uujg6QluJ0ghq3IwQSIcJLlBB20QG6xmtwXG5fE5+pOkgwRVqOFTzsedl/cCfXMpjTmmg2CIYSSoznGEp0yv6GqNxcIC3mwEp+bm4nJrEAIK9F0CN07dIRob1mzoJUL6jsvy78JswFQq/GVOV8ntplwdgk25bYH0bUPxbvuLfDsoNwuRmYWprunDR+tzitcu2PwJmWJ68CiCU1NribzIkWN5AayDBwfpvSdlvSWWdZrQ2FbNcTzOMxa6bfJuUdZsV/cbR9jaxVfQ6yT9mlKznLv5v+ZtQ+bqqil2m6G0on2Yqcgz59lMVuy6qIveF0v6thoSb4Yxw1E1Tw9giGQjRKYkA7J+BsGrXdkTGx2L1ru2NJoDwy6F9cHZ0xNDO3W1S+eTsg3E39bd5gQ0PDsFN7Tpg+/EjiIyLqTCAIJcv3NqzT62nCsrlC2FV/NBO9SfMNxDnFi1DxuWr6HzXOKRJZhxHLo4jF4DlzWRpb5erck+pbACiavus3e1qvs/KnypK/LfiD9+2p9XNB/bKXa7019q6MgquGISqN/f8v727bFKoKxNAkD/cyOPlWvsF4s8TEaU2UpSD4u7OzfvDTVORBhPyizyyLD1uTLiOfEShANEoUIrYnCDBDWoYoIaj8t7K8n8HSHCBCq5QWYPGKqhh+x4439pzJ9Paxybb2sum6PtNcynvJQ1Qwx1qeFiPLWDJqsu2/pisa3OyZpk5QVL69sjHToMJUSjAdWvj39IL6gqz3AzW8jgXa/8eF6jgDJX1vX/h9ZbXkgMBERaCEN0gxAf64RekwQjLZ41smHG9lTsGzX0Raq0GS2B5X6iBBANUcLNep3SYEP7CI5AcHLARwGkkYwhc0BLlZ1M2VQwgULUkwoTUMh/iRIUsUeSqvc3bjAx0gK7Wv2EUQihNFAM8veAeZ6kRLSuAsAFpSIMJk+FRZqf6mkrLzsKukxEAgGuJ8biRlIggr4bd0DEuNQXvb1gLAPir6z+YNf5eODs64viVS4iIvASNWo17Bw0rcTm5u3FkOSPIACAqKQEnrl6GSpIwqnvvWl17AQQuM4DQ4AV4eMJJq0P0sZP4zy1jIfl64CryccX6xrkqDSrLVp8fOakp2Yss9Ie+UiVKsrTsLKz5awcA4JZOXbH71D+lfhtanDyBQR4v18Y65jSytABCptxAkf0PGrtjyMZ6VHz/UAMwAdYpNpaJOY2do/WLK5kcCDAByIAZGeU0Fy5Ta3+EtvaHAHAIObbn6XVKHp4OEvKsAZJEmJBYdIKSnNUjBC5K+biIZLSGFkPggtBmFkhgAIGq5W4YbL7JFjb/towRK/x34bfVpW1f/HwANpkERb/9Lt4RvWjncfkbfTl7wQxR4ht6oOxv7uXT5MwCOYuh+Ldc8rGKZioUV9pbiuI11A5FMiZ01m/6i99mZd2mRa+/KLZNyWPLt6PldpXrq0tbU9F/mwDr9SuMNBe/vVDsNHWRYxVmgVjWZbZer/L+bQLwA1KRYo1GB9fyE3JGTjay8izfYAZ4eMJdb3mTlVZKAOEGCnDU+iJzCrnoDqdaXYts67FD/9/efYc3dZ5tAL+PZEnee4MNGMzeI2wIBBJICNmE7NmkmU2TfBltmtAkzWqz0zZNmk0J2XtCBhvCXmYZDBjjgfe2bOn5/pDOseQ9ZGv4/l2Xr2DpSH7vYHSOHr3v88JcV/9btPFgGi6aPKNLfpar5JUUaX/+edd2HMw6gSWLr8F79qm588dORGxYeKPH9bN3N26tgPDDts0AgAmpgxut8e2sDJhRCyAUOsTxFOixdDod+scnYs/xDBzLzsKc2HgMsBd8aiFNFrCbLwc0fU97ygfedqzt+MaPaO056s8JzueItvxZcbilLY9r/T6ljcc192elTce1/BzOfxIIXkA+ymHFYZgxsB1FyGWrVqKiphoDEnrh4ikzsXrvLuSXtv4GUd2BQS3Aqh3kj57KRZ3FAj+HJt3qFo7cgcG7CQRrUQkA9uaz9b/PIdChNwxIghFJMCAKetTAtnVuCawotc9acLzGss0usNhnGNi+1NcC9frND4p9hkL9J/vqtbd6/am3X0Ma7dd5AFACK4rtjXiLYYEOQKB9tkGg/fhq+yf9lbCiyqHfjpop0J7Jlqu+6bAjq/05SmBFCSwohQUV9iwV9i/1WtXicM2qznowWYGft/4Gc1U1zh49AfGhYTBAgT90ePXTD5GRkYGHFlyC6YOGoRa2pSHq/1MdbDMtfli3Bu//8C3mT52BQWedjh2owhGYcQSF2syIcOgRDh2CmlgaGAV9l82u7W68eqIO6alTdqjrDYYJu1CNXah2eQFBnX0QGRwKk8Go7QXc1AyELfaTt/rnriggiAi+2rwBgO3TpaN5Odh4wPMLCIVltk+54iMiYbVacaLgFG559XnUWizQ63S4fMYZTT4uJd524XusiQtfldVqxffb65cvuNpBh9kHXEPv2dQCwuGck06d6g1QEMPLF3ILBSPgj42oxA5UtbmAkFdSjE83rgEA3HTmAsTYC6MFZaWtdnTX1mfbC7Bx4REINJlQWVOD4/l5TlvSqVs4NrXPPXmP46jFKdTBAAX3IKbJRrqO/O1vhJveP8A36FDfs6dXR/rv6IA9h05i9d5dKDObcMmc+QBsOzCk79iFWosFA2JsRToDbP15GvboSQ4IhlgsyDt5EvcjDDMRhDWowHZUaYWZrBZ2JxoKk88UEHyj4wYR+YyR9jfqe1ANi4unGGs7METauuzWFxCcmyhWw4rd9rXWgO1k3nB7v+yiAvzruy9wzmMP4o7XX4JI+8e6+1gGjp3Khb/BiPsuWAwA2JGRjipzTbufqzsVlts+NRuY2Btv3P5/mDJ4GGrtnb/njhqHhMioJh8XFxaBAKMJtRYLThScavKY7RnpyCspRrB/AKYOHu7ScQsEB+x/r+355JDcQ52qnZ6d5eaRENUbYz9H7UO19mlqa97+6XuY6+owul9/nJY6GFH2jvDmulqUV1c1+7g6iwWZ9h0Y1O3ldDod+tmLBkcaLGNIz7Z9HxUc2o5E5GnUDzBGwL/V4gG1nXpNsX7/Xu02xx0Y4sIjWny8ukODei0ZAT8sRBjuRyx+jygsRjjmIQSTEYhR8MfoBl/9fOjDV5bwicij9IcRgVBQASsyYNamLbuC1v8gwvYGNyzI1gSr4QyEXaiGGYIY6BEFP+xHDbaiEvMRij3HMvDh+l+xZu8uWO1Fg11Hj+DYqVxtjWpbfbV5PQDgjJFjMTSpD+IjIpFTVIhthw9h6hDXvnl2JbUJWGRwKEIDg/DElTfi041rsP1IOm6ce06zj7Nd+MYjLfMYMnJzmvz/pTZPPGPkWJgMnevy31Ae6lACKwwAUlhA8Hj9E2wFhKaaxRG5SwIMiIMfclGHPajGBAS2eHxheRm+27YJAPC7MxdAURSYDEYE+/ujvLoaBWWlCAlo+jmyiwpgrqtrtL1c/7hE7D1+1FZAsM/OySrIx/r9ewAAM4aPckVUcoNKWLHXXuhu7XeL2mfSoKHQKQoOZZ9AXnERYsMjGjUpbYl67ZhbXASr1aod7w8dEqHr9M5E3oRlLSLyKHooGG7/hGdXw0Y3nZRdWL8DA1A/A6HKXIOaWtu0M4Fgs736PwGBGG8/ge9AFb7Zvgm3vfYiVu3ZCasIxvUfqH1KuvnQ/naNpbSyAr/amyeeO2EyFEXB5IFDAQAbD6R1ImXXU5cwqI26FEXBRZNn4PErrkdME70PHLXUB8FcV4c1e3cBAOaNneDCEduouy/0g6nLmmKS66TEJUJRFBSUlbp9pxQiR+qStu1tOEcdy8uBVQS9oqIxPLmfdru6L31LjRQzcpt+c6MuBzvi8Dr60bpfYRXBxIFDnJY1kHfZjirUAUiAHxL5Oa9LhQcFY5j93+A6+ywE9d9Y37jWPwCKDg2DXqdDncWCfPu/29ziIqzasxO5xUWtPNq3sIBARB5npH2NWBpqUOvCZQzaEgZ7FTnYPwB6+0WZ2kgxE7XIRR38AIxCAAbAiDDoUAXBb9UlAIDTUgfjzTvuw3PX34q59l0CtqQfbNdYftyxBea6OgyIT8Tg3skAbNVxwNZIsSNLIrpLkcMMhOZUwIoNqMAWVCIHtVrLpqYufFX7ThxDda0ZkcEhGNK7j8vHze0bvUugyYRE+3IYLmMgTzLKPrH8hH2tektyip1nvqmiQmx9EPJbKCBon47GOq9uT4l3np1TXFGOb+2zHBZPm9XGFORpBIKt9g8wxiOQfXq6gDq7U52tc/SU8y4nLfHT6xEbZlvm8NwXH+Ly5x7Hor//FQ+//xb++sE7XTRiz8TSFhF5nCQYEA49imHBAdRguIuaztQXEGwzEBRFQVhgMArLbZ9wxoZHOKw9DECAvcY6FoH4BeWoSooFAFw0eYY282DCgEF4FbbeBea6Ohj9Wn9ZdWyeuGDCFK2B1piUATD6GZBXUowjudnaz/A0ag+EyCY6fVfAinWowG+ohNmh+GOEgl4wQBnaF32rp6PIz4DfUAkjFG2P6C05J+AXGIARAwcjX7Fo3ZVrYUW8fdqwroMXVBWw4oS9uRH7H3iPAfG9kFWQj8M5JzF+wCB3D4cIABAMPQbAhIOowQ5UYS6a3/Ugu1AtIEQ63R5tn4FQ0KCAIBBUQ1AOKzKkBjEjBiNszFCsQBkqYIUZgsqkMIy8/jLojQa8Ys1DiaUcQ2+4DP4GA7bGRWE7CprZccq2s5QBCmLhhwT4IR4GhELHN6se4CjMyIcFRijaBynkWlMHD8Or33+JbUcOoaK6utE2qa1JjIxCdlEBNthniuoUBVYR7D9xHFXmGgQYe8b1BQsIRORxFHun6zWowC5UuaSAYLVakVPU+JOg8KAgWwGhshyVsGKPfe3heIddF8YiAL9KOfx7xyMgOtLpjX1KXAIigoJRVFGOvcczMCYltdWx7DmegaN5OfA3GDF3dH13eZPBiLEpqdh4MA2bDqZ5bAGh2FyNqMEDUBQfju2ogg626WwnUYfNDoWDBPghADqcQC3MEGTADISb0Gf2VADA1w33uJ40CFMn2d4kvoz8Rj/XBAXJMKAPjPCDgkJYUIA6FMKCKlgRbu9ZEQW9/cvWRTkQCtJRAwEQDz+ENbG9Enmm/vGJWLV3J2cgkMcZgwCtgHAGgpstbqozEOIjImGxFwZKYEFgal/0DtbjaO8ILEcRSmDVttrTNimdPQFDMQF5APLg0OxXD0T0t83SyoMVCA1EaKhtuV1mC13gmxMIBaHQa938/e3b71lg2xJP3RYvBHpEQo8I+38j4dfly8FOoQ6H7K/ffrBtN1j/Zfve4LS9YP0W2fomxiYQVGrbHlq0/9fqkWqBxfF5TPb/L35dnHWLfUnMSPjDxEniXSI5Jg69o2JwouAUNh5M05qU9mtjAeFS+wyflPgEjE0ZiFF9++OqF55AQVkpDp3Mwsi+KV02dk/CAgIReaRR9gLCIdSgClZtNkBHFZSVatsMOq7TV/sglFRUYId97WE8/NDboRlOGPRIrLEiy1+HPpPGI9q+BRdgaww4fsAgrNi5FVvSD7ZaQLBarVi+5mcAwOyRYxDs77w95KRBQ7HxYBo2HEjD5TPmdCpzR1ghqIGgzmEXeYFtZ4p0mHFQajDgtmug89NjM4DNKGn0HInww+kI1rZKtEJwCnXIRC0KpA6fb90Ii07BhCHDYAzwRxWsqBQr8muq4Odvq94HQEEgdAiCDnooOIla1EBwCGYcgrnJseegDjlNTCf2t3/qBnD2gbcZkNALAHCIBQTyMINgQgAUlMGKIw4Nf8tgwQnUotj+BrV0TCpGTxiEYwkJeAy59fs2jElF/zGpqIJtuV5DJlFQXFCAmrJyjEvsg2hTAILsb+4NUPDJ6p+x/9hRJIRF4GRRASKCQ3DP+ZdC0esggP1LHP5se30XAFUQ5KAWOahDPupQCUFlK0sxmqKHralkEgxIhhGJ8IPJXkqxFZZtr72K/c9tpRbzt6OqxW3x2jI+x6ICAJTA2uGlkQbAXmDRacWWAIf/BkCHQPufDVCggwI9bNkNUBBqf2xTymFBGpsndoupQ4bjg7W/4KN1v7Z5BwbVxIFDMHHgEKfbhvROxtp9e7A/6zgLCERE7hTr0Ok6DdUYZz+h1kGQjzpUwIoqCKpgRRWs8IcOCfBDHAzahYIjdQeGmLBw+OnrP4FWCwhFFeXY18Law5CsAqB/DGLGDINFcX7xHD9gEFbu2Y6tOccxH2bUQBACPcKgc/oUwVxXh799/j625mUhrG8Sxs2cjm2odMpROjYVI6MvhSEgAP+05iFcZ5teGgI9gqBDlX2v4XL7p1V6+ydHIdAh1H6MeqFotf+3CoIK+/EVsKLafhFp1f4L1EBQDStqHAoHTVIAnZ8elfmFGBkZB+gU7TmMUDAeARhoLxyodFAQBwPiYAAU4Ludh7D9yCFceFEY5o09DQCQduIobnn1BYQGBePTB/4Kg855loAVglzU4SjMOI5aAIJI+2yDSPghAAqKYEEBLChEHfLt/y2x51UN5bRQrzI0qQ8URUFGbjZyi4vafJFH1NX8oGAEAvAbKrEK5diHamTYp6A7MvZPhhHQSgQ6AKHQwVpRhfT0wwhTdLhg5ASEQY9gh9f67Pw8XPXCa/A3GPHCw09B1+CN59Yqwbr96Siwf3/FORdgmL79bzxr7QVe27nBaj8X2IrIetgaG+thmxlYAguK7K+thbCgGoITqMUJ1GKD/fzZHLWooBYTdNr39X9Wby92mBmgA5ACI4KgQx0EtbBdB9R/wX677ctsP/cBgAWwn18bn9WCoUMY9I3eCFns/08cn6/G/vhaALWwoqyN23c2xQQFYfbrgzDoEQo9wqDHSdTCAqAXDEjoQd383WHqYFsBYd+J4wDatgNDSwb3shUQ9p045qohejwWEIjIY42EP1agHJtQiRzU4QRqkWM/yTZHARADP8TBD0aHaY7H/GuRMm8W4mJi8BGKUQ1BDazA2dMw8axJ2BscBGlh7WHhwcOoiTbBFBaKfyIfOigQ+4VK5ehkzBh7HwDgNRQ6PS7AfrFgtlpRYK2BcvFcnGa/bzUANJzGbwQiBti6BOfCitwmPpnqDuqaWfXPeihIggHR5Wa8/Np/oK+owj/+8lSHnrtfXDy2HznktBPDzqNHAAAjk/s2Kh4AtgvLBPuF1eRmnjeuiYuuWggKUYcCWGCC0qO2WfIFEcEhGNGnH3YdPYI1abtw8ZSZ7h4SkWaMvYBwDLU4Zv+kXAEQZy9uBlsVLPv+G1QXl+LR8y9DUmAIgqGDDgq25x7CVx9+id5RMZg08vRGz300LxdA829uUhyWuAX7B+DscZM6lMHQwddFgaAYFhxHLTJRi+MwIw91zb61FsDh3C0N7mksHn4YjQCMhD+C27nsrM7+xl8tAKhfAtHetLdn6YU6M6/KXpCutv+3yuG/VQ4falTCijo4F/LVwkwNBHmoQ14zP8tx+SR1jWHJfREaEIjSKlvRqy07MLRkcJJtOdF+e0GiJ2ABgYg81ggEYAXKG01ND4CCEOi1KYMB0KEcVmSjFuWw2k/ODaZjxochKX4iAGC3fZogACA0CP6ov4Q5DYFNTjE8kn0SpzbVoN+ZM1HQsIRhP9xaZ0GAFQg1mlBm/3TGdkFRB+gAxWi7SPOzCkJ1ftpURzWDOm1/3c7tWLtjG8YOGIR5U6ejFBaU2S9KAuzT+oPtXxZAu78UFlTC2uATHluTwiCHx/nbP8tSj1Ng+1QkwGFaZnNrPXecSkdVQRGSomPa8DfYNHUrR8edGHZmHAYAjOzbv8PP2xSD4+wH8kozh43CrqNHsHovCwjkWRLhh7EIQDZq0QdG9IMRfWHUltydKDqFZ9ZthslgwNCAMKeZWepSuIZNFFXqDgzNvblxLCCcN3EqAk3duzxLgYII+CECfhhlf9OrLpmw2r9EewPtPOPN6nB7w2OsAIKgQ3Qn3qKoPRJcRT2PdnYpZQ2sKLX3wKj/qv8+DHqMYAGhy/np9Zg0aCh+3LEFQNsbKDZncK8kAMDJwgIUV5RrM1t9GQsIROSxwqHHTAQhA2YkwoDe9q8I6JvsGC0QlNkLCadgcZrmuCn9AI5mn8So3n0wsV8qTFBggg5b9+3Fh7+uxKheffDAwksQ0swnHUdyTqLoyCHcOHoKesfGOr359oeCD1Z8j09W/YRzxk3CHRcsBmDrG3CsohRPf/8Z8ouK4F9nxSMLL8WwxKQWcxtD4vDlwSPYkpWHP0+e26mpda6m7lne0haOrVH3KM+wXyBbrFbsPmYrIIxycQGBvN/0oSPx8jefYdexIygsL2ty9w8id1Cg4HyENXu/2rg3PjxS221HFWXfhaHKXIPKmppGBYCMPFuBtW+DLRxVydGxiAoJRbXZjIsmTe9wBldSd33QOdxC9UzQIQY6xPDtl9tNHTJcKyC0tYFic0ICApEUHYPM/FM4kJXZqEeCL+JvMBF5tDNa2B6rIcXeDyAUejTc8O27XzfiSMZhXH7JlZiMIO32UxY9yk5ko0Tv32zxoLC8DEUV5VAUBRPD4+APY6NjTkvuj0/kJ2xJPwARgaIoMFqB1z58H4fTDyAxMgr/uPYW9IqKbjXHyD4p8DcYUVxRjhMFp5Ac0/QFpDsUlpcBACJDOv4mrp+9gHCqpBhlVZXIKSpEeXU1Ak0mrWkekSouPAKDeyVjf9ZxrE3bjYWnTXH3kIjaRO29E99gC0cACDT5I8BoRJXZjMKyUgSanGd1HbMvYehrn7HVkJ9ej//ccjcsViuiQpsvYhBRY6elDobRz4BaS51Ldrwa3LsPMvNPYd+JYz2igOA5H2sREXWh7Ca2cATqmygWV5Q3+9jDOScBAL2jouFvbFw8AIBR/frDoNcjt7gIJwpOAQA+WPcrtqQfgMlgwJNX/a5NxQPAdmHY275EIDP/VJse013UAkJEJz4FDvL315rhZeTmYOdR2+yD4cn9nBpcEqlmDBsJAFiTtsvNIyFqu6a2DnYUaZ+FkF/mvJtNncWC46dsBYSWPh2NCQtvsjhBRC0LNPnj6WtuwqOXXYdYFzTnVZcx9JQ+CCwgEJHPq7NYcKqkGACQ0OBiKyzQNhuhuKKi4cM0R+wFhJQWqtQBRhOG97Ft37Ml/QD2nTiO13/8GgBwxzkXtnuNndpjQC1GeApXLGEA6vsgZORmawWE0f0GdG5w5LPUAsLWwwdRVtVyt3ciT5FdZNsjobk3+eoyhoZ9EE4W5rd7ezkiap+xKanauaWzhvS2NVLcd+I4RDq2Tag3YQGBiHxebnERrCIw+hm0T3xU6gyEsqpK1Fma3t8h3b4Hff+4lqe5jR8wEACweu8uPPbBu7BYrZg5fBQWjG9/d+ykqFgAwAkPm4FQVG6bqdHZdej97I3BjuRmaw0U2f+AmpMUHYt+cQmwWK1Yv3+vu4dD1CY5xeoMhKYLCNEhTTdSVBsodnZ7OSLqHgMSekGv06G4ohy5xUXuHk6X46sSEfk89VP8xMioRo2sQgODtNtKKpuehaDOQGhtndyEAYMBANuOHEJWYT7iwiPwf+df2uhntoW2hMHTZiCUqzMQOldAUGdzrEnbhZLKCpgMBgzq1XJzSerZZgy1fVK0eu9ON4+EqG2yC+ubKDaluRkI6haOnd1ejoi6h8lgwIB4Ww+nfU0sY/C1WQksIBCRzzucY5tBoHb/d6TX6RAaEAig6T4IdRYLjtrXorZWQEhN6KUtidApCh665CqE2J+7vbQlDPnN7RbtHkVaE8XOLmGwXRirF87DkvrC4Me+vtS8mcNHAQB+O3QAlTU1LR7bUz4FIs9VU2vWCq4JkS33QGhYQKjfgYEFBCJvMai32gfhmNPteSXFuO7lZ7A2bbfPFBJYQCAin5eebZ9BkNB0ASAsyPamv6SJAsLx/DzUWSwINJlaXYuq0+kwbcgIAMA1s8/CyL4pHR5z7yhbAeFUaUmrb5a6i9VqdUkTRQBIjomDzmFmBpcvUGtS4hLQKzIa5rpabDq4r9njLFYr7nj9JVzz4pON3pgRdZccewEr0GTSitQNaTMQSp2bKB7NtS1h6Oz2ckTUfRz7IDj613efIyM3G++v+dkdw+oSLCAQkc9Td1FQp5c1pO3E0MQSBvWxKXGJbVqLeseCC/Dq7/+Ia2ad1dHhArAtrVBnM2R5yDKG0qpKWKxWAECE/f9ZR5kMBq1IAth2sSBqiaIoWsOr1WnNL2PYdvggjp/KQ5XZjL3Hj3bT6IicZRfaGyiGRza7jC06tHEPhDqLBZn2mWecgUDkPYb0TgYAHDyZqV0rbUk/gF9274BOUXDXuRd1aEmrJ2IBgYh8Wk1trXYx1twSBLWA0NQMhPodGJrei7uhAKMJQ5L6uOQkkRRta6ToKX0Q1OULoQGBLllu0M/+/9RPr8fQpD6dfj7yfWoBYcP+NNTU1jZ5zA/bN2t/VhugEnW3+gaKTS9fAJrugcAdGIi8U3JMHAKMJlSZzTh2Khfmujq88NXHAIALJk1HamJvN4/QdVhAICKfdjQvBxarFWGBQdqnPQ2FB9pnIDRRQDjcxgaKXaG31gfBMwoIhS7qf6BKsW/lOKR3MkwGo0uek3zb4F7JiAkLR5W5Buv27W50f0V1NVan7dK+P5R9ojuHR6TJLrI3UGxmBwagvoBQXl2FmlozAIcdGGK5AwORN9HrdFoz6H2Zx/Dhul+QmX8KkcGhuH7OfDePzrX4ykREPk3bgjE+sdlZAdoShorGSxiOtLL8oSupjRQzPaSRolZA6GT/A9XZ4yZiXP+BnV7uQT2HTqfDOeMmAgCWrloJq32aqOrXPTtQU1sLo58BAGcgkPvkFLW8hSMABPsHwGifzVVYZnt9zbD3P+DyBSLvM9i+jGHV3p1495cfAQC3zl+IYP8Adw7L5VhAICKfps0gaKaBIlDfRLHhDISSygqcsje36tfEDg5dLSnKtoThhIcsYSi0T7PtbANFVWx4BJ67/lZMSB3skuejnuHiKTMRaDLhcM5JrNu/x+k+dfnCJVNmALB1v25ue1airpRdZO+B0EIBQVEUbUZXfpntXKPOQGABgcj7qH0QNh3ch5raWozu1x9zRo1z86hcjwUEIvJp6haOLc0gqJ+B4FxAUGcfJEREIcjfv4tG2Dx1CcPxU3kesfVP/RIG1xQQiDoiJCAQF06yFQje/eVH7d9GdmEBdh49DEVRcP6k6Ui0b53HWQjkDvUzEJrvgQAA0SHOjRTVAgJ3YCDyPupODIBtScNd517sM40THbGAQEQ+S0Tqt3BsoYdBc00U6/sfdP/sAwDoHRUNwLY+1hM+RS3SljC4pgcCUUddMnUmAoxGHDx5AhsPpAGon30wNiUVsWHhSE2wNaw6dJJ9EKh7VdZUa6/ZLc1AAJwbKTrtwBDHAgKRt4kNC9eWeV4yZaZbZq92BxYQiMhn5ZUUo7y6CnqdDn1a+DSn+RkI2QCAFDc0UAQAk0MXbk9opKguYXBVDwSijgoPCsZ5E6cBAN755QdYrVb8sMNWQJg39jQAwIAE26wjzkCg7qY2UAwJCGx17XOkQwEhy3EHhjDuwEDkbRRFwR3nXICFE6bgmtnz3D2cLsMCAhH5LPWNQ5+YOK1RVVPCAm09EEqrKp2asrlzBwZV7yh7I8UC9zdSLOISBvIgl06bBZPBgH0njuOtn77HycICBBhNmD50BAAg1V5AOMQCAnUzdflCfHjLsw8A5xkIx7gDA5HXmz1yLO45fxECTSZ3D6XL8NWJiHxWWwsAYfYZCBarFWXVVQBse3Gnt6F/QldLirY1Usz0hBkI9gJCRBALCOR+kcEhWDhhCgDg3V9t3a5nDh+FAKPtok2dgXD8VK62RR5Rd1AbKCZEtqOAUFqi7cDA/gdE5MlYQCAin6UWAPontFwAMPr5Ichka5KoLmP49/dfos5iwbj+A9HL3ovAHdStHN29hMFitWr/b9Qpt0Tutnj6bKfZRfPGTND+HB0ahvCgYFhFtOVIRN0hp7htDRQBIDq0fgbCUW0GAgsIROS5WEAgIp912N5AcUAbliA49kHYfuQQVu/dBZ2i4Lazz3drB11tCUO+e5cwlFRWwCoCnaJo/6+I3C06NAznjJsEAIgPj8Covv21+xRF0WYhcBkDdafswvYsYajfhSGDOzAQkRdoflEwEZEXqzLXIKswH0DrMxAAICwoCFmF+SgqL8N7v9imQ587YYpb+x8A9UsYThTkw2q1um1drNpAMSwwCHquzSUPcu0Z81BprsEZI8c2+veRmtALW9IP4FA2d2Kg7pOjLmFoZQcGoH4JQ0llBSpqqgFwBwYi8mwsIBCRT8rIzYaIIDI4pE27Bqifqi9f8zPSc04i2D8A18+Z39XDbFVceAT89HqY62pxqrRE25Whu9U3UOTyBfIs4UHB+NPFVzR5H3diIHdQlzC0toUjAIQGBEKv08FitaLOYkGAkTswEJFn48dIROST0rPbt4OCWkDYd+I4AOC6M+Z5xFR9P70eiZG2dbQdWcZQXl2FOoul0+MoKLfNQIjgFo7kRVITewOwbclqcdhhhairlFVVorzaNpOgLQUEnU7nVJhNjuEODETk2fgKRUQ+SduBoQ3LFwA4FQuSY2Jxvn2PeU+QFNWxnRgO55zExU8/gsc/eq/TYygss89AYAGBvEjvqBj4G4yorjXjRIH7dzIh35dt38IxPChY2xGkNdEOBQT2PyAiT8cCAhH5pMPaFoztm4EAALfNPx9+en2XjKsjtJ0YCto3A2HZ6p9QZTZj9d5dqKyp6dQYuISBvJFep0NKfAIALmOg7tGe/geqKIfX1b5xCS4fExGRK7GAQEQ+x2q1tnsGgrpWetqQ4Zg0aGiXja0jeke3fwZCXnERftm9HYBtC8adGemdGkNhOWcgkHfSdmI4yUaK1PXUGQhtWb6gcizM9o2Jc/mYiIhciU0Uicjn5BQXorKmBga9Hsn2N9+tGZuSirfvvF/b9cCTaDMQ2lFA+GTjGqc131sOH8DkwcM6PIYiFhDIS6Um2PogcAYCdYdjebkAgMSIqDY/xnkGApcwEJFn4wwEu759+0JRlEZft912GwBARLBkyRIkJiYiICAAp59+Ovbu3ev0HDU1NbjjjjsQHR2NoKAgLFy4ECdO8BMPou6mNlDsG5vQ5qUIiqKgX1zbj+9OSVG2AkJ2UQFq6+paPb6yphpfb14PAJg3ZgIAYEv6wU6NQd3GkU0UydukqjMQsrMgIm4eDfkyi9WKDQds14ZjUlLb/LjokDAA4A4MROQVWECw27x5M7Kzs7WvFStWAAAuueQSAMAzzzyD5557Dq+88go2b96M+Ph4zJ07F2X2xmIAcNddd+Gzzz7D8uXLsXbtWpSXl2PBggWwuKADOhG1ndr/oH9C2/ofeLrIkFAEGE2wiuCkfX1tS77dugnl1dVIjo7FLfPPg6IoOJqXg1MlxR0eQyF7IJCXSolPgE5RUFxRjgJ7IYyoK6RlHkVheRmC/f0xut+ANj+ut32W2cDEJO7AQEQej69SdjExMYiPj9e+vv76a/Tv3x8zZ86EiOCFF17An//8Z1x44YUYPnw43nnnHVRWVmLZsmUAgJKSErzxxht49tlnMWfOHIwZMwZLly7F7t27sXLlSjenI/IMeSXFqDJ3rplfa347tA8frvsVADAoMalLf1Z3URSlzcsYLFYrPlq/CgBwydSZCA8KxkD7VnZbj3RsFkKdxYKSygoAXMJA3sdkMCLZvq6cfRCoK61J2w0AmDxoGAx+bV8lPKpvfzyy+Bo8cNFlXTU0IiKXYQGhCWazGUuXLsX1118PRVGQkZGBnJwcnHnmmdoxJpMJM2fOxPr1tmnCW7duRW1trdMxiYmJGD58uHZMU2pqalBaWur0ReSLcouLcPmzj+G2/7wIcxum4XfE15s34IF3X0dlTQ1G9xuA+eNO65Kf4w7qJ1THTuW2eNyatF3IKSpEWGAQzhxtW74wfsAgAB1fxqD2P9DrdAgNCOzQcxC5k+MyBqKuICJYk7YLADB96Mh2PVZRFMweMQaJkdFdMTQiIpdiAaEJn3/+OYqLi3HttdcCAHJycgAAcXHOnXHj4uK0+3JycmA0GhEREdHsMU158sknERYWpn0lJfnGJ6ZEDR3IykStxYLDOSexbFXbZ+UUlJZgX+Yx1LWwFMhqteL1H7/B3z//ABarFXNHj8ffr/19m/fg9gbqbIoft2+G1aE5YkPq7IvzJk6Fv9EIoL6AsDX9YIfWgKvLFyKCQji9lryS2pjuREHbG5EStceR3GycLCyA0c+A0wYOdvdwiIi6DHdhaMIbb7yB+fPnIzHRef20oihO34tIo9saau2YBx98EHfffbf2fWlpKYsI5JNyiwu1Py9dtQKnjxiNvrEtd5uurKnGTf96DvllJQgwmjCqb3+M7Z+KEX36oaK6GtlFBcguKsS+E8ex/cghAMA1s87CdWfMa/Xfprc5Z/wkvPfrj8jIy8GatN2YOXxUo2P2HM/A3uNHYdDrcf7Eadrtw5P7wWQwoLC8FEdys9E/vn29IdQZCGygSN4qJjQcAJBfWuLegZDPWrPXNvtgwoBBPlW8JiJqiAWEBo4dO4aVK1fi008/1W6Lj7e9ycnJyUFCQoJ2e15enjYrIT4+HmazGUVFRU6zEPLy8jBlypRmf57JZILJxBMN+b7c4iIAtkJcrcWCZ7/4EC/ecHuLn2i/v+Zn5JfZLvirzDXYeDANGw+mNXmsXqfD/11wKeaPnej6wXuAkIBAXDR5Jt755Qe888sPmD50hNP/O6vVijdXfgcAmDt6vNO2YEY/P4zq2x+/HdqPLekH2l1AUBvPRYawgEDeKSbU1uX+VGmxewdCPktbvjBshJtHQkTUtTgXtYG33noLsbGxOOecc7Tb+vXrh/j4eG1nBsDWJ2HVqlVacWDcuHEwGAxOx2RnZ2PPnj0tFhC81cPvv4XrX34G2YWtd4QnAoAcewHh0mmzEGA0YtfRI/h266Zmj88vLcGHa38FADx62XV44/b/w63zz8PEgUMQHhSMvrHxmDxoKC6YNB23zj8Pr992r88WD1SXTJ2JQJMJh3NOYu2+PU73fbpxDbYePgiTwYArZsxp9FhtGcPh9vdBKKqw78DAGQjkpaLtBQTOQKCukF1YgPSck9DrdJgyeLi7h0NE1KU4A8GB1WrFW2+9hWuuuQZ+Dt1zFUXBXXfdhSeeeAKpqalITU3FE088gcDAQFx++eUAgLCwMNxwww245557EBUVhcjISNx7770YMWIE5sxpfDHv7Q5nn8SJglPILSlCQmSUu4dDXkBdwjCyTwqiQkLxz28/x7+//xKTBw9z+rRc9ebK71Bda8aIPv0wY9hIKIqCAQm9cOm0Wd09dI9hm4UwA+/9ukKbhaAoCjJys/GfH74CANwy7zyt4aIjtYCwM+MwzHV1MLajQ/jxU3kA6t+EEXmbaPsShsqaGlTWVCPQ5O/eAZFPWW2ffTCyb3+EBQa5eTRERF2LMxAcrFy5EsePH8f111/f6L777rsPd911F2699VaMHz8eWVlZ+PHHHxHiMKX3+eefx/nnn49FixZh6tSpCAwMxFdffQW9Xt+dMbpFtDYdlJ/mUNvkFNkKCPERkbhw0nQMSkxCeXUVXvnms0bHHsnNxnfbbLMTfj9voc/1M+iMS6aejgCjCenZWVi/fy9q6+rw+EdLYa6rw8SBQ3D+xKlNPi4lLgGRwSGorjVj7/GMNv+82ro6rLPPdlCLEETeJtBkQpC9aMDzFrmaun3j9KFcvkBEvo8FBAdnnnkmRAQDBw5sdJ+iKFiyZAmys7NRXV2NVatWYfhw52lq/v7+ePnll1FQUIDKykp89dVXPtsQMYbTQakdKmtqUFpVCQCIC4+An16Pe89fBJ2i4Ofd2/H0p++jvLpKO/7V77+EVQQzh43C8OR+7hq2RwoLDMKFk6cDAN7++Xu8sfJbpGdnISwwCPdfeFmzxRZFUTCuv+21rT3bOW49fBDl1VWIDA7BiD4pnQ9A5CZcxkBdobC8DHvsRdnpQ1hAICLfxwICdUj9hVixewdCXkFdvhDsH4Bg/wAAwMBeSbjprHOhKAq+3boJ1730NLakH8DWwwex6eA+6HU63HTmAncO22Mtmno6AoxGHDx5Au+v+RkA8H8XXNrkUhBH6gyCLekH2vyzft2zAwAwY9go6LmFI3mxaDZSpC6wbt8eiAgG90pGbHhE6w8gIvJyvBqkDokJCwfAqaDUNuoODPENLq4umz4bL954O3pFRiOvpBj3vPVv/HX5OwCA8yZObXItPwHhQcFO2zSePW4ipg8d2erj1BkIB05mIruo9QaodRaL1qzx9Ca2jSTyJpw5R12Buy8QUU/DAgJ1iLYlVkmxewdCXiHHPgMhLjyy0X2j+vbHG3f8Hy6YZJuWX1JZgSCTP66ZdVa3jtHbLJ4+G5HBoegXG487zrmgTY+JCQvHwMTeEBHc+Mrf8e3WTRCRZo/fevggyqoqERkcgpF9+7tq6ERuoTZSzC9hAYFco7auDtvsO9tM4/IFIuohuAsDdQjXklJ7qDMQ4iKant4ZYDThrnMvwoxhI/H+6p+wYPxkhAcFd+cQvU54UDCW3/sQFEXXrh0VHll8Df720VKkZR7D05++j1V7duLe8xdps4ocqcsXpg8dyeUL5PW4hIFcLbuoALUWCwKMRvSJiXP3cIiIugWvCKlD1E9yCspKYbVa3TsY8njaDgxNzEBwNDYlFX+/9veYyenybWIyGNtVPACA3lExePl3d+Lms86FQa/HxoNpuPalp7DxQJrTcXUWi9ZZ/PQRo101ZCK3ieHuQeRimfmnAAC9o2K5WxAR9RgsIFCHRAaHQKcosFitKKood/dwyMOpSxhaKyBQ9/DT63H5jDPw39v/D4N7JaO8uhpLlr+NwzkntWPU5QsRQcEYxeUL5APUWTacOUeucqLAVkBIYr8eIupBWECgDvHT6xERHAKAF2PUOm0JAztUe5S+sfH4581/wLj+A1FlNuOh/72B0soKANx9gXyPuoShqLwMdRaLm0dDvuD4qTwAYMNfIupReFVIHcY+CNQW5ro6FJSVAgDiIzgDwdP46fV4ZPE1iI+IxMnCAvz1g3dRU1uLtVy+QD4mIigYep0OVhEUlpe5ezjkA04U2AoIydGxbh4JEVH3YQGBOiyGDamoDfJKbLMPTAYDwgKD3DwaakpYYBD+dsUN8DcYsSX9AO5751WUcvkC+RidToeokFAAQD7PW+QCWg8EFhCIqAdhAYE6TNsSizMQqAWOyxfYZMpzDUjohfsvugwAsCPjMABg+jDuvkC+hTPnyFUqa6q12XW9o6LdPBoiou7DK0PqsGh2tKY2aOsODOR+s0eMwRUzztC+nzV8tPsGQ9QFYuyFb563qLNO2GcfRAQFIyQg0M2jISLqPu3b/4vIQQw/yaE2UHdgYANF73DD3HNQXl2NKnMNRvUb4O7hELkUZyCQqxzPt/U/SIrh8gUi6llYQKAO64oLsVMlxdh34jimDx3B6e4+Ql3CwAaK3kGv0+Hu8y5x9zCIugRnzpGrqDMQkqJYQCCinoVLGKjD6gsIxS57zhe//hR/WfYmft2z02XPSe6Vq81AYAGBiNyLM+fIVTIL1AaK3MKRiHoWFhCow9S1pOp0Z1dIz84CAGw6mOaS5yP3y1FnIHAJAxG5WVcUvqlnylSXMLCAQEQ9DAsI1GFB/v4IMJoAuObTnDqLRdvyb/uRQ51+PnK/OosFp0qKAXAGAhG5X4zD7kEi4t7BkNcSEYcCApcwEFHPwgICdUqMC9eTniothsVqBWD71Dq7sKDTz0nuVVBWCovVCr3D/utERO6izkCoMptRUVPt5tGQtyosL0NlTQ10ioLESG7hSEQ9CwsI1ClaQyr7p8ydkW3f7k+1jbMQvJ66A0NsWAT0Or7cEJF7+RuNCPYPAMA+CNRxagPF+IhIGP3Yj5yIehZe0VOnxISFA3DNhVjDGQdcxuD91B0YuIUjEXkKV86co55JXb7QO4r9D4io52EBgTrFlVti5dhnICTb1xNuO3KIa1S9XK7975RbOBKRp3DlzDnqmdQdGNj/gIh6IhYQqFNcuSVWdpFtBsIZI8fC6OeHgrJSHLdX+ck7cQcGIvI07Zk5V2exwGrvzUOkyjzFBopE1HOxgECd4sotsdQeCMmxcRiW3A8AlzF4u1x7DwTuwEBEnqJ+5lxxi8cVlJbggif/gkc/fLcbRkXeJLOAWzgSUc/FAgJ1SrTDllidpc5ASIiIwtiUVABspOjt1CaKnIFARJ6irTPnthw+iNKqSqzbtwd1Fkt3DI28QJ3FgpP2nk2cgUBEPRELCNQp6oVYYXmZtgVjR9TUmlFQVgoASIiI1AoIO46kc/qolxIR5BYXA+AMBCLyHG0tfB/IygQAmOvqcLIwv6uHRW52Iv8UFjz+Jzz7+YctHpdbXIQ6iwUmg0G7BiIi6klYQKBOiQgOgV6ng8VqRVF5WYefR10rH2gyISwwCIN7JyPAaERJZQUy8nJcNVzqRkUV5TDX1UJRFMTa1xwTEblbdBtnIKgFBADIyOV5yNd9tmkNyqoq8c3WjSho4XfDcQcGHbcnJqIeiK981Cl6nQ6RwSEAOrcTg7qFY0JEFBRFgZ9ejxF9UgAA2w4f7PxAqdupOzBEh4TCwH2yichDqJ8aF1WUN7s0oc5iwaHsE9r3GbnZ3TI2cg9zXR1+3L4FAGCxWvHDji3NHqsVENj/gIh6KBYQqNNc0UhRbaCY4LDd39j+AwGwD4K3UmeVcPkCEXmSsMAg+On1EBFt6VxDx07loqa2Vvv+CAsIPm3tvt0orarUvv9u26Zmt5HOzLdv4RjF/gdE1DOxgECd5opGijkODRRVY/oNAADszDjMBlZeqH4HBjZQJCLPodPpEB0SCqD5nRjU5QtGPwMAzkDwdd9t3QQAuHDydPgbjDh+Kg97M482eeyJAnsBgTMQiKiHYgGBOq1+S6xOLGGwz0CId5iBkJrYG8H+/qioqcah7KzODZK6XU4Rd2AgIs/UWuFbLSDMGDYSgO1No+OMBPIducVF2Jx+AABw8eSZOH34KADAt/aiQkPH89UtHDkDgYh6JhYQqNPauiVWS7KbmIGg1+kw2j4LYfsR9kHwNiftf6fxDn+nRESeoLVGigeyjgMApgwehtCAQFhFcPxUbreNj7qPulxhdL8B6BUVjfnjJgIAftm9HVXmGqdjq8w1OFVSDIAzEIio52IBgTqtrR2tW6L1QIh0frM5xr6d4/Yj6R1+bnKPE/mc5klEnimmhZlztXV1OJxzEgAwuFcy+sUlAGAfBF9ktVrx3bbfAADnjJ8EABjVtz96RUajsqYGq/budDo+q8C2nWdYYBBCA4O6d7BERB6CBQTqtPoLseIOPb68ugpl9uZF8Q0a7g1N6gMA2sUceYfaujptVgmneRKRp2mp8J2RlwNzXR2C/QOQGBmlFRDYB8H3bM9IR05RIYJM/pgx1LZcRVEUzBt7GoD63giqPcczAHAHBiLq2VhAoE7TeiCUdGwGgrqFY3hQMAJNJqf7+sbGAwAKykq1IgN5vpNFBbCKIMBoQpS9WRkRkadoafcgtf/BoF5JUBQF/eJs56GM3JxuGx91j2+2bAQAnDFqLPyNRu32eWMmQFEU7Mg4jKyCfFisVrz98/d44atPAEDbZpqIqCfi5uzUaWozqipzDSqqqxHk79+uxze1haMq0OSPuPAI5BYXISM3ByP78qTtDTJPqU2mYqAoiptHQ0TkLMZ+3mpqCYPa/2BQryQAQEpcIgAgI48zEHxJWVUl1qTtAgCcM26S032x4RGYMGAQfju0Hx+s/QUnC/O1RovnjJ+E68+Y1+3jJSLyFJyBQJ0WaDIhyGQrGnRkGUNTDRQdqbMQjvLizWtk2re54jRPIvJEjjPnGm4T7DgDAYA2AyG3uAjl1VXdOErqSit2bIW5rg794xO1v2tH8+3LGL74bR02px+Av8GIBy++HPddsBgmg7HR8UREPQULCOQSMWHhADrWSLGlGQgA0M9eQMjI4/RRb5GpbnMVxf4HROR54sIjEBEUDHNdLX7Yvlm73VxXpzVLVN9UhgQEar1+jnIZg89Yu283AGDe2NOanCk3dcgIhAQEAgCSY2Lx6i1/xLwxp3XrGImIPBELCOQSndmJIaeV7f76cv2p1+EODETkyfz0elw+cw4A4N1ffkBtXR0A4EjOSdRZLAgLDHJq6sudGHyLiCA9OwuAbdeFppgMBvztyhtwy7yF+M8t92i/A0REPR0LCOQS0S1sidWa5rZwVPWNtZ20j/LCzWtkagUEzkAgIs903mlTEBkcipziIny3zdZtv2EDRVWKuhMDl9L5hPzSEpRUVkCv02nLJJsyqm9/LJ4+u1GDZyKinowFBHIJdXpnXnFRux4nIg49EJpewtAnJg4AUFRRjuKK8k6MkrpDRXU1CstLAbAHAhF5LpPBiCtPt89C+HUFzHV1jfofqOq3cuRMOF+gzj5Ijo6FyWBw82iIiLwLCwjkEv3jewEAVu7a2q5lDIXlZaiprYWiKIgLi2jymECTCfH24sJR9kHweGr/g8jgEAT7B7h5NEREzVswfjJiQsNwqqQY32zZ0GgHBpW2hCHnJESk28dJrpWecxIA0D+hl5tHQkTkfVhAIJeYOWwkhib1QWVNDV759rM2P06dfRATGgaDX/O7imqNFPnpj1vU1Naipra2TcdyBwYi8hYmgwFXnj4XAPDeryu0Zr2DeiU7Hdc3Ng6KoqCksgJFnAnn9dQZCANYQCAiajcWEMgldDod7jlvEfQ6HX7ZvQObDu5r0+Pqd2Bouv+Bqn4rRxYQusOJglP4fttveP7Lj3HTP5/F/EfvxyXPLGnTEpUT6g4M7H9ARF7g7HGTEBcegYKyUlisVkQGh2jL8lQmgxG9IqMBABnsx+P1DufYCwjxiW4eCRGR92EBwUFWVhauvPJKREVFITAwEKNHj8bWrVu1+0UES5YsQWJiIgICAnD66adj7969Ts9RU1ODO+64A9HR0QgKCsLChQtx4sSJ7o7iFgMSeuGiyTMAAC989TFqas2tPiansOX+Byp1J4ajbGDVpQpKS/D4h+/hiuf+hic/WYbPN63FgZOZsFitKKmswGs/ft3qc7CBIhF5E6OfH646/Uzt+4GJSU1u61ffB4HnIW9WZa7BiYJ8AFzCQETUESwg2BUVFWHq1KkwGAz47rvvkJaWhmeffRbh4eHaMc888wyee+45vPLKK9i8eTPi4+Mxd+5clJWVacfcdddd+Oyzz7B8+XKsXbsW5eXlWLBgASwWixtSdb/rzpiHmLBwnCwswNJfV7Z6fFtnIPSLZQOrrlRnseCDtb/gyheewIqdW6EoCkb0ScGl02bhkcXX4KmrfgdFUbBi51akZR5t8bnUHghJUVzCQETeYf7Y07TzUMP+B6p+9kL2kRwWELzZkZxsiAgig0MRGRzi7uEQEXmd5hed9zBPP/00kpKS8NZbb2m39e3bV/uziOCFF17An//8Z1x44YUAgHfeeQdxcXFYtmwZbr75ZpSUlOCNN97Ae++9hzlzbJ2dly5diqSkJKxcuRJnnXVWt2Zyh0CTP+4850L8ZdmbWLbmJ8wZPU7bRaEpag+E+MiWZyD0iXFYf1pehgie9F3m0MkTePyjpdrykCG9k3HXuRdjcG/nNcBnjZmA77f9hpe/+Qz/uvmuJj+hExFtBgJ7IBCRt/DT6/HnS67Ax+tX47zTpjR5TEqcbbo7t3L0bvX9D7h8gYioIzgDwe7LL7/E+PHjcckllyA2NhZjxozB66+/rt2fkZGBnJwcnHlm/TRHk8mEmTNnYv369QCArVu3ora21umYxMREDB8+XDumoZqaGpSWljp9ebvpQ0dg8qBhqLNY8PyXH7fYsbqtMxD8jUZtmUMG+yC41FOfLMPRvByEBQbhvgsW418339WoeAAAv5t7DgKMRqRlHsNPu7Y1+VyFZaWoMtdApyhItK8XJiLyBiP6pOCvl12LqAb9D1TqDISM3BxYrdbuHBp1QGF5WZPXH+k5bKBIRNQZLCDYHTlyBP/+97+RmpqKH374Ab///e9x55134t133wUA5OTY3rTGxTl/mh4XF6fdl5OTA6PRiIiIiGaPaejJJ59EWFiY9pWU1PTUSW+iKAr+cO6F8NPrsf3IIeTYiwQN1VksyCuxNeVrrYAAODRS5DIGl8ktLkJ6zknoFAVv3nEfzhk/CTpd0y8L0aFhuGKGbWbNf374CtXmxj0u1B0YEiKiYGxhVw0iIm/TOyoGBr0eVeYa5Ja03lCW3KPOYsFTnyzDBU/+BV9v2djofu7AQETUOSwg2FmtVowdOxZPPPEExowZg5tvvhm/+93v8O9//9vpuIbTtkWkyancbT3mwQcfRElJifaVmZnZuSAeIiEiCv3t3Y332ffVbuhUSTEsVisMej2iQ0JbfU5tK0dOH3WZDQdsTUCHJfdFdDOfujlaNO10xIVHIK+kGB+u+7XR/Vy+QES+yk+vRx/7eWj13l1uHg01pc5iweMfvYfvtv0GAPh84xqn+y1Wq9YEsz93YCAi6hAWEOwSEhIwdOhQp9uGDBmC48dtb37j420XDQ1nEuTl5WmzEuLj42E2m1FUVNTsMQ2ZTCaEhoY6ffmKwfZ9tA+caLqAcOCkrVjSJza+2U+9HfW1d8DmVo6us/FAGgBg0qChrRxpYzIYcfNZ5wIA/rdqJfJLS5zu1xoosoBARD7owknTAQBv//w9Csq8f8mhL6mprcVflr2JX3bvgJ9eD71Oh/Sck067ZpwszEeV2QyTwcCdgoiIOogFBLupU6fiwIEDTrcdPHgQffr0AQD069cP8fHxWLFihXa/2WzGqlWrMGWKreHSuHHjYDAYnI7Jzs7Gnj17tGN6EnUd/f5mZiDsPX4UADAsqW+bns9xCUNLfRWobWpqzdh25BAAYPKgYW1+3OwRYzAsuS+qa81466fvne5TCwi9o3hhRkS+Z/7Y0zC4VzIqa2rwnx++cvdwyK7abMaflv4X6/fvhdHPgL9dcQMm2wvjK3bWb8ednn0SgG1nJ30bPrggIqLG+Opp98c//hEbN27EE088gfT0dCxbtgyvvfYabrvtNgC2pQt33XUXnnjiCXz22WfYs2cPrr32WgQGBuLyyy8HAISFheGGG27APffcg59++gnbt2/HlVdeiREjRmi7MvQkagHhQNaJJhtO7bVvBzgsuW+bnq9PTCx0ioLSqkoUlpe1/gBq0fYj6aiprUVsWDhS7LM72kJRFNwybyEA4PvtvyGvuH7GzQn7EobkGBYQiMj36HQ63HXuRQCAH7Zvxu5jR9w8IgKAR95/G1vSDyDAaMQz19yESYOGYs6o8QCAlTu3atcg7H9ARNR5LCDYTZgwAZ999hnef/99DB8+HI899hheeOEFXHHFFdox9913H+666y7ceuutGD9+PLKysvDjjz8iJKR+S8Hnn38e559/PhYtWoSpU6ciMDAQX331FfR6vTtiuVVydCz8DUZUmWtw3P7JtMpcV4eDWbYlDG0tIJgMRiRE2potchlD563fb+t/MGnQ0Fb7eDQ0ok8KRvcbgDqLBe+v/RmAbe1pVmE+ACApiksYiMg3DUnqg3PGTQIAvPDVJ7BwRwa3Kiovw8aDaVAUBf+47haMSUkFAEwZPBSBJhNyi4uw+3gGAOAwd2AgIuo0FhAcLFiwALt370Z1dTX27duH3/3ud073K4qCJUuWIDs7G9XV1Vi1ahWGDx/udIy/vz9efvllFBQUoLKyEl999ZVP7KzQEX56PVITewNovIzh4MlM1FosCAsMQq92bPenNVLMZSPFzhARbDxo63/QnuULjq6ZZduu9OvNG1FQVoqc4kJYrFaYDIY2NWQkIvJWN521AMH+AUjPzsJXm5veppm6x6HsEwBshevhyf20200GI2YMGwUAWLnDtoyhfgYCGygSEXUUCwjUpQb3thVP9p9w3l1C63+Q3Lddn373jWUjRVfIyMtBbnERjH4GjLV/WtNeY1JSMSy5L8x1tfhw7S/a8oXeUTFtaopJROStwoOCccOcswEA/13xLYoryt08op7r4ElbAUH9wMLR3FHjAAC/7tmB/NISnLI3/uUODEREHcerfOpS2k4MDWYgtLf/gapvnL2RIgsIOJqXg9tfewk7Mw63+7Eb7ds3jkkZAH+jsUM/X1EUXH26bRbCF7+tw+5jtimi3MKRiHqChadNQf/4RJRVVeKvy9/hrgxucjDLVkAY2EQBYUxKKqJCQlFaVYllq38CAPSKjEagyb9bx0hE5EtYQKAupTZSTM/OQm1dnXZ7Wjt3YFDVL2HgTgwfrVuF3ceO4L1ff2z3Yzcc6NzyBdXEgUMwMLE3qsxmfLjuVwC23hdERL7OT6/H3eddAqOfH7YdOYTrXnoaq/fucvewehx1BkJTBQS9ToczRo4FYCt0A+x/QETUWSwgUJfqFRmNkIBAmOvqtL4FecVFOFVaAr1OpxUY2iop2rYTQ3l1VY//tGfbkYMAgJ1Hj6CmtrbNjyutrMAe+2wBdZurjlIUBVfZZyGY62xj4AwEIuophif3w39uvQcD4hNRUlmBvyx7E099sgyVNdUtPu7Nld/hI3vRlTqurKoS2UUFAJpewgDUL2Oos1gAcPkCEVFnsYBAXUpRFAzqZe+DYF/GsMe+fCElLhEBRlO7ns9kMKCPfRbC9iOHXDdQL5NdVICThbaLJnNdbbu2Evvt0H5YRdAvNh7xEZGdHsu0IcO1mSEAkBTFGQhE1HOkxCXg37fcjStmnAFFUfDdtt9w639ehNlh1p2j3OIivPPLD/jXd1+gptbczaP1LYfssw8SI6MQEhDY5DGpib2dthbmDAQios5hAYG6nFZAsDdSTHNooNgR04eMAACs6sFTRbcfSXf6fkv6gTY/dqN9+cKkTs4+UOl0Olx5+lzt+yTOQCCiHsbo54ebzjoXL954OwJNJmTkZuNwzskmj1W3u7WKILuosDuH6XNaaqCoUhQFc0eN175nAYGIqHNYQKAupzZSVGcgdLSBomrGsJEAgN8O7UOVuabT4/NG2+yzL3pF2bbA3JJ+sE2Ps1it+O3QfgCd73/gaNaIMZg/9jRcOm0WQgODXPa8RETeZFTf/ugfb3uDmm0vFDSUbZ89BgBZBU0fQ21z4KTtg4mm+h84mjt6HIx+BiRGRiE2LLwbRkZE5LtYQKAup/Y5OJqXg7KqSu0Tg/Y2UFQNSOiFxMgo1NTWYtPBfa4aptcQEWw/bCsgXH/GfAC2fbCLystafWxa5lGUVFYg2D+gwwWcpuh1Ojxw0eW4df55LntOIiJvlBgZBQA4WVTQ5P05DrMOspopMlDbHGqhgaKjhIgo/Pf2e/HijXe0a+toIiJqjAUE6nIxoWGIDA6FxWrFt1s3oc5iQXhQsHaR1V6KomDGsFEAgFV7d7pyqF7heH4e8stKYPTzw/ShIzDA3hBq6+HWZyGs27cHgG35gp9e36XjJCLqiRIj7AWEwqYLCI6FhZNeOgMhr7gIj3+0tEPbCLtKRXU1MvNPAQBSE1ouIABAn5g4zj4gInIBFhCoyymKgsG9bX0QPt24BoBt9kFnPgWYaV/GsGF/Wrt2IPAF2+yzD4Yn94PJYMT4AYMAtK0Pwrr9tgLC1MGuW75ARET1EuzF8exmCgjZDgUEb5yBUGexYMkH72DFji1486fv3DaO9JwsAEBMWDgigkPcNg4iop6GBQTqFmofBHXqZmenzw/ulYyYsHBUmWva1UDQF6i7T4xNSQUAjE8dDADYcvggRKTZx2Xm5+H4qTz46fU4beCQrh8oEVEPpC1haEMPhOZmKXiyd3/5EXvtzZDTs0+0eN5xhU0H9+GNld+itsGuFuryhUGtLF8gIiLXYgGBuoXaB0HV2QKCTqfTZiG4chmD1Wp12XN1BavVqhUQxvS3FRBG9ukHo58fTpUU49ip3GYfu37/XgDA6H4DEOwf0PWDJSLqgRIjbc1t80qKG73prTabUejQryanuBB1Fku3jq8zdh49jPd+/RGAbXZheXW104wKV7NarXjy4//h3V9+xNdbNjrddyDL1kCxpR0YiIjI9VhAoG6hbuUI2BruOX7fUWofhHX79jS6SOuIV779DOf+7U84YV9T6YkO55xEaVUlAowmbVaHyWDEiD4pAFpexrB2324AwNTBw7t+oEREPVRkcAhMBgOsIsgtKXK6L6fYNgsvyOQPo58f6iwWnCop7tDP2X3sCG79zwtYsWNLZ4fcJmVVlfjbR0thFcFZYyZgoL3vgNoYuSscys5CUUU5AGD5mp+cii31DRQ7fz1BRERtxwICdYvwoGDER0QCAPrHJyLAaOr0cw5P7ofI4BCUV1dhe8ahTj3Xjox0fLRuFcqrq7HxYFqnx9ZV1O0bR/Xt79QEsb4PQtONFIsryrHnWAYAYAr7HxARdRlFUbRGig37IKhLFhIio7RzYkf6IOzMOIz/e/tV7D1+FM9+8RGK7W+yu4qI4LkvPkJucRESI6Nw17kXYUCibbvKQyezuuznOu60lFNchJ92bQNgm8mhzrhrbQcGIiJyLRYQqNuon5h3dPvGhvQ6HaYNHQEAWLVnV4efp85iwQtffqx939IyAHdTGyiOtS9fUE2wFxB2ZBxqcjbGxoNpsIpgQHyidtFKRERdIyGy6Z0Y1On+iZFR6GVf6tBcr4TmbD9yCPe98x9Umc3QKQqqzDVYumqFC0bdvB92bMbPu7dDr9PhL4uuQqDJX3vjfvBkZpf9XLWA0C82HgDwv1UrYbVacTjnJKwiiAwOQVRIaJf9fCIiaowFBOo2V50+FzOHjcKl02e57Dln2pcxrEnb1eF1pB+vX4WMvBzt++MeWkCos1iw86htyyy1gaKqf3wiwoOCUWU2Iy3zWKPHrt9n638wZQiXLxARdTWtkWJR0wWEhIgorVdCVjsaKW47fBD3v/saqmvNmDBgEB67/HoAwBeb1iGvuKiVR3fcB2t+AQBcM+ssDLV/CKAWEA6d7JpGimVVlUjLPAoAeHjxNQgy+ePYqVys279HWzYxMDGpUzs6ERFR+7GAQN1mQEIvPHr5dUiwT+10hdH9BiA0IBAllRXYdexIux+fV1KMt3/+HgBwwcRpAICjeZ5ZQNifdRxV5hqEBgSif3yi0306nQ7j+g8E0LgPQk1tLX47ZPsUh/0PiIi6XkIzSxjU7xMiIlvdraGh7UcO4f53X0dNbS0mDhyCv115I6YOGY7R/frDXFeHt3/5wYUJ6omIVviYPXKMdntKXCJ0ioKiinIUlJW6/OduTj8Aqwj6xsYjJS4BF0yaDgBY+utKbdYDly8QEXU/FhDIq/np9Zhq/1R99Z7278bwz28/R5XZjOHJ/XDTWQsA2PoFlFRWuHScrrDdvnxhTEoqdLrG/3TVPgi/HdrvdPuOjHRUmc2IDglzSfNKIiJqWaK2PKHhDARbE8WECIclDAVtKyD854evYK6rxeRBQ/H4FTfAZDBAURT87kzbuev7bb8hMz/PVRE0ZVWVqDKbAQCxYeHa7f5GI/rExAHomkaK6vKFifZthy+eMgMmgwH7s47jl907AHAHBiIid2ABgbze9KG27RzXH9jbrmmUmw/tx697dkCnKPjjwosRaPJHXHgEAOBYN89CsFqtrRYtNttnFjTsf6AaP2AQFEXB/qzjeO6Lj7ReCOruC1OGDONUTyKibuA4u0A9L4mIUxPFXlH1Sxjacu46YS803HzWuTD6+Wm3D0/uhymDh8FiteKNld+6NAdgm6kH2JohmwxGp/tSHZYxuJKI4LeDtmL4aamDAQARwSFYMH4yAKDKXAOAMxCIiNyBBQTyeuP6D4TRz4Dc4iIcyc1u02PqLBa8+PUnAIALJ0/HgARbN2n105TubKRYWVONO//7Ci548i/4btumJo/5bONa7Dx6GIqiYMKAwU0eExsWjpvPOheKouCL39bhj2/+EwWlJVr/Ay5fICLqHgn2ZrUVNdUoraoEAJRUVmhvfOPDIxEfEQXF3gSxqJVdFKrMNSizP09sWESj+2+cew4URcEvu3fgYJZrmxrm2nsrxDXxc1MTu2Yrx/TsLBSWlyLAaMTIvv212y+dNgt6+wy80IBArehPRETdhwUE8nr+RqO2/n/9/r1teszezKPIzD+F0IBAXHfGfO32+gJCTnMPdalqsxkPvvc6dh87AovVimc+XY6f7dtUqTYd3IeXv/kUAHDj3LO1T62actn02XjiyhsRZPLH7mMZuOalp5FfVoIAoxFjUpqeuUBERK5lMhgRHRIGoH4Zg7p8ITokDCaDAUY/P21JQGvLGNRZAIEmE4L8/Rvd3z8+EWeMHAsAeH3FN66I4PCzbQWE2CberGuNFLM7VkD4aN2vuPbFp7D3+FGn2zfZ+/aMSUl1mm0RFx6BM0ePB2ArXnBWHRFR92MBgXzClMHDAADr9+9p0/HqJzQj+6Yg2D9Au72Pfauo7ljCYK6rw0P/ewM7Mg4jyOSPGcNGwiqCxz9ainX7bDmO5GZjyfK3YbFaMW/sabhixpxWn3fK4GH4z613o09MnPaJ1YTUwTAZDF2ah4iI6qlbOWbbmySq/02IrN9Kt34nhrYVEJqafaC6/oz50Ot0+O3QfhzNc10RXJ2B4Nj/QKXO3sstLmp376D1+/filW8/R0ZeDh55/y0UO8zCUPsfnJY6pNHjfnfmAswbexqunzO/0X1ERNT1WEAgnzB50FAAwL4Tx1FUXtbq8ep0y4YNmLprCUOdxYIl77+NzekH4G8w4ulrbsKSxddi7qhxsFiteOT9t7Bi51Y8+O5rqKypweh+/XHveYva/GlLUnQsXr3lj5g5bBQURcHZYyd2aR4iInLWcCtHdQZCvMNORG3dieGUVkAIb/aYXlHRDrPx2lZMb4tc+wyEppYLBPsHaM0g29MH4WRhPv720VIAgEGvx6nSEvzto6WwWq0or67SZiRMHNh4yV5USCgevOhyDE/u194oRETkAiwgkE+ICQvHwMTeEBFsPJjW6vHqhc6gROddCfrE2goIucVFqKypcf1AYWsO9bePlmLd/j0w+vnhyatuxIg+KdDrdHjgossxfehI1FosePzD95BTXITeUTF49PLrYXCYxtkWgSZ/PHr5dfju4acw2T5Dg4iIukdihFocUAsIBU63A9DefGc12K2hIXUZQUwLBQQA2q5Ea/e5roBwqpXZD+3tg1BTW4uHl72N8uoqDE3qg3/efBeMfgb8dmg/3l/zM7amH4TFakVSdIw2Q4OIiDwHCwjkM+qXMbTcB6HKXKPNMGjYwTksMAjhQcEA0CXbYQHA7mMZ+Hn3dvjp9Xjs8usx1v6JEWDblvLhS6/Wuk6HBATiqat/h7DAoA7/vACjqdNjJiKi9qlfwmArDtTvwFC/hEHtadPaDIS8NsxAAIAp9ma5aZnHUNiG2XhtoTVRDG/6Z7e3D8KLX3+CQ9knEBYYhL8uvhaDeiXhrnMvAgC8sfJbLFv9E4D67RuJiMizsIBAPkO9cNp86ADM9i0Mm3I45ySsIogMDkVUaFij+7t6GcPmdNvWVDOGjcQk+9ILR0Y/Pzx2+fW469yL8MpNdyIpOrZLxkFERF2n4RKGHPsShsSIaIdj7DMQWmmi2NosAFVsWDgGJSZBRLChjU2FW1JnsSC/tKTFn52aaOuD0NoSBhHB15s34JstG6EoCv5y6dVaY8azx03E3NHjYbFasT/rOAAWEIiIPFX75kQTebDUhF6ICglFQVkpdmQcarL5EuCwfKFX0/tH94mNw86jh7uskeKW9AMAgPH9BzV7jL/RiAsmTe+Sn09ERF1PLQ7kFRehprYWOcW2AoK6xSNQv4ShuKIclTXVCDQ13mEBaPsMBACYMmQYDpzMxPr9e3DO+EmdSAAUlJXCKgI/vR6RwSFNHpOaYDuXnijIb5ShtLICWw8fwpb0A9iSvh859tkM182ehwkD6s+BiqLg7oWX4EDWcRw/lQejnwGjHLZvJCIiz8EZCOQzdDodJg9SlzE03wehuQaKKnUGgiu7WKvKqiqx/4Tt0xXHiyciIvItkcEhMBkMsIpg7/EMWKxW+On1TjPfgvz9tSVqLc1C0LZSbEMBYao6Gy/9AKrN5k4kcOi9EBoOna7pS8aI4BDEhIVDRJCefRKAbbbB/1atxPlP/gVLlr+Nr7dsQE5xEQx6Pc6dMBlXnT630fMEmkz462XXIS48AudNnAKTwdipsRMRUddgAYF8itoHYcP+PRCRJo9Rt3Bs2P9ApW7leLwNSxhOlRTjhS8/RkZudpvGt/3IIVhFkBwd2+Se2kRE5BsURdEaJm45fBAAEB8eCX2DN+L1fRCabqRYXl2lNfVtrYkiYNtaMS48AjW1tdhq/7kd1Vr/A1WqfTvHgyczISL413df4LUfv4bFakXf2HhcMmUmnr76Jnz10BO49/xLmy1GpMQl4MP/ewS3n31Bp8ZNRERdhwUE8inj+g+E0c+AnOIiHGniTX1NbS0y7DMLGu7AoFJnIGQV5qO2hV4KVqsVj3/0Hj7btBbPfLa82YKFo83q8oVUzj4gIvJ1aiPFrem2N/KOyxdUWh+EZhopqssXQgIC29QUV1EUrSfQuk5u51g/86HlgrdakN+flYmnP30fH677FQBw29nn450/PIDbz7kAkwYNZVNfIiIfwAIC+RR/oxHj+qcCaHo3hozcbFisVoQFBjX7SU5MaBgCTSZYrNZmL+gA4MvN67Ej4zAAW8frHRnprY5PvYhsqf8BERH5BrWR4sGTtplvCQ5bODY8prmdGPKK2758QaVu57hh/15YrdY2P66h3OJi+89urYBgK8iv2LEF3237DTpFwQMXXYZFU0/v8M8mIiLPxAIC+RxtGcOBxgUE9SJuYGJvKIrS5OMVRUFytH0nhmYaKeYUFeLV778CUH/xp2491ZzswgJkFeZDr9NhTMqANiQhIiJvphYMrPYZauqMBEetLWFoTwNF1ei+/RFk8kdheRn22fvudER7lzAAtp2EHr38OswfO7HDP5eIiDwXCwjkc9RGimmZx5Bd5HxBpjZQHNir6eULqr6xzW/lKCL4++cfoMpcgxF9UvCPa2+BXqfDb4f2a8/fFHX5wtCkvs122iYiIt+hLk9QNTUDoZe2leOpJp9D3cKxLf0PVAY/P20bxM4sYzjVxiUMMWHhSIlLQJDJH09fczOmDx3Z4Z9JRESejQUE8jkxYeEYP2AQRASfbVzrdJ9WQGimgaKqT2zzOzF8u3UTtqQfgNHPgPsvXIxeUdGYNWIMAGDZ6pXNPueWw/b+BwMGtj0MERF5rcQGMw5a6oGQV1LcZN+dtvYhaGiKfRnD+n0dLyDk2osXca00/VUUBf+59R58fP8SjE1J7fDPIyIiz8cCAvmkiyfPAAB8s2WD1r26zmLBkRzbFlOtFhBibDsxNJyBcKqkGP/67nMAwA1z5iMpOhYAcPmMMwAAq/bsxIn8xp8iWaxWbDt8CAAwnts3EhH1CA0LBg0LCoBtu8cAoxFWEeQUFza6/1RpCYD2LWEAgEkDh0Cv0yEjL6fFLSKbU1lTjbKqSvvPbr14YfTz4+w6IqIegAUE8kkTBw5Br6holFdX44ftmwHYGijWWiwI9g9ochqpI3Unhsz8PK0BVW1dHZ769H2UV1djSO9kXOLQHKp/fCImDxoKqwiWr/250fMdPHkCZVWVCPb3x+BeyS5KSUREnsxkMCI6JAwAEGTyR0hAYKNjFEXRzklNvdGvn4EQ3q6fHRIQiFF9+wMAVuzc0q7H2n5uMQAg2N8fQf4sDBARkQ0LCOSTdDodLpw0HQDw6YbVsFqtTssXmmugqIqPiIRBr0dNbS1yi4tgrqvDw++/5bB04bJGe3lfPmMOAOD7bb+hwP6JkWqLvf/B6H6p8NPrXZKRiIg8n9o4MSEistlzT6+oGAC2orUjEXFooti+JQwAcNaYCQCA935dgb3Hj7brsR1dOkFERL6NBQTyWfPHTkSgyYTj+XnYcvgADrWx/wEA+On16G1fnnAo+wQeXvYm1u/fC6OfAU9cdSP6xSU0eszIvikY0acfai0WfLh+ldN9agGByxeIiHoWddlCQoOGio4G2c9LaSeOOd1eWlWJmtpaAEB0aFi7f/ZZYybg9OGjUWex4JHlb6O4orzNj1W3cGyt/wEREfUsLCCQzwry98fZ42zbSH28fjUO2LdwTG1DAQGo34nh6U+XY8OBNJgMBjx19e8woYUigDoL4cO1v+DRD95FenYWqsw12HM8AwBafCwREfketWjdUvF6aHJfALbdgxzl2bdRDA8KhslgaPfPVhQF912wGEnRMThVUozHPnwPFvuyvNaoP7s9uz8QEZHvYwGBfNoFk6ZDURRsOrhPW8IwqJUtHFVqH4Ty6ipb8eCq32Fc/5Z3UJg0cAjmjh4Pqwh+2rUNN7zyd9z+2kuos1gQHx6h7fdNREQ9w/kTp+GVm+7E4umzmz1mcK9kKIqCnKJCFJSVarfXL18I7/DPD/L3x6OXXw9/gxFb0g/g7Z+/b9Pjcu1LGDgDgYiIHLGAQD6td1QMJg0cCsC2C0OA0aTtud2a/vG9AAD+BiOevvomjG2leADYei88dMmVeP22ezF75BjoFAXp2VkAgPEDBrfae4GIiHyLn16PEX1SYPTza/aYIH9/9I217f6zz2EWgisKCACQEpeAe85fBAB495cfsfFAWquPUX92HHsgEBGRAxYQyOddPGWG9ufUxF7Q6dr2az9l8DDcfvb5eOWmOzGmnftaD0zsjUcuvQZL//hnLDxtCgYk9MKFk6e36zmIiKjnGJbUFwCwN/OodtupEnUZQeffxJ85ejwWnjYFAPDMZ8shIi0ery5hiOUMBCIictB8OZzIR4zrPxD9YuORkZeDQYltW74A2D41ctyqsSN6RUXjnvMWdeo5iIjI9w1N6oOvt2xAmkMBwVUzEFS3n30Bvt26CQVlpcgpLmx2S2Or1artwsAZCERE5IgzEOyWLFkCRVGcvuLj47X7RQRLlixBYmIiAgICcPrpp2Pv3r1Oz1FTU4M77rgD0dHRCAoKwsKFC3HixInujkINKIqCuxZejNH9+uNc+6cvREREnmSYvZHi/hOZqLNYALi+gGAyGJBs32HoSE52s8cVVZSj1mKBoigd2v2BiIh8FwsIDoYNG4bs7Gzta/fu3dp9zzzzDJ577jm88sor2Lx5M+Lj4zF37lyUlZVpx9x111347LPPsHz5cqxduxbl5eVYsGABLPYLAXKf0f0G4MUb79AaIxIREXmS5OhYBJn8UV1rRkau7c19fQHBdbMAUuITAQBHcpsvIKjLF6JDQuGn17vsZxMRkfdjAcGBn58f4uPjta+YmBgAttkHL7zwAv785z/jwgsvxPDhw/HOO++gsrISy5YtAwCUlJTgjTfewLPPPos5c+ZgzJgxWLp0KXbv3o2VK1c2+zNrampQWlrq9EVEREQ9i06nw5CkPgBsfRCsVitOlRYDcN0MBMDWUBEAjuSebPYYrXDB/gdERNQACwgODh06hMTERPTr1w+LFy/GkSNHAAAZGRnIycnBmWeeqR1rMpkwc+ZMrF+/HgCwdetW1NbWOh2TmJiI4cOHa8c05cknn0RYWJj2lZTU9jX6RERE5DvURoppmcdQXFmBui5YRqAWEDJaWMKQy/4HRETUDBYQ7CZOnIh3330XP/zwA15//XXk5ORgypQpKCgoQE5ODgAgLs55+ntcXJx2X05ODoxGIyIiIpo9pikPPvggSkpKtK/MzEwXJyMiIiJvMNQ+AyEt86i2jCAyOMSlywjUJQzH8/NQW1fX5DHaDgwunPlARES+gbsw2M2fP1/784gRIzB58mT0798f77zzDiZNmgTA1ozPkYg0uq2h1o4xmUwwmUydGDkRERH5AnUJQ2b+KRzOsS0xcPWb+NiwcAT7+6O8uhrH8/PQ315QcKTOQOASBiIiaogzEJoRFBSEESNG4NChQ9puDA1nEuTl5WmzEuLj42E2m1FUVNTsMURERETNCQsMQlK0rf/Sr3t2AHBtA0XA9mFIP7UPQk7TfRDyiosBcAkDERE1xgJCM2pqarBv3z4kJCSgX79+iI+Px4oVK7T7zWYzVq1ahSlTbNsCjhs3DgaDwemY7Oxs7NmzRzuGiIiIqCVqH4Sthw8C6JplBFoBoZmdGPI4A4GIiJrBJQx29957L84991wkJycjLy8Pjz/+OEpLS3HNNddAURTcddddeOKJJ5CamorU1FQ88cQTCAwMxOWXXw4ACAsLww033IB77rkHUVFRiIyMxL333osRI0Zgzpw5bk5HRERE3mBoUl98v30zLFYrACCmCwoIKXH2rRybaKRYU1uLwnLbFtVxLCAQEVEDLCDYnThxApdddhny8/MRExODSZMmYePGjejTx7Ye8b777kNVVRVuvfVWFBUVYeLEifjxxx8REhKiPcfzzz8PPz8/LFq0CFVVVTjjjDPw9ttvQ889lImIiKgN1EaKKlcvYQCAlPjmt3JUt440GQwIDQh0+c8mIiLvxgKC3fLly1u8X1EULFmyBEuWLGn2GH9/f7z88st4+eWXXTw6IiIi6gn6xSXA32BEda0ZQNcsYVC3cswrKUZZVSVCHAoFR3PtO0+FR7TaKJqIiHoe9kAgIiIi8hB+ej0G907Svu+KAkJIQKC2NCIj17lB9Oq0XQCACQMGu/znEhGR92MBgYiIiMiDqI0U9TodIkNCu+RnpMQ1XsZQW1eHdft2AwBmDh/VJT+XiIi8GwsIRERERB5kqL2AEB0aBr2uay7VtAKCQyPFrYcPory6GpHBoRie3K9Lfi4REXk39kAgIiIi8iATBw7B/LGnYWz/gV32M1Li7TsxOGzluGrvTgDAzGEju6xwQURE3o0FBCIiIiIPYvDzwwMXXd6lP0OdgZCRexIiAovVirVpXL5AREQtYwGBiIiIqIdJjomDXqdDeXU1TpUU41h+HkqrKhEeFIyRffu7e3hEROShOD+NiIiIqIcx+vmhd1QMANsyhlV7dgAAZgzl8gUiImoezxBEREREPVBKvG0Zw6HsLKzea9u+kcsXiIioJSwgEBEREfVAKXG2Ropfb16PksoKhAUGYXS/AW4eFREReTIWEIiIiIh6ILWRYk5xEQBg2tAR8NPr3TkkIiLycCwgEBEREfVA6hIG1elcvkBERK1gAYGIiIioB4oPj0SA0QgACAkIxNiUgW4eEREReToWEIiIiIh6IJ1Oh372ZQxThwzn8gUiImoVCwhEREREPdS8MachKiQUF02e4e6hEBGRF1BERNw9CKpXWlqKsLAwlJSUIDQ01N3DISIiIiIiIh/X1vehnIFARERERERERK1iAYGIiIiIiIiIWsUCAhERERERERG1igUEIiIiIiIiImoVCwhERERERERE1CoWEIiIiIiIiIioVSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErWIBgYiIiIiIiIhaxQICEREREREREbWKBQQiIiIiIiIiahULCERERERERETUKhYQiIiIiIiIiKhVLCAQERERERERUatYQCAiIiIiIiKiVvm5ewDkTEQAAKWlpW4eCREREREREfUE6vtP9f1oc1hA8DBlZWUAgKSkJDePhIiIiIiIiHqSsrIyhIWFNXu/Iq2VGKhbWa1WnDx5EiEhIVAUxeXPX1paiqSkJGRmZiI0NNTlz+8uvpiLmbwDM3kHZvIOvpgJ8M1czOQdmMk7MJN38PVMISEhKCsrQ2JiInS65jsdcAaCh9HpdOjdu3eX/5zQ0FCf+cV35Iu5mMk7MJN3YCbv4IuZAN/MxUzegZm8AzN5B1/O1NLMAxWbKBIRERERERFRq1hAICIiIiIiIqJWsYDQw5hMJjzyyCMwmUzuHopL+WIuZvIOzOQdmMk7+GImwDdzMZN3YCbvwEzegZls2ESRiIiIiIiIiFrFGQhERERERERE1CoWEIiIiIiIiIioVSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErfJz9wDIdfbu3Yv169dj+PDhGDx4MCIiImC1WqHTeW+diJm8AzN5B2byDszkPXwxFzN5B2byDszkHZipnYS8Xm1trdx2223i7+8v06ZNk7CwMJk3b57k5ua6e2gdxkzegZm8AzN5B2byHr6Yi5m8AzN5B2byDszUMSwg+IB169bJoEGDZNWqVWKxWOTbb7+VyZMny4wZM6SiosLdw+sQZvIOzOQdmMk7MJP38MVczOQdmMk7MJN3YKaOYQHBC1mtVqfv//CHP8ioUaOcbktLS5OAgAB55plnunFkHcdMzOQuzMRM7sJM3pFJxDdzMRMzuQszMZO7MJNrMnnvwo4eqqioCDU1NU639enTB6WlpRARAIDFYsGQIUPw4IMP4h//+Adyc3PdMdQ2YyZmchdmYiZ3YSbvyAT4Zi5mYiZ3YSZmchdmcl0mFhC8hMViwU033YQpU6bgzDPPxJ/+9CftFyY+Ph5RUVH48MMPAUBrjnHnnXcCAJYvXw4AsFqtbhh585iJmdyFmZjJXZjJOzIBvpmLmZjJXZiJmdyFmVyfiQUEL1BdXY0LL7wQu3btwvPPP49x48bhww8/xIUXXoja2lrMmTMHISEh+Oabb5CXlwdFUWC1WhEWFoZzzz0Xa9asAQCP6iTKTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLszURZlcshCCutSePXskJSVFfvjhB+223bt3i8lkkkcffVRERF577TUZN26cPPXUU06PnTp1qtx2220i0niNjDsxEzO5CzMxk7swk3dkEvHNXMzETO7CTMzkLszUNZlYQPACa9euFZ1OJ2VlZSIiYjabRUTksccek+joaNm5c6fU1tbKH/7wB0lKSpJXX31Vjh07JmvWrJFhw4bJ8uXL3Tn8JjETM7kLMzGTuzCTd2QS8c1czMRM7sJMzOQuzNQ1mVhA8FAWi0X7c3p6uqSkpMhLL70kIrb9PVW9evWSP/7xjyIicuzYMXnsscckODhYhg4dKoGBgXL33Xd378BbwEzM5C7MxEzuwkzekUnEN3MxEzO5CzMxk7swU9dnYgHBC+Tk5Mg111wjc+fOlfz8fBERqaqqEhGRZ599VuLj452OP3r0qPz888+SlZXV7WNtK2byzEwNpzP5QqaGmMlzMu3Zs6fZ+7w1U0uYyTsyifhmLl/IxHMUM3UnnqOYyRN5QibP6QjRQx04cACbN29GVlaW0+2ZmZm4/PLLkZ+fj7i4OMyaNQslJSV49dVXAQAmkwkAEBMTg5CQEBw5ckR7bJ8+fTBr1iwkJiZ2XxAHR48eRXZ2NioqKgBA20bEmzOtX78ew4cPx2+//eZ0uzdn2rlzJ/773/9i06ZNKC4uBgAoiuLVmUpKSprsKuvNmbZv346//OUvOHr0KID6rrnenGnDhg2YMmUKbrjhBuTl5Wm3e3Om/fv3Y8+ePcjPz3e63Zsz+eL5CeA5ylsy8RzlHZl4jvKOTDxHeUcmrzk/uawUQe1SWFgoixYtkri4OBkzZozExsbKt99+q1XXv/rqK0lISJBnn31WRETKysrkj3/8o/Tv319Wr16tPc/9998v8+fPd0uGhgoLC2Xx4sWSkpIio0aNkgkTJsjRo0e1+7/88kuvy5Sfny8LFy4Ug8Egd9xxh7bOSOWNf0+lpaVy6aWXSlhYmEyfPl3Cw8PljjvukJqaGhHxzr+n4uJiufzyy+X000+XQ4cONbrfG/+eRERyc3Nl0KBBEhcXJ88995zTfd6YKT8/X8477zwxmUwyduxYiY6Odvo35Y2ZysrK5JJLLpHQ0FAZPny4JCcnyxdffKFNKfz888+9LpMvnp9EeI4S8Y5MPEd5RyYRnqO8IRPPUd6TyZvOTywguMEPP/wgAwYMkPPOO092794tx44dk7lz58qZZ56prXGprKyUDRs2OK1rSU9Pl2uuuUb8/f3l0ksvlcsuu0yCg4PlzTffFBH3dgj9+eefZdiwYbJgwQLZsmWLfPnllzJ06FC58MILtXF5W6ZPPvlEFEWRhQsXSkZGhtN96rgqKiq8KlNtba3cdNNNMn/+fNm/f79UV1fLY489JhMnTtQuarzt72n37t0ya9YsGT9+vCiKIs8995x2oemt/55U+fn5MmDAAJk9e7YsWLBANm/erN3nbZnuv/9+MRgMcu6550pGRoakpaVJQkKCrFy5UjvG2zKJiDz88MMybdo02bFjh6SlpcnixYtl9OjR2sV0aWmpV2XyxfOTCM9R3pKJ5yjvyKTiOcqzM4nwHKXy5EzeeH5iAcEN3n77bXnppZektLRU+2X/17/+JQsWLJC6urpWH//KK6/IH/7wB7niiitk7969XT3cNrnzzjvlxhtvlJKSEu22n376SUJCQpxua44nZnrmmWekd+/esn79ehER+fbbb+W5556TDz74QAoLC1t9vCdmysvLk9TUVHnllVe021atWiUzZsyQ6urqVh/viZlWr14tt912mxw/flz+/Oc/S1xcnOzcubPNj/fETKoNGzbIVVddJRs2bJDRo0fLgw8+qK1za+nE4ImZFi9eLCtWrNC+37p1q8TExMi3334rIq2f6DwxU3V1tQwbNkweeOAB7bbCwkK5++67JTU1Vfbv39/i4z0xky+en0R4jmqKJ2biOaoxT8yk4jmqnidm4jmqMU/M5I3nJxYQukHDF528vDynk/uuXbtk0KBBct1118nzzz8vOTk5TsdnZWW162TTHdTquWrVqlWyZcsWp9u++OILGTJkiOTn5zt1DxXxjkzp6ely1VVXyahRo2Tu3LmSmpoqM2bMkKCgIBk7dqx8+eWXTsd7Q6a0tDSZNGmS3HHHHVJXVye7d++WoUOHyrRp0+TWW2/VTpQqT8ykUn+nioqKnBrDxMXFya233qptb9OQJ2dq6LfffpPZs2eLiMhdd90lM2fOlG3btklubq7TcZ6cqeGUaqvVqr0mJiUlyd/+9jcREa94jWj4Wp6dnS2TJ0+WF154wen2TZs2yYwZM+Tqq692ut0bMvnC+UmE5yieo9yP56h6npyJ56h63pDJF85RvnB+YgGhC1VUVMgDDzwgf/zjH+XJJ5+U8vLyRse89957oiiKXHTRRfLAAw9Iv379ZP78+bJ161YRsVUKb7rpJunVq1d3D79JFRUVctNNN8nFF18st912W5PVS/XF+MUXX5RRo0Y1+sdfXFzsNZmWLVsmo0ePlquuukqOHz8uRUVFUlxcLLNnz5aFCxfKwYMHRcR2geAtmZ566ikZM2aMzJkzRxRFkauuukreffddWbBggbY2TsQ2NdGTMlVWVso///lP+e2335q8X/29W7ZsmRgMBqdphypP+91rLdO//vUvOe+880TE1mF34sSJMmjQIFEURTt5eFsmVVlZmVxwwQVy1VVXNTo5elqmll7Lp0+fLhdddJFUVlZqt9XV1cnTTz8tY8eOlR07doiIZ75G+Nr5SYTnKJ6j3IfnKJ6j3IXnKO84R/nS+YkFhC7y1ltvSXR0tMydO1duvPFGCQgIkEsvvVQyMzOdjjt+/LhTFWnz5s0yevRoeeONN7Tb3nvvPXnooYfEbDa7dY3OgQMHZMCAATJz5kx56qmnpG/fvjJx4kT573//KyL1+5CqL7Tnn3++PPjggyLSuIL47rvvenSm//znPyJiaxD00UcfaY1M1Gxff/219OrVS9atW6c9l6f/Pb366qsiYjvJl5eXy+LFi2XJkiXa44qLi2Xx4sVy2WWXabd5SqZPPvlEkpOTRVEUefjhh7VPbpob04QJE+Sss86SvLy8Rve98847Hp9JHdfbb7+t/R29+OKLYjQaJTw8XO677z6n5/LWv6dFixbJvHnzRKTxpzuekqm51/IjR46IiG3auF6vd2piJCKybt06GTBggNPtnp7Jm89PIjxHifAc5S48R/Ec5S48R3nHOcrXzk8sIHSBFStWyOmnny7//Oc/tdu2bdsmgYGBWsWz4V+4+guTl5cnAQEB8tprrzW6z91eeOEFmTRpklYFzMnJkdtvv13i4uK06XnqWMvKymTo0KHy008/aY9fs2aNHD9+XESkTeuUukNLmU6cOCEi4lS1VfMdOHBAFEVx+gTBm/6e8vPzZdq0afLRRx9pj6utrZXJkyfL73//e+330xMyZWZmyqJFi+Qvf/mL3HnnnTJy5EindYqO1Bfg7du3i6IosmzZMsnPz5e3335bfvnlFxHxjN+9tma69dZbZcyYMTJ48GDp06ePvP766zJ//ny57LLLnCrX3vb3pI73v//9r0RFRTlN5/Ok3722vJaLiMyaNUtmzJghJ0+e1G7Lz88XvV4v3333nXabt2TyxvOTCM9RIjxHuQPPUTxHuQvPUTbecI7ytfOTznUbQpKqrq4Ow4YNw2WXXaZ9P2bMGERHR2PPnj0AbHsZO9LpbH8VX3zxBSZNmoSzzjqr0X3ulpmZCavViqCgIABAXFwcbrvtNiQlJeGWW25xOnbr1q2orKzEuHHjsGbNGgwZMgRXX301amtrdTW/tgAAHSNJREFUAQB6vb7bx9+UljLdeuutAAB/f3/tePXvYtmyZZgzZw6mTJnS6D53a8vfk16vx4EDB3D06FGcPHkSAPDzzz+jqqoKZ5xxhvb76QmZwsLCcPXVV+Omm27C888/D6vVio8++gg5OTkA6vfIBQA/Pz9YrVaMHj0aV155Je666y6MHDkSDz74oLZHrif87rWWyWKxAAAmTZqE/Px8XHTRRfjtt99w44034vrrr8fq1avx66+/as/nbX9P6nj9/f2dXhcBeNTvXlteywHg9ddfx5YtW/Dkk09i586dAIBPP/0U48ePx+jRo7XjvCWTN56fAJ6jAJ6j3IHnKJ6j3IXnKBtvOEf53PnJvfWLnuPYsWOSmJgoaWlpje7buHGjbN26VS666CKJjY3VpvF5mnvvvVfmzJkjhw8f1m6zWCzyv//9T0JDQ2Xjxo3a7X//+99l4MCBctlll4lOp5N77rnHHUNuVVsz1dXVyfr162Xz5s1y4YUXSmJioixdutRdw25Ra5nWrl0rIiJ/+9vfJD4+XkaNGiULFiyQwMBAeeyxx9w17DZ75513pE+fPvL+++83eb/FYpHdu3fL7NmzxWAwyMMPP9zNI2y/5jKdOnXK6RMD1VdffdVdQ+uwlv6e1E8P0tLSRFEU2bZtW3cPr8MavparnwS89957Mm3aNAkPD5eZM2eKv79/o33RPZUvnJ9EeI7iOcoz8BzFc5Q78RzlmecoXzs/sYDQhRynzaxevVqGDRsmxcXFjabT3HbbbTJo0CC58MILJTs7u7uH2Sp1vD/99JOEh4fLJ5984jR96ODBgzJr1iynNW+zZ88WRVHkkksuceo+7Ck6kumGG26QPn36yPnnn+/Vf0/33nuvdts333wjTz31lDzyyCONOtd6Gsd/N2eccYYsXLiwyQY0OTk5MnbsWJk2bVqjTtCepq2ZmjreU7UnU3Z2tjz44INSWlraXcPrkJZeyx3/jWVnZ8vHH38sL774oke+RjjylfOTCM9RKp6j3IvnKJ6j3IXnKM89R/ni+UmEBYQOOXDggOTl5Wl73bZErfw9/PDDMmPGDKdfmuLiYhEROXz4sBw4cKBrBttG+/fvl6ysLKe1lE05/fTTZebMmVpzFtW0adPk/vvv177/9ddfGzVs6W6uzpSent5k9bM7uTqTJ2hrJpH6f0/r1q2TXr16yUsvvSQWi0XMZrMcO3ZMRGz7Hrv7JOKqTOp6N0+4KHN1Jk/QkUxNvZZ70sWlqzJ50vlJRNp0vhXxrnOUqzN5wjnK1Zk8QVsziXjPOcpVmTzpHOXqTJ6gI5k8/RzlqkyedI7yxfNTa1hAaIe8vDw555xzJCEhQSZNmiRTpkyRPXv2aPe31AnztNNOk1deeUVEbPvmzps3z6lBiLvk5+fLOeecI9HR0TJs2DCZMGGC7Nq1S7tfzaT+I96/f7+Eh4c7VWTNZrNMmTJFnnjiie4P0ARm8q1MDam333jjjTJt2jT5xz/+IePGjZPLL7+8W8bdEmaSRrf7UiYR738tb4qnZhKxnXcXLlwoV111VaO9sx1502sfM/lWpoY8+bWPmer5YiYRz30978mZvOl1r61YQGij/Px8mTt3rixevFj27t0rGzZskKlTp8r48ePlhx9+EJHmK7DHjx+XiRMnyqpVq+Taa68VvV4v1157rdu3vDKbzXL11VfL/PnzZceOHfLrr7/KxIkTZdq0afLll1+KiHMm9c//+Mc/ZMyYMTJhwgR555135NJLL5WkpCSni1V3YSbfzORIvf2XX34RRVFEURSnrtzuwkzOfDGTr7yWO/LUTCIia9eulYkTJ8rgwYNFURT5/vvvWzzeG177mMk3Mzny1Nc+ZnLmi5k89fWcmbzjda89WEBoo5UrV8rAgQOdGqns379f/Pz85Mwzz5RTp06JSNMXaV988YX24jR16lRJT0/vtnG3JDc3V3r16qXtQSpimwp0/vnny1lnnaWtzVMzqf9YrVarbNiwQc477zyZNWuWzJ8/v9F0HHdhJt/M1NDTTz8tiqLIueee6zHTDZmpMV/L5Cuv5Y48NZOIyP/+9z+544475MCBA3LppZfKmDFjWpyK6w2vfczkm5ka8sTXPmZqzNcyeerrOTN5x+tee7CA0EZvvvmmxMTEiEj9L8H+/fslNTVVhg8fLk8++WSzj/30009l+PDh8uuvv3bLWJtjNpudvt+2bZskJydr++Cqud5//3057bTTWp1OY7VapaSkpGsG20bM1DMzffnll/LZZ591yVjbipl6XiZffC33lEwijXNlZmbKiRMnRETk6NGjEhAQIC+//HKbn88TX/uYqTFfzOSJr33M1JivZfKU13NfzNSwAO8Lr3udwQJCA0VFRfLQQw/Jo48+Km+88YZ2+8mTJyU0NFQeeughOXnypFRVVcnChQtl0aJFct5558mll16qNfTwNEVFRXL77bfLDTfcIPfff79T19/k5GT505/+JCL1a3TKy8vluuuuk4ULFza5PY8nYCZmchdmYiZ38cVMIi3nEqkviDz00EMSGxsrmZmZ7hhmuzATM7kLMzGTu/hqpptuukluuukmefzxx6W8vNzpfm/M5AosIDh46aWXJDQ0VM4++2xZsGCB6HQ6ue+++7SLsbfffltCQ0MlNTVV/Pz8ZM6cOSIi8u9//1v69u3bqOKmcuc6neeee07CwsLk7LPPlj/96U8SEhIiV1xxhRQUFIiIba/R0NBQyc/PF5H6C8+lS5dK7969PXL7EGZiJndhpp6dyRdfy929jrS5XE0V5MvKyiQ5OVnuvPNON4y07ZiJmdyFmXp2Jk88R3lzpvXr10tcXJzMnTtX/vCHP0hwcLDMnz9fm+2nnmdFvOd3z1VYQLB77733ZPLkybJ06VLttg8//FACAgK0CzIR236dn3zyiezevVu77c0335TU1FQpKirqziG3avny5TJ79mx5//33tds++ugjMZlM2rSZzMxMSU1Nleuuu87psXv27BGdTue0y4QnYCZmchdmYiZ38cVMIm3L1dDSpUvFaDTKjh07pLCwUD744AO3b+HliJlsmKn7MZMNM3U/X8wkIvLHP/5RzjvvPO37PXv2yLnnnitTp06VsrIyEXFe2uANmVyFBQS7t956S2655RZtL0+LxSKZmZkSHx/f4rqbmpoaOffcc+Xuu+/urqG22Z49e+Tnn3922lrkv//9r9x2222Sk5Oj3aY2KHnppZe0JjKPPPKInHnmme3eaqWrMRMzuQszMZO7+GImkZZz5eXlNfu4GTNmyJAhQyQ+Pl4GDhwo+/fv747htgkz1WOm7sVM9Zipe/liJrPZLAsXLpSrr77a6favv/5aRo0aJffff7+INO6N4MmZXKnHFxBamhqzadMmSUxMbHL6zb59+2T16tVy9tlnS0pKiqxfv74rh9lp1dXVctlll4miKDJmzBiJiYmRp556SlsX+8gjj0hqaqr0799fZs2aJUFBQfL222+7edQtYyZmchdmYiZ38cVMIs3nys7OFpH6i7RNmzbJiBEjJDAwUB5//HF3DrlVzMRM7sJMzOQuvpRp3rx5cs011zj1PSgvL5eHHnpIhg8fLocPHxYR78rkKn7o4RRFAQCICBRFgdVqhU6nAwDs3LkT/fv3R1hYGOrq6uDnV/+/a926dfjnP/+J/v37Y/PmzYiMjHTL+Ntq27ZtKCwsxM8//4yUlBR8/PHHeO+99wAA999/P5YsWYKLLroI69atQ2FhIT7++GNmcgNmYiZ3YSZmcqemci1duhR6vR733nsvdDoddu7ciUWLFmHo0KFYvXo1wsPD3T3sFjETM7kLMzGTu/hCJovFAr1ej0svvRS333477rvvPgwdOhQAEBQUhJkzZ+Lbb7/FmjVrkJKS4hWZXM7dFYzu4tjowpHVam10nzoF59JLL5Xrr7/e6T51iUNOTo62fYe7tCdTU/t/jxkzRh588EHtMZ6AmZjJXZiJmdzFFzOJuDaXiEhhYaEcO3bMtYNsJ2ZiJndhJmZyF1/M1Byr1Sq1tbXa94MGDZJrrrlGe/+nSkxMlDfffFP73pMzdQWfn4Fw9OhR/PWvf4W/vz9iY2Nx++23IyYmBgC0WQV6vR65ubmoqqpC3759YTQaUV1djY0bN+K1114DAKxZswZ///vfcccdd2Du3LmIi4vzikyVlZXo169fo+c4ceIELBYLkpOTAdTPxHAXZmImd2EmZnIXX8wEdE0uAIiIiEBERES35XDETMzETK7DTMzkrkyZmZl48803cfbZZ2PChAnaDHSgfuaBn58fsrOzodfr8dJLL2HevHmYNWsWrrrqKuh0OuTm5iIkJAQBAQEekckddO4eQFd68sknMXr0aFRXVyMwMBAvvPAC/u///g/Hjh0DAPj5+UFE8Ic//AH9+/fH3r17tcfu3LkTsbGxSEpKwqJFizBr1iwkJiZi7ty57ooDoP2Z0tLSAEBblgEAx44dwz333IOIiAgsWLDALTkcMRMzuQszMZO7+GImwDdzMRMzuQszMZO7+GKmf//73xgzZgwef/xxfPbZZ6itrYWiKBARAIBer9cypaamYuPGjTjzzDNx00034R//+AcWLVqE77//HjfffDMMBgNmzJjh5kRu1L0THrqH1WqVL7/8UmbPni3Lly/Xbv/mm2+kX79+sm3bNhERKSgokMmTJ8uYMWPk559/dnqOZ555RhRFEYPBILNmzZLMzMxuzdBQZzNZLBZ59tln5eabb5bw8HA599xznbp3uwMzMZO7MBMzuYsvZhLxzVzMxEzuwkzM5C6+mElE5NixYzJv3jz5+9//LrfddptMnz5dvvnmGxGpX/rXXKaqqip57733ZNq0aTJu3Dg555xzJCsryy05PIVPLmFQFAWVlZU488wznSpes2fPRmFhIXJycgAAwcHB+O9//4tBgwZBr9cDqG+mqNfr0bt3b3z44YeYNGmSW3I46mwmnU6HIUOG4MCBA/jqq68wbdo0t+RwxEzM5C7MxEzu4ouZAN/MxUzM5C7MxEzu4ouZACA+Ph5/+MMfMG3aNJSVleGSSy7B559/jtNOOw3R0dEAms/k7++PK6+8EosWLUJpaal2fI/W3RWLrlBUVCQZGRkiYtu3U6Tphh87d+6UpKSkFptceEoDKmZiJndhJmZyF2byjkwivpmLmZjJXZiJmdzFFzPl5ubKa6+9JitXrpTc3FwRaTy2F198UcaNGydvvfWWG0bo/by+B8I//vEPJCcn44EHHgAAGAwGiIhT5UiVk5ODuLi4FitHjts6uktXZXInZmImd2EmZnIXX8wE+GYuZmImd2EmZnIXX8z03HPPoU+fPnjnnXdw4YUX4qKLLsKGDRu0sdXV1QEAbr75ZsTFxeHrr7/GwYMHAbj3vZ+38doCgtlsxr333osPPvgA06dPR1ZWFj7++GMAzr8Ajs0xPvvsM/Tp0weBgYHa/eXl5Y0eoz6uu3V1JndgJmZyF2ZiJnfxxUyAb+ZiJmZyF2ZiJnfxxUyAbceHd955B//617+wdu1afPXVV1oz/JMnTwKwNX+0WCwwmUz43e9+hyNHjuDzzz8HABQXFyM3NxcAYLVa3RXDK3htAcFoNCIlJQU33HADnn76aURHR2PZsmUoLi6GTqdr9A+goqICK1aswJVXXgkA+OKLLzBx4kT873//045xN2ZiJndhJmZyF2byjkyAb+ZiJmZyF2ZiJnfxxUwAsHLlSmRmZmLx4sUAgBkzZuDll1+G0WjEQw89BLPZDKB+p4jzzz8fY8aMwU8//YQHHngAQ4cOxZIlS5yOoWY0v7rB86lrdURE3njjDZk4caI8//zzTR67f/9+mThxonz//fcyf/58MRgMsmTJkm4aadsxEzO5CzMxk7swk3dkEvHNXMzETO7CTMzkLr6USe1vsGLFCgkLC5OjR4+KiEhtba2IiHz++efi5+cnW7Zs0Y63WCwiIvL666+LoigSFBQkTzzxhBtG7528uoDgqKSkRK677jqZPXu27Nu3T0RE++UQEVm2bJkoiiKKosiiRYukrKzMXUNtM2ZiJndhJmZyF2byjkwivpmLmZjJXZiJmdzFVzKtXbtWJk+eLE8//bR2m1pcmDRpklx55ZUiUp/txhtvFEVR5Oabb5aKioruH7AX85r5GeIwncZqtTb6PjQ0FJdccgnMZjPefPNNALbpJxaLBQBQUlKC888/H2lpafjggw8QHBzcvQGawEzM5C7MxEzuwkzekQnwzVzMxEzuwkzM5C6+kqmmpqbJ29VxTpo0CcnJyfj111+xe/duAPW9DC655BLs3bsXZWVl2vKEefPmYdOmTXj11VedejtQ6xRx/C3yEIcOHcI777yDPn36IDU1FaeffjqsVit0Oh3q6urg5+cHwNa8Izg42Om2++67Dxs2bMAjjzyCkpISfPPNN3jzzTe1xzMTMzETMzETMzGTM1/MxUzMxEzMxEzenUlEkJeXh8WLF2PcuHF45plnnMbiOH4A2LBhA26//XbMmDEDzz//vHb7TTfdhPT0dKxYsQIAtJ0mqIO6dH5DO9XW1sptt90mgYGBcu6558rYsWPF399f0tLSRKR+GkpNTY3ccsstct5550lNTY3Tfdu3b5fTTjtNAgICxGAwyJ133ul0f3djJmZiJtdhJmZiJtfyxVzMxEzM5DrMxEzuPEeJiHzzzTeiKIqEhoZqfQwc1dTUyO9//3s5//zzRUTkiSeekNTUVLnvvvvkyJEjcuDAAZk6dao8+uij3T10n+UxBYSSkhKZP3++zJkzRzZv3iwiIidOnJAJEybI7bffrh23dOlSiYiIkBkzZmjHqbKysuSWW24RRVHk2muvlfz8/G7N0BAzMZO7MBMzuQszeUcmEd/MxUzM5C7MxEzu4ouZHD3//PPy5z//Wc455xyZPXu2mM1mrajhmGnDhg0iIlJUVCTvvvuuhIaGyrBhwyQkJEQuuugij+3d4I3cWkBoWNF64403ZN26dU63zZs3T9avX699/+mnn8r//ve/Jqth//nPf2TQoEFOx3c3ZrJhpu7HTDbM1P2YycbTM4n4Zi5msmGm7sdMNszU/XpCJrXZ4WOPPSb33nuv7Ny5U3Q6nXzwwQfaMV9//bW89957TWbKzMyU9evXy+7du7t24D2Q2woIJSUlUlJS4nRbXV2d9ufMzEyZNWuWBAUFyYwZM2TRokWSm5vb5HO5e2qNipmYyV2YiZnchZm8I5OIb+ZiJmZyF2ZiJnfpCZkcd4G46KKL5J133hERkRtuuEFGjBghO3fulFdeeUXbqpG6l1s6Ytxzzz2YMWMGzj77bFx55ZUoLi52uj8nJwd33303IiMj8dVXX+GWW27B7t27ccMNN6CioqLR8ymKAsC5y2h3YyZmchdmYiZ3YSbvyAT4Zi5mYiZ3YSZmcpeekkmn06G6uhoAYDAYYDQaAQCPPvooDh06hNGjRyMtLU07hrpZd1YrNm3aJGPGjJGJEyfKN998I48++qgMGzZMLrzwQhFxrjZlZ2c7PXb16tViMBgkJyenO4fcKmZiJndhJmZyF2byjkwivpmLmZjJXZiJmdylJ2ZSzZ49W3bv3i3Lly+XiIgI6dWrlwQFBUl6erqbRk7dVkCwWCzy4IMPyqJFi5ymqHz88cfSt29fycrKavHxzz33nAwcOFAyMzM9ZroNMzXGTN2DmRpjpu7BTI15YiYR38zFTI0xU/dgpsaYqXv05Ey5ubkyY8YMMRgMEhkZKS+99JIUFhbKsGHD5PLLL3fX8Hs8v9bnKHRqdoPT1JhZs2bhzDPPRGhoqHZMTU0N/P39ERwc7HS8oy1btuCzzz7DFVdcgd69e3flkFvFTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLswUDACIjY3FqFGjcMYZZ+D666/XMvzlL3/BHXfcgdzcXMTFxXV/mB6uywoITz75JDIzM5Gamoobb7wRISEhmDt3rna/xWKBXq9HYWEhwsPDERwc7PSLf/z4caxYsQKrV6/Ghx9+iJtvvhl//vOfu2q4bcJMzOQuzMRM7sJM3pEJ8M1czMRM7sJMzOQuzGTLVFdXBz8/Pzz99NMICAhwer5LL70UF198MfR6fXdHIQAub6KYnp6OUaNGYdmyZaisrMSTTz6JOXPm4IcffgBQ36RD/UVftWoVpk6dCp1O59TAo7a2Fnv37oXZbMbOnTvxwgsvuO2XhJmYiZlch5mYiZlcyxdzMRMzMZPrMBMzeWMmnc72NrVh8UDF4oEbtX21Q9u88sorMn78eKmsrBQR27Ycp59+upx11lnaPpxqo4/q6mrp16+ffPfdd9rj09LSRMS2rUhpaamrh9chzMRM7sJMzOQuzOQdmUR8MxczMZO7MBMzuQszNc60b9++7h80tcplMxBEBBaLBTt37kRMTIy23UZoaCgefPBBVFdX45VXXgEAraK0fv16WCwWTJs2Dfv378ecOXMwevRoZGVlQVEUhISEuGp4HcJMzOQuzMRM7sJM3pEJ8M1czMRM7sJMzOQuzNR8plGjRiErK8ttOahpnSog7NmzB6WlpQBsU0/0ej3MZjOqq6thtVphsVgAAGeeeSZmzJiBXbt2Yc2aNdrjd+3ahfj4eDz22GMYPnw4YmJikJubi169enVmWJ3CTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLszkHZmoGR2ZtvD111/LyJEjZdiwYTJgwAD505/+pE1NWbNmjeh0Ovntt99ERKS2tlZERDZv3iwjR46Uf/3rX9rznHXWWaIoikyZMkU2bdrUkaG4DDMxk7swEzO5CzN5RyYR38zFTMzkLszETO7CTN6RiVrWrgJCVVWVPPzww9K7d2/5+9//Lps2bZIXXnhBFEWRr7/+WkREKioqZPbs2TJr1iwREaf9RkePHi333HOPiNjWuyxfvlw+/fRTV2XpEGZiJndhJmZyF2byjkwivpmLmZjJXZiJmdyFmbwjE7VNuwoIhw8flkmTJml/ueovwbx58+Sqq67Sjlu7dq0YjUZ56aWXpK6uTkRsv0CTJk2SJ554wlVjdwlmYiZ3YSZmchdm8o5MIr6Zi5mYyV2YiZnchZm8IxO1TbuXMLz99tvatBT1F+Xiiy+Wu+++2+m4p556SqKiouTaa6+Vn376Se69917p3bu3bN++vfOjdjFmYiZ3YSZmchdm8o5MIr6Zi5mYyV2YiZnchZm8IxO1rlPbOJrNZhERGTVqlLz88suN7n/llVdk5syZMmrUKBk5cqSsW7euMz+uWzATM7kLMzGTuzCTd2QS8c1czMRM7sJMzOQuzOQdmahpnSogiIhkZGRIQkKCZGZmNnm/1WqVjIyMzv6YbsVM3oGZvAMzeQdm8h6+mIuZvAMzeQdm8g7MRN6qU9s4ArY9OxMSEtC7d28AQH5+PtatW6dt1aEoCvr27dvZH9OtmMk7MJN3YCbvwEzewxdzMZN3YCbvwEzegZnIW3W4gKD+IqxcuRITJkwAADz55JOIjY3Fl19+CavV6poRdiNm8g7M5B2YyTswk/fwxVzM5B2YyTswk3dgJvJ2fh19oF6vR21tLfbs2YO+ffti8ODBqK6uxldffYVzzjnHlWPsNszkHZjJOzCTd2Am7+GLuZjJOzCTd2Am78BM5PU6s/5h3759oiiKREdHyzPPPOOqZRVuxUzegZm8AzN5B2byHr6Yi5m8AzN5B2byDsxE3qzTTRRfeeUVqaqqcsVYPAYzeQdm8g7M5B2YyXv4Yi5m8g7M5B2YyTswE3krRUTE3bMgiIiIiIiIiMizdXoXBiIiIiIiIiLyfSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErWIBgYiIiIiIiIhaxQICEREREREREbWKBQQiIiIiIiIiahULCERERERERETUKhYQiIiIiIiIiKhVLCAQERERERERUatYQCAiIiIiIiKiVv0/Pzgc/06BEVMAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Step 6 - Rescaling, error metrics and visualization\n",
"\n",
"# Load the best model weights\n",
"best_model_path = 'best_model.pth'\n",
"model.load_state_dict(torch.load(best_model_path, map_location=device))\n",
"\n",
"# Evaluate the model\n",
"model.eval()\n",
"test_predictions = []\n",
"with torch.no_grad(): # No gradients needed for inference\n",
" for i in range(len(X_test_tensors)):\n",
" X_batch = X_test_tensors[i].unsqueeze(0) # Add batch dimension\n",
" y_pred = model(X_batch) # No hidden state needed for Transformer\n",
" test_predictions.append(y_pred.squeeze().item()) # Remove batch dimension and convert to item\n",
"\n",
"# Denormalization of predictions and actual values\n",
"test_predictions_denorm = lastgang_scaler.inverse_transform(np.array(test_predictions).reshape(-1, 1))\n",
"y_test_denorm = lastgang_scaler.inverse_transform(y_test.reshape(-1, 1))\n",
"\n",
"# Calculation of error metrics\n",
"mse = mean_squared_error(y_test_denorm, test_predictions_denorm) # Mean Squared Error\n",
"mae = mean_absolute_error(y_test_denorm, test_predictions_denorm) # Mean Absolute Error\n",
"rmse = np.sqrt(mse) # Root Mean Square Error\n",
"mape = np.mean(np.abs((y_test_denorm - test_predictions_denorm) / y_test_denorm)) * 100 # Mean Absolute Percentage Error\n",
"\n",
"print(f\"Mean Squared Error (MSE): {mse}\")\n",
"print(f\"Mean Absolute Error (MAE): {mae}\")\n",
"print(f\"Root Mean Square Error (RMSE): {rmse}\")\n",
"print(f\"Mean Absolute Percentage Error (MAPE): {mape}%\")\n",
"\n",
"# Visualization of actual vs predicted values\n",
"plt.figure(figsize=(12, 6))\n",
"test_dates = pd.date_range(start=dfEnergyAll.index[-len(X_test):][0], periods=len(y_test), freq='15T')\n",
"plt.plot(test_dates, y_test_denorm, label='Actual Values', color='#3E7A6F')\n",
"plt.plot(test_dates, test_predictions_denorm, label='Predicted Values', color='#7DFFE7')\n",
"plt.legend()\n",
"plt.title('Comparison of Actual and Predicted Values: Transformer over 48 Hours')\n",
"plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M')) # Format x-axis for dates\n",
"plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3)) # Set major tick intervals\n",
"plt.gcf().autofmt_xdate() # Auto-format date labels for better readability\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "a467f613-a988-4cff-8b07-6c24a18061ce",
"metadata": {},
"outputs": [],
"source": [
"# Step 6 - Rescaling, error metrics and visualization\n",
"\n",
"# Saving the model for later\n",
"torch.save(model.state_dict(), 'transformer_model.pth')"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "ec2ae0f8-ea84-46c0-90ce-4961b21cb9b3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GPU after model training: 2024-05-03 17:30:49\n",
"GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 14824.0MB, Used: 66214.0MB, Utilization: 24.0%\n",
"GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 236.0MB, Used: 80803.0MB, Utilization: 55.00000000000001%\n",
"CPU after model training:\n",
"CPU Utilization: 81.2%\n",
"RAM after model training:\n",
"Total memory: 146.88 GB\n",
"Available memory: 110.39 GB\n",
"Used memory: 34.70 GB\n",
"Memory usage: 24.8%\n"
]
}
],
"source": [
"# Step 7 - Show GPU Utilization and Memory Usage after Model Training\n",
"\n",
"print(\"GPU after model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")) # Print GPU utilization after model training\n",
"print_gpu_utilization() # Call function to print GPU utilization\n",
"\n",
"print(\"CPU after model training:\") # Print CPU utilization after model training\n",
"print_cpu_utilization() # Call function to print CPU utilization\n",
"\n",
"print(\"RAM after model training:\") # Print RAM usage after model training\n",
"print_memory_usage() # Call function to print RAM usage"
]
},
{
"cell_type": "markdown",
"id": "dcd59d0a-ef66-4e51-886a-ddfb2f42025f",
"metadata": {},
"source": [
"## 2 - Transformer-Architecture with Energy consumption data and 2 variables 'Lastgang_Moving_Average' and 'Lastgang_First_Difference'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "04646c37-be07-45ad-98ad-9b2851d89658",
"metadata": {},
"outputs": [],
"source": [
"# Step 3 - Data Scaling\n",
"\n",
"# Initialize the scalers\n",
"lastgang_scaler = MinMaxScaler(feature_range=(0, 1)) # Scaler for the target variable\n",
"features_scaler = MinMaxScaler(feature_range=(0, 1)) # Scaler for the feature variables\n",
"\n",
"# Apply the scaler to the appropriate columns\n",
"dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1)) # Scale the main target variable\n",
"dfEnergyAll[['Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['Lastgang_Moving_Average', 'Lastgang_First_Difference']]) # Scale selected features\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86d884b0-1b5e-4041-bcf6-c0cbe4252f0e",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
"\n",
"# Step 2 - Data Preparation: Create sequences and add positional encoding\n",
"def create_sequences(data, seq_length):\n",
" xs = [] # list to store sequences\n",
" ys = [] # list to store target values corresponding to each sequence\n",
" for i in range(len(data) - seq_length):\n",
" x = data.iloc[i:(i + seq_length)].to_numpy() # extract sequence of length seq_length from data\n",
" y = data.iloc[i + seq_length, 0] # target value at the end of the sequence\n",
" xs.append(x)\n",
" ys.append(y)\n",
" return np.array(xs), np.array(ys) # convert lists to numpy arrays for machine learning processing\n",
"\n",
"seq_length = 192 # define the length of sequences\n",
"X, y = create_sequences(dfEnergyAll, seq_length) # create sequences and corresponding targets from the dataset\n",
"\n",
"# Use the last 192 sequences for testing to maintain a comparable distribution as the TBATS model\n",
"X_train, X_test = X[:-192], X[-192:] # split data into training and testing sets\n",
"y_train, y_test = y[:-192], y[-192:] # split targets into training and testing sets\n",
"\n",
"# Function for positional encoding\n",
"def positional_encoding(seq_len, d_model):\n",
" encoding = np.array([\n",
" [pos / np.power(10000, 2 * (j // 2) / d_model) for j in range(d_model)]\n",
" if pos != 0 else np.zeros(d_model) \n",
" for pos in range(seq_len)\n",
" ])\n",
" encoding[1:, 0::2] = np.sin(encoding[1:, 0::2]) # apply sine to even indices\n",
" encoding[1:, 1::2] = np.cos(encoding[1:, 1::2]) # apply cosine to odd indices\n",
" return encoding\n",
"\n",
"# Apply positional encodings\n",
"d_model = X_train.shape[2] # number of features in the data\n",
"pos_enc = positional_encoding(seq_length, d_model) # generate positional encoding based on sequence length and number of features\n",
"\n",
"# Add positional encodings to the sequences\n",
"X_train_enc = np.array([x + pos_enc for x in X_train]) # add positional encoding to training data\n",
"X_test_enc = np.array([x + pos_enc for x in X_test]) # add positional encoding to testing data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d48f7903-acde-4110-a95d-7291ef66848f",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
"\n",
"# Print the shapes of the training and testing datasets\n",
"print(f\"X_train Shape: {X_train.shape}\")\n",
"print(f\"X_test Shape: {X_test.shape}\")\n",
"\n",
"# Print the shapes of the training and testing datasets with positional encodings applied\n",
"print(f\"X_train_enc Shape: {X_train_enc.shape}\")\n",
"print(f\"X_test_enc Shape: {X_test_enc.shape}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9522a46a-5d2b-462d-8841-57163be8dff2",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"# Check Hardware Availability for the PyTorch code\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "edc7888b-ee3d-40b0-9106-30113640a475",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"X_train_tensors = torch.Tensor(X_train_enc).to(device) # Convert training data to tensors and move to the designated device (GPU or CPU)\n",
"y_train_tensors = torch.Tensor(y_train).view(-1, 1).to(device) # Convert training labels to tensors, reshape them and move to the device\n",
"X_test_tensors = torch.Tensor(X_test_enc).to(device) # Convert testing data to tensors and move to the designated device\n",
"y_test_tensors = torch.Tensor(y_test).view(-1, 1).to(device) # Convert testing labels to tensors, reshape them and move to the device"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8941331-bb15-43d3-aa83-938e47728b9d",
"metadata": {},
"outputs": [],
"source": [
"# Step 4 - Creating the sequences and the LSTM model\n",
"\n",
"#Create Transformer Model\n",
"class TransformerModel(nn.Module):\n",
" def __init__(self, input_size, hidden_layer_size, output_size, num_layers, nhead):\n",
" super(TransformerModel, self).__init__()\n",
" self.input_size = input_size # Number of input features\n",
" self.hidden_layer_size = hidden_layer_size # Size of the hidden layer\n",
" self.output_size = output_size # Size of the output layer\n",
"\n",
" # Embedding layer that maps input features to the hidden layer size\n",
" self.embedding = nn.Linear(input_size, hidden_layer_size)\n",
"\n",
" # Transformer Encoder\n",
" encoder_layers = nn.TransformerEncoderLayer(d_model=hidden_layer_size, nhead=nhead)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)\n",
"\n",
" # Linear layer for output\n",
" self.linear = nn.Linear(hidden_layer_size, output_size)\n",
"\n",
" def forward(self, src):\n",
" # Apply embedding to the source data\n",
" src = self.embedding(src)\n",
"\n",
" # Transformer Encoder processes the data\n",
" src = src.permute(1, 0, 2) # Transformer expects [seq_len, batch, features]\n",
" output = self.transformer_encoder(src)\n",
"\n",
" # Take only the output of the last time step for prediction\n",
" output = output[-1]\n",
"\n",
" # Output through linear layer\n",
" output = self.linear(output)\n",
" return output\n",
"\n",
"# Parameters\n",
"input_size = 3 # Number of input features\n",
"hidden_layer_size = 100 # Size of the hidden layer\n",
"output_size = 1 # Output size\n",
"num_layers = 2 # Number of layers in the transformer\n",
"nhead = 2 # Number of attention heads\n",
"\n",
"# Instantiate the model\n",
"model = TransformerModel(input_size, hidden_layer_size, output_size, num_layers, nhead).to(device) # Create the model and move it to the designated device"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b331b915-ca73-4a0d-93cd-4c59bf6cc766",
"metadata": {},
"outputs": [],
"source": [
"# Step 5 - Model Training\n",
"\n",
"# Define the number of epochs and batch size\n",
"loss_function = nn.MSELoss() # Loss function for measuring the mean squared error loss\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Optimizer with a learning rate of 0.001\n",
"epochs = 70 # Total number of epochs to train the model\n",
"batch_size = 12 # Number of samples per batch\n",
"\n",
"# For storing the loss values\n",
"train_losses = [] # List to store training loss values for each epoch\n",
"test_losses = [] # List to store validation loss values for each epoch\n",
"\n",
"# Initialize variables for Early Stopping\n",
"best_test_loss = float('inf') # Best validation loss seen so far, initialized to infinity\n",
"best_model_path = 'best_model.pth' # Path to save the best performing model\n",
"early_stopping_patience = 5 # Number of epochs to continue without improvement before stopping\n",
"epochs_without_improvement = 0 # Counter to track epochs without improvement\n",
"\n",
"for epoch in range(epochs): # Loop over each epoch\n",
" model.train() # Set the model to training mode\n",
" train_loss = 0.0 # Reset training loss for this epoch\n",
" for i in range(0, len(X_train_tensors), batch_size): # Iterate over the training data in batches\n",
" X_batch = X_train_tensors[i:i + batch_size] # Get the current batch of input data\n",
" y_batch = y_train_tensors[i:i + batch_size] # Get the current batch of target data\n",
"\n",
" # Dynamic adjustment of the batch size for the last batch of the epoch\n",
" actual_batch_size = X_batch.size(0)\n",
"\n",
" optimizer.zero_grad() # Reset the gradients to zero\n",
"\n",
" # No need to manage hidden states for the Transformer model\n",
" y_pred = model(X_batch) # Forward pass through the model\n",
"\n",
" loss = loss_function(y_pred, y_batch) # Calculate loss\n",
" loss.backward() # Backpropagation\n",
" optimizer.step() # Update model weights\n",
" \n",
" train_loss += loss.item() * actual_batch_size # Accumulate the loss\n",
"\n",
" # Calculate the average training loss for this epoch\n",
" train_loss /= len(X_train_tensors)\n",
" train_losses.append(train_loss)\n",
"\n",
" # Validation phase\n",
" model.eval() # Set the model to evaluation mode\n",
" test_loss = 0.0\n",
" with torch.no_grad(): # No gradient calculations\n",
" for i in range(0, len(X_test_tensors), batch_size):\n",
" X_batch = X_test_tensors[i:i + batch_size]\n",
" y_batch = y_test_tensors[i:i + batch_size]\n",
"\n",
" y_pred = model(X_batch) # Forward pass through the model for validation\n",
" loss = loss_function(y_pred, y_batch) # Calculate loss\n",
" test_loss += loss.item() * actual_batch_size # Accumulate the loss\n",
" \n",
" # Calculate the average validation loss for this epoch\n",
" test_loss /= len(X_test_tensors)\n",
" test_losses.append(test_loss)\n",
"\n",
" if test_loss < best_test_loss:\n",
" best_test_loss = test_loss # Update the best test loss\n",
" torch.save(model.state_dict(), best_model_path) # Save the best model\n",
" epochs_without_improvement = 0 # Reset the improvement counter\n",
" print(f'New best model saved at epoch {epoch+1} with test loss {test_loss}.')\n",
" else:\n",
" epochs_without_improvement += 1 # Increment the no-improvement counter\n",
"\n",
" print(f'Epoch {epoch + 1}, Train Loss: {train_loss}, Test Loss: {test_loss}')\n",
"\n",
" if epochs_without_improvement >= early_stopping_patience:\n",
" print(f'Early Stopping after {epoch+1} epochs!') # Stop training if no improvement\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df8b91d4-cd5e-4359-9700-8f071cf4f5b4",
"metadata": {},
"outputs": [],
"source": [
"# Step 5 - Model Training\n",
"\n",
"#Printing the learning curve\n",
"plt.plot(train_losses, label='Train Loss')\n",
"plt.plot(test_losses, label='Test Loss')\n",
"plt.xlabel('Epochs')\n",
"plt.ylabel('Loss')\n",
"plt.title('Learning Curve')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ddd6b5d3-6cff-4d55-8272-c56b43074fe1",
"metadata": {},
"outputs": [],
"source": [
"# Step 6 - Rescaling, error metrics and visualization\n",
"\n",
"# Load the best model weights\n",
"best_model_path = 'best_model.pth'\n",
"model.load_state_dict(torch.load(best_model_path, map_location=device))\n",
"\n",
"# Evaluate the model\n",
"model.eval()\n",
"test_predictions = []\n",
"with torch.no_grad(): # No gradients needed for inference\n",
" for i in range(len(X_test_tensors)):\n",
" X_batch = X_test_tensors[i].unsqueeze(0) # Add batch dimension\n",
" y_pred = model(X_batch) # No hidden state needed for Transformer\n",
" test_predictions.append(y_pred.squeeze().item()) # Remove batch dimension and convert to item\n",
"\n",
"# Denormalization of predictions and actual values\n",
"test_predictions_denorm = lastgang_scaler.inverse_transform(np.array(test_predictions).reshape(-1, 1))\n",
"y_test_denorm = lastgang_scaler.inverse_transform(y_test.reshape(-1, 1))\n",
"\n",
"# Calculation of error metrics\n",
"mse = mean_squared_error(y_test_denorm, test_predictions_denorm) # Mean Squared Error\n",
"mae = mean_absolute_error(y_test_denorm, test_predictions_denorm) # Mean Absolute Error\n",
"rmse = np.sqrt(mse) # Root Mean Square Error\n",
"mape = np.mean(np.abs((y_test_denorm - test_predictions_denorm) / y_test_denorm)) * 100 # Mean Absolute Percentage Error\n",
"\n",
"print(f\"Mean Squared Error (MSE): {mse}\")\n",
"print(f\"Mean Absolute Error (MAE): {mae}\")\n",
"print(f\"Root Mean Square Error (RMSE): {rmse}\")\n",
"print(f\"Mean Absolute Percentage Error (MAPE): {mape}%\")\n",
"\n",
"# Visualization of actual vs predicted values\n",
"plt.figure(figsize=(12, 6))\n",
"test_dates = pd.date_range(start=dfEnergyAll.index[-len(X_test):][0], periods=len(y_test), freq='15T')\n",
"plt.plot(test_dates, y_test_denorm, label='Actual Values', color='#3E7A6F')\n",
"plt.plot(test_dates, test_predictions_denorm, label='Predicted Values', color='#7DFFE7')\n",
"plt.legend()\n",
"plt.title('Comparison of Actual and Predicted Values: Transformer over 48 Hours')\n",
"plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M')) # Format x-axis for dates\n",
"plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3)) # Set major tick intervals\n",
"plt.gcf().autofmt_xdate() # Auto-format date labels for better readability\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|