File size: 208,275 Bytes
027bd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49343c3
 
 
027bd9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "30b18a7c-b40c-4b53-b1cc-90eb0632e6d3",
   "metadata": {},
   "source": [
    "# Transformer-Architecture for the prediction of energy consumption data over 48 hours\n",
    "### 1 - Transformer-Architecture with Energy consumption data and weather data\n",
    "### 2 - Transformer-Architecture with Energy consumption data and 2 variables 'Lastgang_Moving_Average' and 'Lastgang_First_Difference'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "db9e4cca-6b76-41b9-a8c3-645bc7bd97de",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Install all required packages with 'conda install NAME' or with pip install NAME'\n",
    "# pandas\n",
    "# numpy\n",
    "# matplotlib\n",
    "# scikit-learn\n",
    "# torch\n",
    "# gputil\n",
    "# psutil\n",
    "# torchsummary"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "abe044e7-e328-433e-8c33-adf3b8442863",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Import all required libraries\n",
    "import sys  # Provides access to some variables used or maintained by the interpreter\n",
    "import pandas as pd # Library for data manipulation and analysis, ideal for working with structured data like tables\n",
    "import numpy as np # For scientific computing, supports large, multi-dimensional arrays and matrices\n",
    "import matplotlib.pyplot as plt # For creating static, interactive, and animated visualizations\n",
    "import matplotlib.dates as mdates # Provides classes for manipulating dates in plots\n",
    "from pathlib import Path  # Used for filesystem path manipulation in an object-oriented way\n",
    "import torch # Scientific computing library for ML and neural networks\n",
    "import torch.nn as nn # Module in PyTorch providing various layers and parameters for neural networks, facilitates building and training\n",
    "from sklearn.metrics import mean_squared_error, mean_absolute_error # For calculating key regression metrics\n",
    "from sklearn.preprocessing import MinMaxScaler # For scaling and normalizing features, often useful in data preprocessing\n",
    "import os # Provides a way of using operating system dependent functionality\n",
    "import GPUtil # For monitoring GPU utilization\n",
    "from datetime import datetime # For handling dates and times\n",
    "import psutil # For accessing system details and process utilities\n",
    "from torchsummary import summary  # Import summary from torchsummary to display a summary of model layers and parameters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "cabbab8f-0d40-44ab-975e-0f18ea6056db",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "/home/sarah/anaconda3/envs/BT2024PyTorch/bin/python\n"
     ]
    }
   ],
   "source": [
    "#To display the current environment\n",
    "print(sys.executable)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "944e31d4-e885-4fa7-ab6c-e2a2a3bc14e7",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First and last rows from dfClimaAll:\n",
      "   dy  Globalstrahlung_15Min  Sonnenhöhe  ExtraterrestrischeStrahlung  \\\n",
      "0   1                      0       -65.0                            0   \n",
      "1   1                      0       -65.0                            0   \n",
      "2   1                      0       -65.4                            0   \n",
      "3   1                      0       -65.5                            0   \n",
      "4   1                      0       -65.2                            0   \n",
      "\n",
      "   StundenwertStrahlung  Diffusstrahlung  StrahlungGeneigteFläche  \\\n",
      "0                     0                0                        0   \n",
      "1                     0                0                        0   \n",
      "2                     0                0                        0   \n",
      "3                     0                0                        0   \n",
      "4                     0                0                        0   \n",
      "\n",
      "   DiffusstrahlungGeneigteFläche  Direktnormalstrahlung  Lufttemperatur  \\\n",
      "0                              0                      0             2.5   \n",
      "1                              0                      0             2.5   \n",
      "2                              0                      0             2.5   \n",
      "3                              0                      0             2.5   \n",
      "4                              0                      0             2.4   \n",
      "\n",
      "   Windgeschwindigkeit  Schönwetterstrahlung  Taupunkttemperatur  TheorPVProd  \\\n",
      "0                  1.2                     0                 0.8            0   \n",
      "1                  1.2                     0                 0.8            0   \n",
      "2                  1.2                     0                 0.8            0   \n",
      "3                  1.1                     0                 0.8            0   \n",
      "4                  1.1                     0                 0.8            0   \n",
      "\n",
      "     TimestampWeather  \n",
      "0 2021-01-01 00:00:00  \n",
      "1 2021-01-01 00:15:00  \n",
      "2 2021-01-01 00:30:00  \n",
      "3 2021-01-01 00:45:00  \n",
      "4 2021-01-01 01:00:00  \n",
      "        dy  Globalstrahlung_15Min  Sonnenhöhe  ExtraterrestrischeStrahlung  \\\n",
      "35035  365                      0       -56.5                            0   \n",
      "35036  365                      0       -58.5                            0   \n",
      "35037  365                      0       -60.3                            0   \n",
      "35038  365                      0       -61.9                            0   \n",
      "35039  365                      0       -63.3                            0   \n",
      "\n",
      "       StundenwertStrahlung  Diffusstrahlung  StrahlungGeneigteFläche  \\\n",
      "35035                     0                0                        0   \n",
      "35036                     0                0                        0   \n",
      "35037                     0                0                        0   \n",
      "35038                     0                0                        0   \n",
      "35039                     0                0                        0   \n",
      "\n",
      "       DiffusstrahlungGeneigteFläche  Direktnormalstrahlung  Lufttemperatur  \\\n",
      "35035                              0                      0             5.5   \n",
      "35036                              0                      0             5.5   \n",
      "35037                              0                      0             5.5   \n",
      "35038                              0                      0             5.5   \n",
      "35039                              0                      0             4.9   \n",
      "\n",
      "       Windgeschwindigkeit  Schönwetterstrahlung  Taupunkttemperatur  \\\n",
      "35035                  2.4                     0               -18.2   \n",
      "35036                  2.4                     0               -18.2   \n",
      "35037                  2.4                     0               -18.2   \n",
      "35038                  2.4                     0               -18.2   \n",
      "35039                  1.8                     0               -14.0   \n",
      "\n",
      "       TheorPVProd    TimestampWeather  \n",
      "35035            0 2023-12-31 22:45:00  \n",
      "35036            0 2023-12-31 23:00:00  \n",
      "35037            0 2023-12-31 23:15:00  \n",
      "35038            0 2023-12-31 23:30:00  \n",
      "35039            0 2023-12-31 23:45:00  \n",
      "Number of missing values per column:\n",
      "dy                               0\n",
      "Globalstrahlung_15Min            0\n",
      "Sonnenhöhe                       0\n",
      "ExtraterrestrischeStrahlung      0\n",
      "StundenwertStrahlung             0\n",
      "Diffusstrahlung                  0\n",
      "StrahlungGeneigteFläche          0\n",
      "DiffusstrahlungGeneigteFläche    0\n",
      "Direktnormalstrahlung            0\n",
      "Lufttemperatur                   0\n",
      "Windgeschwindigkeit              0\n",
      "Schönwetterstrahlung             0\n",
      "Taupunkttemperatur               0\n",
      "TheorPVProd                      0\n",
      "TimestampWeather                 0\n",
      "dtype: int64\n",
      "Number of rows in dfClimaAll: 105120\n"
     ]
    }
   ],
   "source": [
    "# Step 1 - Reading Data\n",
    "\n",
    "## dfClimaAll: Data from 2021-2023\n",
    "## dfEnergyAll: All data from the transformer station from 2021-2023\n",
    "\n",
    "# Load data for 2021\n",
    "dfClima21 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2021TimeWeather.xlsx')\n",
    "\n",
    "# Load data for 2022\n",
    "dfClima22 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2022TimeWeather.xlsx')\n",
    "\n",
    "# Load data for 2023\n",
    "dfClima23 = pd.read_excel('/home/sarah/Documents/BT2024/Weather_Data/2023TimeWeather.xlsx')\n",
    "\n",
    "# Merge the DataFrames\n",
    "dfClimaAll = pd.concat([dfClima21, dfClima22, dfClima23])\n",
    "\n",
    "# Check the resulting DataFrame\n",
    "print(\"First and last rows from dfClimaAll:\")\n",
    "print(dfClimaAll.head())\n",
    "print(dfClimaAll.tail())\n",
    "\n",
    "# Check for missing values in each column\n",
    "## .isnull(): Returns DF where values with NaN are replaced by True & values without NaN are replaced by False\n",
    "## sum(): Sums up the number of True values\n",
    "print(\"Number of missing values per column:\")\n",
    "print(dfClimaAll.isnull().sum())\n",
    "\n",
    "# Convert 'Timestamp' into a Datetime object and set it as index, if not already set\n",
    "if 'TimestampWeather' in dfClimaAll.columns:\n",
    "    ## pd.to_datetime: Converts values into Datetime objects —> Pandas can then treat these as timestamps\n",
    "    dfClimaAll['TimestampWeather'] = pd.to_datetime(dfClimaAll['TimestampWeather'])\n",
    "    ## set_index: Sets index for the Timestamp column to facilitate access to data based on time points\n",
    "    dfClimaAll = dfClimaAll.set_index('TimestampWeather')\n",
    "\n",
    "# Number of rows in dfClimaAll\n",
    "print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "dd18e843-0297-4813-a58b-4a448f63c446",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First and last rows from dfEnergyAll:\n",
      "                     Lastgang\n",
      "Timestamp                    \n",
      "2021-01-01 00:00:00    472.88\n",
      "2021-01-01 00:15:00    498.83\n",
      "2021-01-01 00:30:00    480.48\n",
      "2021-01-01 00:45:00    446.74\n",
      "2021-01-01 01:00:00    459.55\n",
      "                     Lastgang\n",
      "Timestamp                    \n",
      "2023-12-31 22:45:00    833.17\n",
      "2023-12-31 23:00:00    767.89\n",
      "2023-12-31 23:15:00    770.04\n",
      "2023-12-31 23:30:00    730.45\n",
      "2023-12-31 23:45:00    744.21\n",
      "Number of rows in dfEnergyAll: 105108\n"
     ]
    }
   ],
   "source": [
    "# Step 1 - Reading Data\n",
    "\n",
    "## dfClimaAll: Data from 2021-2023\n",
    "## dfEnergyAll: All data from the transformer station from 2021-2023\n",
    "\n",
    "# Path to the directory containing the Excel files\n",
    "directory_path = Path('/home/sarah/Documents/BT2024/All')\n",
    "\n",
    "# Create a list of all Excel files in the directory\n",
    "file_paths = list(directory_path.glob('*.xlsx'))\n",
    "\n",
    "# List to store the individual DataFrames\n",
    "dfs = []\n",
    "\n",
    "# Loop over all file paths\n",
    "for file_path in file_paths:\n",
    "    # Read the Excel file\n",
    "    df = pd.read_excel(file_path)\n",
    "    \n",
    "    # Convert the 'Timestamp' column to a datetime\n",
    "    df['Timestamp'] = pd.to_datetime(df['Timestamp'])\n",
    "    \n",
    "    # Convert the 'Lastgang' column to a numeric type, treat errors as NaN\n",
    "    df['Lastgang'] = pd.to_numeric(df['Lastgang'], errors='coerce')\n",
    "    \n",
    "    # Sort the DataFrame by 'Timestamp'\n",
    "    df = df.sort_values(by='Timestamp')\n",
    "    \n",
    "    # Perform linear interpolation for 'Lastgang' on the individual DataFrame\n",
    "    df['Lastgang'] = df['Lastgang'].interpolate(method='linear')\n",
    "    \n",
    "    # Add the DataFrame to the list\n",
    "    dfs.append(df)\n",
    "\n",
    "# Merge all DataFrames in the list\n",
    "dfEnergyAll = pd.concat(dfs).set_index('Timestamp')\n",
    "\n",
    "# Sum the 'Lastgang' values for identical timestamps\n",
    "dfEnergyAll = dfEnergyAll.groupby('Timestamp').sum()\n",
    "\n",
    "# Check the resulting DataFrame\n",
    "print(\"First and last rows from dfEnergyAll:\")\n",
    "print(dfEnergyAll.head())\n",
    "print(dfEnergyAll.tail())\n",
    "\n",
    "# Display the number of rows in dfEnergyAll\n",
    "print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "f57c59a7-8588-400b-a65e-7798892b3bff",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Missing timestamps in dfEnergyAll:\n",
      "DatetimeIndex(['2021-03-28 02:00:00', '2021-03-28 02:15:00',\n",
      "               '2021-03-28 02:30:00', '2021-03-28 02:45:00',\n",
      "               '2022-03-27 02:00:00', '2022-03-27 02:15:00',\n",
      "               '2022-03-27 02:30:00', '2022-03-27 02:45:00',\n",
      "               '2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
      "               '2023-03-26 02:30:00', '2023-03-26 02:45:00'],\n",
      "              dtype='datetime64[ns]', name='Timestamp', freq=None)\n",
      "Check after adding the missing timestamps:\n",
      "                     Lastgang\n",
      "2021-03-28 02:00:00    372.28\n",
      "2021-03-28 02:15:00    372.28\n",
      "2021-03-28 02:30:00    372.28\n",
      "2021-03-28 02:45:00    372.28\n",
      "2022-03-27 02:00:00    554.20\n",
      "2022-03-27 02:15:00    554.20\n",
      "2022-03-27 02:30:00    554.20\n",
      "2022-03-27 02:45:00    554.20\n",
      "2023-03-26 02:00:00    520.34\n",
      "2023-03-26 02:15:00    520.34\n",
      "2023-03-26 02:30:00    520.34\n",
      "2023-03-26 02:45:00    520.34\n",
      "Number of rows in dfClima21: 105120\n",
      "Number of rows in dfEnergyAll: 105120\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_1514653/1871761932.py:32: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
      "  dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# Create a complete timestamp index for the years 2021 - 2023 in 15-minute intervals\n",
    "all_timestamps = pd.date_range(start='2021-01-01 00:00:00', end='2023-12-31 23:45:00', freq='15T')\n",
    "\n",
    "# Convert this into a DataFrame\n",
    "df_all_timestamps = pd.DataFrame(all_timestamps, columns=['Timestamp'])\n",
    "df_all_timestamps = df_all_timestamps.set_index('Timestamp')\n",
    "\n",
    "# Compare the complete timestamp index with dfEnergyAll\n",
    "missing_timestamps = df_all_timestamps.index.difference(dfEnergyAll.index)\n",
    "\n",
    "print(\"Missing timestamps in dfEnergyAll:\")\n",
    "print(missing_timestamps)\n",
    "\n",
    "\n",
    "# Missing timestamps\n",
    "missing_timestamps = pd.DatetimeIndex(['2021-03-28 02:00:00', '2021-03-28 02:15:00',\n",
    "                                       '2021-03-28 02:30:00', '2021-03-28 02:45:00',\n",
    "                                       '2022-03-27 02:00:00', '2022-03-27 02:15:00',\n",
    "                                       '2022-03-27 02:30:00', '2022-03-27 02:45:00',\n",
    "                                       '2023-03-26 02:00:00', '2023-03-26 02:15:00',\n",
    "                                       '2023-03-26 02:30:00', '2023-03-26 02:45:00'])\n",
    "\n",
    "# Create a DataFrame with the missing timestamps\n",
    "df_missing = pd.DataFrame(index=missing_timestamps)\n",
    "\n",
    "# Merge this DataFrame with the original DataFrame\n",
    "dfEnergyAll = dfEnergyAll.combine_first(df_missing)\n",
    "\n",
    "# Fill the missing values. Use 'ffill' for forward fill.\n",
    "dfEnergyAll = dfEnergyAll.sort_index().fillna(method='ffill')\n",
    "\n",
    "print(\"Check after adding the missing timestamps:\")\n",
    "print(dfEnergyAll.loc[missing_timestamps])\n",
    "\n",
    "# Number of rows in dfClimaAll\n",
    "# Ensure dfClimaAll is already defined before executing this line.\n",
    "print(\"Number of rows in dfClimaAll:\", dfClimaAll.shape[0])\n",
    "\n",
    "# Number of rows in dfEnergyAll\n",
    "print(\"Number of rows in dfEnergyAll:\", dfEnergyAll.shape[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aff293e9-0b20-45bf-981e-5c952ddb4e52",
   "metadata": {},
   "source": [
    "## 1 - Transformer-Architecture with Energy consumption data and weather data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "5939df7d-254c-4aba-a087-fccc490a0ee5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of missing values per column:\n",
      "Lastgang                   0\n",
      "StundenwertStrahlung       0\n",
      "Globalstrahlung_15Min      0\n",
      "StrahlungGeneigteFläche    0\n",
      "TheorPVProd                0\n",
      "Direktnormalstrahlung      0\n",
      "Schönwetterstrahlung       0\n",
      "Lufttemperatur             0\n",
      "dtype: int64\n",
      "First and last rows from dfEnergyAll-Edited:\n",
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2021-01-01 00:00:00    472.88                     0                      0   \n",
      "2021-01-01 00:15:00    498.83                     0                      0   \n",
      "2021-01-01 00:30:00    480.48                     0                      0   \n",
      "2021-01-01 00:45:00    446.74                     0                      0   \n",
      "2021-01-01 01:00:00    459.55                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2021-01-01 00:00:00                        0            0   \n",
      "2021-01-01 00:15:00                        0            0   \n",
      "2021-01-01 00:30:00                        0            0   \n",
      "2021-01-01 00:45:00                        0            0   \n",
      "2021-01-01 01:00:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2021-01-01 00:00:00                      0                     0   \n",
      "2021-01-01 00:15:00                      0                     0   \n",
      "2021-01-01 00:30:00                      0                     0   \n",
      "2021-01-01 00:45:00                      0                     0   \n",
      "2021-01-01 01:00:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  \n",
      "2021-01-01 00:00:00             2.5  \n",
      "2021-01-01 00:15:00             2.5  \n",
      "2021-01-01 00:30:00             2.5  \n",
      "2021-01-01 00:45:00             2.5  \n",
      "2021-01-01 01:00:00             2.4  \n",
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2023-12-31 22:45:00    833.17                     0                      0   \n",
      "2023-12-31 23:00:00    767.89                     0                      0   \n",
      "2023-12-31 23:15:00    770.04                     0                      0   \n",
      "2023-12-31 23:30:00    730.45                     0                      0   \n",
      "2023-12-31 23:45:00    744.21                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2023-12-31 22:45:00                        0            0   \n",
      "2023-12-31 23:00:00                        0            0   \n",
      "2023-12-31 23:15:00                        0            0   \n",
      "2023-12-31 23:30:00                        0            0   \n",
      "2023-12-31 23:45:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2023-12-31 22:45:00                      0                     0   \n",
      "2023-12-31 23:00:00                      0                     0   \n",
      "2023-12-31 23:15:00                      0                     0   \n",
      "2023-12-31 23:30:00                      0                     0   \n",
      "2023-12-31 23:45:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  \n",
      "2023-12-31 22:45:00             5.5  \n",
      "2023-12-31 23:00:00             5.5  \n",
      "2023-12-31 23:15:00             5.5  \n",
      "2023-12-31 23:30:00             5.5  \n",
      "2023-12-31 23:45:00             4.9  \n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# To check if the indexes in both DataFrames are set equally\n",
    "dfClimaAll.index.equals(dfEnergyAll.index)\n",
    "\n",
    "# Adding the columns from dfClima21 to dfEnergyAll\n",
    "dfEnergyAll = dfEnergyAll.join(dfClimaAll[['StundenwertStrahlung', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'TheorPVProd', 'Direktnormalstrahlung', 'Schönwetterstrahlung', 'Lufttemperatur']])\n",
    "\n",
    "# Checking for missing values in each column\n",
    "print(\"Number of missing values per column:\")\n",
    "print(dfEnergyAll.isnull().sum())\n",
    "\n",
    "# Printing the first and last rows from the dataframe\n",
    "print(\"First and last rows from dfEnergyAll-Edited:\")\n",
    "print(dfEnergyAll.head())\n",
    "print(dfEnergyAll.tail())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "d74e0399-9d4c-4aad-aeb1-b615170f8c5c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                     Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "2021-01-01 00:00:00    472.88                     0                      0   \n",
      "2021-01-01 00:15:00    498.83                     0                      0   \n",
      "2021-01-01 00:30:00    480.48                     0                      0   \n",
      "2021-01-01 00:45:00    446.74                     0                      0   \n",
      "2021-01-01 01:00:00    459.55                     0                      0   \n",
      "\n",
      "                     StrahlungGeneigteFläche  TheorPVProd  \\\n",
      "2021-01-01 00:00:00                        0            0   \n",
      "2021-01-01 00:15:00                        0            0   \n",
      "2021-01-01 00:30:00                        0            0   \n",
      "2021-01-01 00:45:00                        0            0   \n",
      "2021-01-01 01:00:00                        0            0   \n",
      "\n",
      "                     Direktnormalstrahlung  Schönwetterstrahlung  \\\n",
      "2021-01-01 00:00:00                      0                     0   \n",
      "2021-01-01 00:15:00                      0                     0   \n",
      "2021-01-01 00:30:00                      0                     0   \n",
      "2021-01-01 00:45:00                      0                     0   \n",
      "2021-01-01 01:00:00                      0                     0   \n",
      "\n",
      "                     Lufttemperatur  Lastgang_Moving_Average  \\\n",
      "2021-01-01 00:00:00             2.5               549.123854   \n",
      "2021-01-01 00:15:00             2.5               549.123854   \n",
      "2021-01-01 00:30:00             2.5               549.123854   \n",
      "2021-01-01 00:45:00             2.5               549.123854   \n",
      "2021-01-01 01:00:00             2.4               549.123854   \n",
      "\n",
      "                     Lastgang_First_Difference  \n",
      "2021-01-01 00:00:00                      25.95  \n",
      "2021-01-01 00:15:00                      25.95  \n",
      "2021-01-01 00:30:00                     -18.35  \n",
      "2021-01-01 00:45:00                     -33.74  \n",
      "2021-01-01 01:00:00                      12.81  \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_1514653/1800522370.py:11: FutureWarning: DataFrame.fillna with 'method' is deprecated and will raise in a future version. Use obj.ffill() or obj.bfill() instead.\n",
      "  dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n"
     ]
    }
   ],
   "source": [
    "# Step 2 - Preparing the Data\n",
    "\n",
    "# Calculating the moving average for 'Lastgang'\n",
    "window_size = 96  # This corresponds to 24 hours at 15-minute intervals\n",
    "dfEnergyAll['Lastgang_Moving_Average'] = dfEnergyAll['Lastgang'].rolling(window=window_size).mean()\n",
    "\n",
    "# Calculating the first differences for 'Lastgang'\n",
    "dfEnergyAll['Lastgang_First_Difference'] = dfEnergyAll['Lastgang'].diff()\n",
    "\n",
    "# Since the first `window_size - 1` values of the moving average will be NaN and the first value of the first difference will be NaN, fill these values.\n",
    "dfEnergyAll = dfEnergyAll.fillna(method='bfill')\n",
    "\n",
    "# To check the first few rows to ensure the new features look as expected.\n",
    "print(dfEnergyAll.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "c513ae39-9901-490c-939b-c2061b85d5d9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 3 - Data Scaling\n",
    "\n",
    "# Initialize the scalers\n",
    "lastgang_scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "features_scaler = MinMaxScaler(feature_range=(0, 1))\n",
    "\n",
    "# Apply the scaler to the corresponding columns\n",
    "dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1))\n",
    "dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['StundenwertStrahlung', 'Lufttemperatur', 'Globalstrahlung_15Min', 'StrahlungGeneigteFläche', 'Lastgang_Moving_Average', 'Lastgang_First_Difference']])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "f98d7e5d-6358-4ddf-a1e0-907e2c133c40",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "            Lastgang  StundenwertStrahlung  Globalstrahlung_15Min  \\\n",
      "count  105120.000000         105120.000000          105120.000000   \n",
      "mean        0.425947              0.561652               0.125328   \n",
      "std         0.149590              0.111328               0.197261   \n",
      "min         0.000000              0.000000               0.000000   \n",
      "25%         0.312299              0.490186               0.000000   \n",
      "50%         0.397657              0.492149               0.000861   \n",
      "75%         0.527101              0.593719               0.182444   \n",
      "max         1.000000              1.000000               1.000000   \n",
      "\n",
      "       StrahlungGeneigteFläche    TheorPVProd  Direktnormalstrahlung  \\\n",
      "count            105120.000000  105120.000000          105120.000000   \n",
      "mean                  0.125328     116.568056             144.916924   \n",
      "std                   0.197261     177.407501             266.941484   \n",
      "min                   0.000000       0.000000               0.000000   \n",
      "25%                   0.000000       0.000000               0.000000   \n",
      "50%                   0.000861       1.000000               0.000000   \n",
      "75%                   0.182444     179.000000             132.000000   \n",
      "max                   1.000000     799.000000            1010.000000   \n",
      "\n",
      "       Schönwetterstrahlung  Lufttemperatur  Lastgang_Moving_Average  \\\n",
      "count         105120.000000   105120.000000            105120.000000   \n",
      "mean             220.075295        0.487743                 0.468536   \n",
      "std              296.754964        0.169107                 0.234477   \n",
      "min                0.000000        0.000000                 0.000000   \n",
      "25%                0.000000        0.359408                 0.282593   \n",
      "50%                6.000000        0.482030                 0.433883   \n",
      "75%              403.000000        0.606765                 0.641900   \n",
      "max             1020.000000        1.000000                 1.000000   \n",
      "\n",
      "       Lastgang_First_Difference  \n",
      "count              105120.000000  \n",
      "mean                    0.504792  \n",
      "std                     0.046065  \n",
      "min                     0.000000  \n",
      "25%                     0.476896  \n",
      "50%                     0.504275  \n",
      "75%                     0.532252  \n",
      "max                     1.000000  \n",
      "Skalierparameter für Lastgang: [0.00068067] [-0.03440131]\n"
     ]
    }
   ],
   "source": [
    "# Step 3 - Check the scaled values\n",
    "\n",
    "print(dfEnergyAll.describe())\n",
    "\n",
    "print(\"Skalierparameter für Lastgang:\", lastgang_scaler.scale_, lastgang_scaler.min_)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "5a0dcfe5-3d9a-40e1-834e-468d8c47864e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "GPU before model training: 2024-05-03 17:23:54\n",
      "GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 15712.0MB, Used: 65326.0MB, Utilization: 4.0%\n",
      "GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 236.0MB, Used: 80803.0MB, Utilization: 100.0%\n",
      "CPU before model training:\n",
      "CPU Utilization: 82.1%\n",
      "RAM before model training:\n",
      "Total memory: 146.88 GB\n",
      "Available memory: 110.48 GB\n",
      "Used memory: 34.61 GB\n",
      "Memory usage: 24.8%\n"
     ]
    }
   ],
   "source": [
    "# Step 3 - Show GPU Utilization and Memory Usage before Model Training\n",
    "\n",
    "def print_gpu_utilization():\n",
    "    # Retrieve and print GPU utilization and memory stats\n",
    "    GPUs = GPUtil.getGPUs()\n",
    "    for GPU in GPUs:\n",
    "        print(f\"GPU: {GPU.name}, GPU RAM Free: {GPU.memoryFree}MB, Used: {GPU.memoryUsed}MB, Utilization: {GPU.load*100}%\")\n",
    "\n",
    "print(\"GPU before model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n",
    "print_gpu_utilization()\n",
    "\n",
    "# Function to print CPU utilization\n",
    "def print_cpu_utilization():\n",
    "    # Retrieve and print the percentage of CPU utilization\n",
    "    print(f\"CPU Utilization: {psutil.cpu_percent(interval=1)}%\")\n",
    "\n",
    "print(\"CPU before model training:\")\n",
    "print_cpu_utilization()\n",
    "\n",
    "def print_memory_usage():\n",
    "    # Retrieve and print memory statistics\n",
    "    memory = psutil.virtual_memory()\n",
    "    print(f\"Total memory: {memory.total / (1024**3):.2f} GB\")\n",
    "    print(f\"Available memory: {memory.available / (1024**3):.2f} GB\")\n",
    "    print(f\"Used memory: {memory.used / (1024**3):.2f} GB\")\n",
    "    print(f\"Memory usage: {memory.percent}%\")\n",
    "\n",
    "print(\"RAM before model training:\")\n",
    "print_memory_usage()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "0d90e033-70b7-4d3d-b038-315db7f388a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
    "\n",
    "def create_sequences(data, seq_length):\n",
    "    xs = []\n",
    "    ys = []\n",
    "    for i in range(len(data) - seq_length):\n",
    "        x = data.iloc[i:(i + seq_length)].to_numpy()  # Extract sequence from data\n",
    "        y = data.iloc[i + seq_length, 0]  # Extract target value for the sequence\n",
    "        xs.append(x)\n",
    "        ys.append(y)\n",
    "    return np.array(xs), np.array(ys)  # Convert lists to numpy arrays\n",
    "\n",
    "seq_length = 192  # Length of each sequence\n",
    "X, y = create_sequences(dfEnergyAll, seq_length)  # Create sequences from data\n",
    "\n",
    "# Use the last 192 sequences for testing to maintain a comparable distribution as the TBATS model\n",
    "X_train, X_test = X[:-192], X[-192:]  # Split data into training and testing sets\n",
    "y_train, y_test = y[:-192], y[-192:]  # Split targets into training and testing sets\n",
    "\n",
    "\n",
    "# Function for positional encoding\n",
    "def positional_encoding(seq_len, d_model):\n",
    "    encoding = np.array([\n",
    "        [pos / np.power(10000, 2 * (j // 2) / d_model) for j in range(d_model)]\n",
    "        if pos != 0 else np.zeros(d_model)\n",
    "        for pos in range(seq_len)\n",
    "    ])\n",
    "    encoding[1:, 0::2] = np.sin(encoding[1:, 0::2])  # Apply sin to even indices\n",
    "    encoding[1:, 1::2] = np.cos(encoding[1:, 1::2])  # Apply cos to odd indices\n",
    "    return encoding\n",
    "\n",
    "# Apply positional encodings\n",
    "d_model = X_train.shape[2]  # Number of features in the data\n",
    "pos_enc = positional_encoding(seq_length, d_model)  # Generate positional encoding\n",
    "\n",
    "# Add positional encodings to the sequences\n",
    "X_train_enc = np.array([x + pos_enc for x in X_train])  # Add encoding to training data\n",
    "X_test_enc = np.array([x + pos_enc for x in X_test])  # Add encoding to testing data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "e0e131ce-7193-42fb-94dc-f2bd0876aa2b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "X_train Shape: (104736, 192, 10)\n",
      "X_test Shape: (192, 192, 10)\n",
      "X_train_enc Shape: (104736, 192, 10)\n",
      "X_test_enc Shape: (192, 192, 10)\n"
     ]
    }
   ],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "# Print the shapes of the training and testing datasets\n",
    "print(f\"X_train Shape: {X_train.shape}\")\n",
    "print(f\"X_test Shape: {X_test.shape}\")\n",
    "\n",
    "# Print the shapes of the training and testing datasets with positional encodings applied\n",
    "print(f\"X_train_enc Shape: {X_train_enc.shape}\")\n",
    "print(f\"X_test_enc Shape: {X_test_enc.shape}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "69131796-20f7-4e93-a091-5fa9dfed0237",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "# Check Hardware Availability for the PyTorch code\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "514b9884-3534-4263-b95f-e830396947aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "X_train_tensors = torch.Tensor(X_train_enc).to(device)  # Convert training data to tensors and move to the designated device (GPU or CPU)\n",
    "y_train_tensors = torch.Tensor(y_train).view(-1, 1).to(device)  # Convert training labels to tensors, reshape them and move to the device\n",
    "X_test_tensors = torch.Tensor(X_test_enc).to(device)  # Convert testing data to tensors and move to the designated device\n",
    "y_test_tensors = torch.Tensor(y_test).view(-1, 1).to(device)  # Convert testing labels to tensors, reshape them and move to the device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "e84d8190-9f4f-4e97-94e5-6587d3efa9a1",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/sarah/anaconda3/envs/BT2024PyTorch/lib/python3.10/site-packages/torch/nn/modules/transformer.py:286: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)\n",
      "  warnings.warn(f\"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}\")\n"
     ]
    }
   ],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "#Create Transformer Model\n",
    "import torch.nn as nn\n",
    "\n",
    "class TransformerModel(nn.Module):\n",
    "    def __init__(self, input_size, hidden_layer_size, output_size, num_layers, nhead):\n",
    "        super(TransformerModel, self).__init__()\n",
    "        self.input_size = input_size  # Number of input features\n",
    "        self.hidden_layer_size = hidden_layer_size  # Size of the hidden layer\n",
    "        self.output_size = output_size  # Size of the output layer\n",
    "\n",
    "        # Embedding layer that maps input features to the hidden layer size\n",
    "        self.embedding = nn.Linear(input_size, hidden_layer_size)\n",
    "\n",
    "        # Transformer Encoder\n",
    "        encoder_layers = nn.TransformerEncoderLayer(d_model=hidden_layer_size, nhead=nhead)\n",
    "        self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)\n",
    "\n",
    "        # Linear layer for output\n",
    "        self.linear = nn.Linear(hidden_layer_size, output_size)\n",
    "\n",
    "    def forward(self, src):\n",
    "        # Embedding\n",
    "        src = self.embedding(src)  # Apply embedding layer to source data\n",
    "\n",
    "        # Transformer Encoder\n",
    "        src = src.permute(1, 0, 2)  # Permute the dimensions of src for the Transformer (expects [seq_len, batch, features])\n",
    "        output = self.transformer_encoder(src)  # Pass the embedded src through the transformer encoder\n",
    "\n",
    "        # Only take the output from the last time step for making predictions\n",
    "        output = output[-1]\n",
    "\n",
    "        # Linear layer\n",
    "        output = self.linear(output)  # Apply linear layer to the output of the transformer\n",
    "        return output\n",
    "\n",
    "# Parameters\n",
    "input_size = 10  # Number of features\n",
    "hidden_layer_size = 100  # Size of the hidden layer\n",
    "output_size = 1  # Output size\n",
    "num_layers = 2  # Number of layers in the transformer\n",
    "nhead = 2  # Number of attention heads\n",
    "\n",
    "# Instantiate the model\n",
    "model = TransformerModel(input_size, hidden_layer_size, output_size, num_layers, nhead).to(device)  # Create the model and move it to the designated device"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d936195f-89d1-48e4-9acb-4d63cd825590",
   "metadata": {},
   "source": [
    "from torchsummary import summary\n",
    "\n",
    "# Angabe der Eingabedimension für torchsummary\n",
    "seq_length = 192  # Sequenzlänge, wie im Modell verwendet\n",
    "summary(model, input_size=(seq_length, input_size))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "5ba77573-4e7b-45d1-8a98-d0c25deed352",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/sarah/anaconda3/envs/BT2024PyTorch/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "New best model saved at epoch 1 with test loss 0.03984663731534965.\n",
      "Epoch 1, Train Loss: 0.013731314026245361, Test Loss: 0.03984663731534965\n",
      "New best model saved at epoch 2 with test loss 0.016820339420519304.\n",
      "Epoch 2, Train Loss: 0.005286569327589577, Test Loss: 0.016820339420519304\n",
      "Epoch 3, Train Loss: 0.006792317569947825, Test Loss: 0.017148404789622873\n",
      "Epoch 4, Train Loss: 0.004567338423792936, Test Loss: 0.02858270751312375\n",
      "Epoch 5, Train Loss: 0.004809053334021856, Test Loss: 0.017867928676423617\n",
      "Epoch 6, Train Loss: 0.004574279051601939, Test Loss: 0.04403836881829193\n",
      "Epoch 7, Train Loss: 0.0048564385962972505, Test Loss: 0.024106490673148073\n",
      "Early Stopping after 7 epochs!\n"
     ]
    }
   ],
   "source": [
    "# Step 5 - Model Training\n",
    "\n",
    "# Define the number of epochs and batch size\n",
    "loss_function = nn.MSELoss()  # Loss function for measuring the mean squared error loss\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # Optimizer with a learning rate of 0.001\n",
    "epochs = 70  # Total number of epochs to train the model\n",
    "batch_size = 12  # Number of samples per batch\n",
    "\n",
    "# For storing the loss values\n",
    "train_losses = []  # List to store training loss values for each epoch\n",
    "test_losses = []  # List to store validation loss values for each epoch\n",
    "\n",
    "# Initialize variables for Early Stopping\n",
    "best_test_loss = float('inf')  # Best validation loss seen so far, initialized to infinity\n",
    "best_model_path = 'best_model.pth'  # Path to save the best performing model\n",
    "early_stopping_patience = 5  # Number of epochs to continue without improvement before stopping\n",
    "epochs_without_improvement = 0  # Counter to track epochs without improvement\n",
    "\n",
    "for epoch in range(epochs):  # Loop over each epoch\n",
    "    model.train()  # Set the model to training mode\n",
    "    train_loss = 0.0  # Reset training loss for this epoch\n",
    "    for i in range(0, len(X_train_tensors), batch_size):  # Iterate over the training data in batches\n",
    "        X_batch = X_train_tensors[i:i + batch_size]  # Get the current batch of input data\n",
    "        y_batch = y_train_tensors[i:i + batch_size]  # Get the current batch of target data\n",
    "\n",
    "        # Dynamic adjustment of the batch size for the last batch of the epoch\n",
    "        actual_batch_size = X_batch.size(0)\n",
    "\n",
    "        optimizer.zero_grad()  # Reset the gradients to zero\n",
    "\n",
    "        # No need to manage hidden states for the Transformer model\n",
    "        y_pred = model(X_batch)  # Forward pass through the model\n",
    "\n",
    "        loss = loss_function(y_pred, y_batch)  # Calculate loss\n",
    "        loss.backward()  # Backpropagation\n",
    "        optimizer.step()  # Update model weights\n",
    "        \n",
    "        train_loss += loss.item() * actual_batch_size  # Accumulate the loss\n",
    "\n",
    "    # Calculate the average training loss for this epoch\n",
    "    train_loss /= len(X_train_tensors)\n",
    "    train_losses.append(train_loss)\n",
    "\n",
    "    # Validation phase\n",
    "    model.eval()  # Set the model to evaluation mode\n",
    "    test_loss = 0.0\n",
    "    with torch.no_grad():  # No gradient calculations\n",
    "        for i in range(0, len(X_test_tensors), batch_size):\n",
    "            X_batch = X_test_tensors[i:i + batch_size]\n",
    "            y_batch = y_test_tensors[i:i + batch_size]\n",
    "\n",
    "            y_pred = model(X_batch)  # Forward pass through the model for validation\n",
    "            loss = loss_function(y_pred, y_batch)  # Calculate loss\n",
    "            test_loss += loss.item() * actual_batch_size  # Accumulate the loss\n",
    "        \n",
    "    # Calculate the average validation loss for this epoch\n",
    "    test_loss /= len(X_test_tensors)\n",
    "    test_losses.append(test_loss)\n",
    "\n",
    "    if test_loss < best_test_loss:\n",
    "        best_test_loss = test_loss  # Update the best test loss\n",
    "        torch.save(model.state_dict(), best_model_path)  # Save the best model\n",
    "        epochs_without_improvement = 0  # Reset the improvement counter\n",
    "        print(f'New best model saved at epoch {epoch+1} with test loss {test_loss}.')\n",
    "    else:\n",
    "        epochs_without_improvement += 1  # Increment the no-improvement counter\n",
    "\n",
    "    print(f'Epoch {epoch + 1}, Train Loss: {train_loss}, Test Loss: {test_loss}')\n",
    "\n",
    "    if epochs_without_improvement >= early_stopping_patience:\n",
    "        print(f'Early Stopping after {epoch+1} epochs!')  # Stop training if no improvement\n",
    "        break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "2eb9a478-fe5e-4e77-9b67-4cd32b584b00",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAHFCAYAAADmGm0KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8nUlEQVR4nO3deVxU9f7H8dewLwIqKrgL7vsCiWi0mqa2mFpqWbaaWdeU671lttri/XWr6+3mkqaVLWqLmZWlVGqWqGm4pGiWKC4goQlu7Of3x5FRZFRA4MzA+/l4zGO+nPmecz4M4nz4rjbDMAxEREREpAg3qwMQERERcUZKkkREREQcUJIkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSROSC3nnnHWw2Gxs2bLA6lFK76qqruOqqqyy7f0FBAe+99x69e/emTp06eHp6Uq9ePW644Qa++OILCgoKLItNRC7Ow+oAREQqyvTp0y27d1ZWFgMHDmT58uUMGzaMGTNmEBoayp9//sk333zDrbfeysKFC7n55psti1FELkxJkoi4BMMwyMrKwtfXt8TntGvXrgIjurDY2FiWLVvGu+++y1133VXktUGDBvGPf/yDU6dOlcu9Tp48iZ+fX7lcS0TOUHebiJSLXbt2cfvtt1OvXj28vb1p27Yt06ZNK1InKyuLv//973Tp0oWgoCBq165NdHQ0n3/+ebHr2Ww2HnnkEWbOnEnbtm3x9vbm3XfftXf/rVixgoceeog6deoQHBzMoEGDOHjwYJFrnNvdtmfPHmw2G6+88gqvvfYaYWFh1KhRg+joaNauXVsshtmzZ9OqVSu8vb1p164dH374IXfffTfNmjW74HuRmprKW2+9Rd++fYslSIVatmxJp06dgDNdmnv27ClSZ+XKldhsNlauXFnke+rQoQM//PADPXv2xM/Pj3vvvZeBAwfStGlTh114UVFRdOvWzf61YRhMnz6dLl264OvrS61atRgyZAi7d+++4PclUt0oSRKRS7Z9+3Yuu+wyfv31V1599VW+/PJLBgwYwNixY3nuuefs9bKzszly5AgTJkxg8eLFzJ8/n8svv5xBgwYxb968YtddvHgxM2bM4Omnn2bZsmXExMTYX7v//vvx9PTkww8/5OWXX2blypWMGDGiRPFOmzaNuLg4pk6dygcffMCJEyfo378/GRkZ9jqzZs1i1KhRdOrUiUWLFvHkk0/y3HPPFUlYzmfFihXk5uYycODAEsVTWikpKYwYMYLbb7+dpUuXMmbMGO69916Sk5P5/vvvi9TdsWMH69ev55577rEfe/DBBxk3bhy9e/dm8eLFTJ8+nW3bttGzZ08OHTpUITGLuCRDROQC3n77bQMwfv755/PW6du3r9GoUSMjIyOjyPFHHnnE8PHxMY4cOeLwvLy8PCM3N9e47777jK5duxZ5DTCCgoKKnVsYz5gxY4ocf/nllw3ASElJsR+78sorjSuvvNL+dVJSkgEYHTt2NPLy8uzH169fbwDG/PnzDcMwjPz8fCM0NNSIiooqco+9e/canp6eRtOmTc/7XhiGYfzrX/8yAOObb765YL1zv6ekpKQix1esWGEAxooVK4p8T4Dx3XffFambm5trhISEGLfffnuR4//85z8NLy8vIz093TAMw4iPjzcA49VXXy1Sb9++fYavr6/xz3/+s0Qxi1QHakkSkUuSlZXFd999xy233IKfnx95eXn2R//+/cnKyirSlfXxxx/Tq1cvatSogYeHB56ensyZM4fExMRi177mmmuoVauWw/vedNNNRb4u7Lrau3fvRWMeMGAA7u7u5z13586dpKamcttttxU5r0mTJvTq1eui169otWrV4pprrilyzMPDgxEjRrBo0SJ7i1h+fj7vvfceN998M8HBwQB8+eWX2Gw2RowYUeRnFRoaSufOnUvUUiZSXShJEpFLcvjwYfLy8vjf//6Hp6dnkUf//v0BSE9PB2DRokXcdtttNGzYkPfff5/4+Hh+/vln7r33XrKysopdu379+ue9b+GHfiFvb2+AEg2Gvti5hw8fBiAkJKTYuY6OnatJkyYAJCUlXbRuWZzvfSl8HxcsWADAsmXLSElJKdLVdujQIQzDICQkpNjPa+3atfaflYhodpuIXKJatWrh7u7OnXfeycMPP+ywTlhYGADvv/8+YWFhLFy4EJvNZn89Ozvb4Xln16lMhUmUo/E5qampFz3/6quvxtPTk8WLFzN69OiL1vfx8QGKvw/nS1jO9760a9eO7t278/bbb/Pggw/y9ttv06BBA/r06WOvU6dOHWw2G6tXr7Ynh2dzdEykulJLkohcEj8/P66++moSEhLo1KkTkZGRxR6FSYfNZsPLy6vIh3xqaqrD2W1Wat26NaGhoXz00UdFjicnJ7NmzZqLnh8aGsr999/PsmXLHA5IB/jjjz/YsmULgH22XOHXhZYsWVLq2O+55x7WrVvHjz/+yBdffMHIkSOLdC3ecMMNGIbBgQMHHP6sOnbsWOp7ilRVakkSkRL5/vvvi01RB+jfvz///e9/ufzyy4mJieGhhx6iWbNmHDt2jN9//50vvvjCPuPqhhtuYNGiRYwZM4YhQ4awb98+nn/+eerXr8+uXbsq+Ts6Pzc3N5577jkefPBBhgwZwr333svRo0d57rnnqF+/Pm5uF//78rXXXmP37t3cfffdLFu2jFtuuYWQkBDS09OJi4vj7bffZsGCBXTq1InLLruM1q1bM2HCBPLy8qhVqxafffYZP/74Y6ljHz58OLGxsQwfPpzs7GzuvvvuIq/36tWLUaNGcc8997BhwwauuOIK/P39SUlJ4ccff6Rjx4489NBDpb6vSFWkJElESuSxxx5zeDwpKYl27drxyy+/8Pzzz/Pkk0+SlpZGzZo1admypX1cEpitHGlpacycOZO5c+cSHh7O448/zv79+4ssFeAMRo0ahc1m4+WXX+aWW26hWbNmPP7443z++eckJydf9HwfHx+++uorPvjgA959910efPBBMjMzqVWrFpGRkcydO5cbb7wRAHd3d7744gseeeQRRo8ejbe3N8OGDeONN95gwIABpYo7KCiIW265hQ8//JBevXrRqlWrYnXefPNNevTowZtvvsn06dMpKCigQYMG9OrVi+7du5fqfiJVmc0wDMPqIEREXMHRo0dp1aoVAwcOZNasWVaHIyIVTC1JIiIOpKam8uKLL3L11VcTHBzM3r17+c9//sOxY8d49NFHrQ5PRCqBkiQREQe8vb3Zs2cPY8aM4ciRI/j5+dGjRw9mzpxJ+/btrQ5PRCqButtEREREHNASACIiIiIOKEkSERERcUBJkoiIiIgDGrhdRgUFBRw8eJCAgADLtk4QERGR0jEMg2PHjtGgQYOLLgyrJKmMDh48SOPGja0OQ0RERMpg3759NGrU6IJ1lCSVUUBAAGC+yYGBgRZHIyIiIiWRmZlJ48aN7Z/jF6IkqYwKu9gCAwOVJImIiLiYkgyV0cBtEREREQcsT5KmT59OWFgYPj4+REREsHr16gvWX7VqFREREfj4+BAeHs7MmTPPW3fBggXYbDYGDhxY5Pizzz6LzWYr8ggNDS2Pb0dERESqCEuTpIULFzJu3DgmTZpEQkICMTEx9OvX77w7bCclJdG/f39iYmJISEjgiSeeYOzYsXz66afF6u7du5cJEyYQExPj8Frt27cnJSXF/ti6dWu5fm8iIiLi2iwdk/Taa69x3333cf/99wMwdepUli1bxowZM5gyZUqx+jNnzqRJkyZMnToVgLZt27JhwwZeeeUVBg8ebK+Xn5/PHXfcwXPPPcfq1as5evRosWt5eHio9UikjPLz88nNzbU6DCkHXl5eF50GLVJdWZYk5eTksHHjRh5//PEix/v06cOaNWscnhMfH0+fPn2KHOvbty9z5swhNzcXT09PACZPnkzdunW57777ztt9t2vXLho0aIC3tzdRUVG89NJLhIeHl8N3JlJ1GYZBamqqwz88xDW5ubkRFhaGl5eX1aGIOB3LkqT09HTy8/MJCQkpcjwkJITU1FSH56Smpjqsn5eXR3p6OvXr1+enn35izpw5bNq06bz3joqKYt68ebRq1YpDhw7xwgsv0LNnT7Zt20ZwcLDDc7Kzs8nOzrZ/nZmZWcLvVKTqKEyQ6tWrh5+fnxZSdXGFi+KmpKTQpEkT/TxFzmH5EgDn/lIahnHBX1RH9QuPHzt2jBEjRjB79mzq1Klz3mv069fPXu7YsSPR0dE0b96cd999l9jYWIfnTJkyheeee+6i349IVZWfn29PkM73x4S4nrp163Lw4EHy8vLsrfEiYrIsSapTpw7u7u7FWo3S0tKKtRYVCg0NdVjfw8OD4OBgtm3bxp49e7jxxhvtrxcUFADmGKSdO3fSvHnzYtf19/enY8eO7Nq167zxTpw4sUgCVbgYlUh1UTgGyc/Pz+JIpDwVdrPl5+crSRI5h2Wj9by8vIiIiCAuLq7I8bi4OHr27OnwnOjo6GL1ly9fTmRkJJ6enrRp04atW7eyadMm++Omm27i6quvZtOmTedNarKzs0lMTKR+/frnjdfb29u+cKQWkJTqTF0yVYt+niLnZ2l3W2xsLHfeeSeRkZFER0cza9YskpOTGT16NGC23hw4cIB58+YBMHr0aN544w1iY2N54IEHiI+PZ86cOcyfPx8AHx8fOnToUOQeNWvWBChyfMKECdx44400adKEtLQ0XnjhBTIzMxk5cmQlfNciIiLiCixNkoYOHcrhw4eZPHkyKSkpdOjQgaVLl9K0aVMAUlJSiqyZFBYWxtKlSxk/fjzTpk2jQYMGvP7660Wm/5fE/v37GT58OOnp6dStW5cePXqwdu1a+31FRC7kqquuokuXLvblSESkarIZhSOfpVQyMzMJCgoiIyNDXW9SLWRlZZGUlGRfId8VXKwraeTIkbzzzjulvu6RI0fw9PQs0QaZ53P33Xdz9OhRFi9eXOZrlAdX/LmKXIrSfH5bPrtNRKSipKSk2MsLFy7k6aefZufOnfZjvr6+Reqfvd7ahdSuXbv8gpTqwzAgLws8fS9eV5yCllkVkSorNDTU/ggKCrLv0xgaGkpWVhY1a9bko48+4qqrrsLHx4f333+fw4cPM3z4cBo1aoSfnx8dO3a0j3ssdNVVVzFu3Dj7182aNeOll17i3nvvJSAggCZNmjBr1qxLin3VqlV0794db29v6tevz+OPP05eXp799U8++YSOHTvi6+tLcHAwvXv35sSJEwCsXLmS7t274+/vT82aNenVqxd79+69pHikHGyYAy+Gwq/Ft9IS56QkSUTKzDAMTubkVfqjPEcJPPbYY4wdO5bExET69u1LVlYWERERfPnll/z666+MGjWKO++8k3Xr1l3wOq+++iqRkZEkJCQwZswYHnroIXbs2FGmmA4cOED//v257LLL2Lx5MzNmzGDOnDm88MILgNlCNnz4cO69914SExNZuXIlgwYNwjAM8vLyGDhwIFdeeSVbtmwhPj6eUaNGaRab1QwD1r1plle8BKeXpxHnpu42ESmzU7n5tHt6WaXfd/vkvvh5lc9/X+PGjWPQoEFFjk2YMMFe/tvf/sY333zDxx9/TFRU1Hmv079/f8aMGQOYidd//vMfVq5cSZs2bUod0/Tp02ncuDFvvPEGNpuNNm3acPDgQR577DGefvppUlJSyMvLY9CgQfYJJx07dgTM8VIZGRnccMMN9nXh2rZtW+oYpJwd2gbpv5nlw7/DruXQ+nprY5KLUkuSiFRrkZGRRb7Oz8/nxRdfpFOnTgQHB1OjRg2WL19eZKatI506dbKXC7v10tLSyhRTYmIi0dHRRVp/evXqxfHjx9m/fz+dO3fm2muvpWPHjtx6663Mnj2bv/76CzDHS91999307duXG2+8kf/+979FxmaJRbZ9Zj7b3M3ntdOsi0VKTC1JIlJmvp7ubJ/c15L7lhd/f/8iX7/66qv85z//YerUqXTs2BF/f3/GjRtHTk7OBa9z7oBvm81mX/G/tBxtz3T2Fkzu7u7ExcWxZs0ali9fzv/+9z8mTZrEunXrCAsL4+2332bs2LF88803LFy4kCeffJK4uDh69OhRpnjkEhnGmSTp2qfgu8mQ9AOkboXQjtbGJhekliQRKTObzYafl0elPypyfM3q1au5+eabGTFiBJ07dyY8PPyCWxZVhHbt2rFmzZoiY6/WrFlDQEAADRs2BMz3vlevXjz33HMkJCTg5eXFZ599Zq/ftWtXJk6cyJo1a+jQoQMffvhhpX4PcpbULXDkD/DwgcsegHY3m8fjp1sbl1yUkiQRkbO0aNHC3kqTmJjIgw8+WGzPyPKSkZFRZBulTZs2kZyczJgxY9i3bx9/+9vf2LFjB59//jnPPPMMsbGxuLm5sW7dOl566SU2bNhAcnIyixYt4s8//6Rt27YkJSUxceJE4uPj2bt3L8uXL+e3337TuCQrFbYitewD3jWgx8Pm179+AscOWReXXJS620REzvLUU0+RlJRE37598fPzY9SoUQwcOJCMjIxyv9fKlSvp2rVrkWOFC1wuXbqUf/zjH3Tu3JnatWtz33338eSTTwIQGBjIDz/8wNSpU8nMzKRp06a8+uqr9OvXj0OHDrFjxw7effddDh8+TP369XnkkUd48MEHyz1+KYGzu9ra32I+N74MGnWH/evh57fgmknWxScXpBW3y0grbkt1o5WZqyb9XCvYgV9g9tXg6Qf/+B28To+B2/YZfHw3+AXD+G1aYLISlebzW91tIiIiFaWwFalV3zMJEkCbGyGoCZw8DFsWWhObXJSSJBERkYpgGLBtsVluX3QtLtw9IOp0F2j8dLOuOB0lSSIiIhXhwEbISAZPf2h5XfHXu90JXjUgfSf8/l3lxycXpSRJRESkIhR2tbXu53jMkU8QdLvLLGtxSaekJElERKS8FRScSZI6DDp/vagHweYGf3wPh7ZXTmxSYkqSREREytv+nyHzAHgFQPNrz1+vVjNoM8Asr9Xiks5GSZKIiEh5K2xFatMfPC+ytEL0I+bzlo/g+J8VG5eUipIkERGR8lRQANsXm+VzZ7U50jgKGnSD/GzYMKdCQ5PSUZIkIiJSnvathWMp4B0Eza++eH2bDaJPb1Xy81uQm1Wx8UmJKUkSEREpT/autgHg4V2yc9rdDIEN4cSfsPXjiotNSkVJkohUWTab7YKPu+++u8zXbtasGVOnTi23elJFFOTD9s/N8oVmtZ3L3RO6jzLLa2docUknoQ1uRaTKSklJsZcXLlzI008/zc6dO+3HfH21X5aUs71r4Pgh8KkJYVeW7tyIkbDqZUjbBrtXlqyrTiqUWpJEpMoKDQ21P4KCgrDZbEWO/fDDD0RERODj40N4eDjPPfcceXl59vOfffZZmjRpgre3Nw0aNGDs2LEAXHXVVezdu5fx48fbW6XKasaMGTRv3hwvLy9at27Ne++9V+T188UAMH36dFq2bImPjw8hISEMGTKkzHFIOSnsamt7A3h4le5c31rQ9Q6zHK/FJZ2BWpJEpOwMA3JPVv59Pf3Mwa6XYNmyZYwYMYLXX3+dmJgY/vjjD0aNMrs7nnnmGT755BP+85//sGDBAtq3b09qaiqbN28GYNGiRXTu3JlRo0bxwAMPlDmGzz77jEcffZSpU6fSu3dvvvzyS+655x4aNWrE1VdffcEYNmzYwNixY3nvvffo2bMnR44cYfXq1Zf0nsglys8709VWklltjkSNhvWz4fc4+HMn1G1dfvFJqSlJEpGyyz0JLzWo/Ps+cbDojupl8OKLL/L4448zcuRIAMLDw3n++ef55z//yTPPPENycjKhoaH07t0bT09PmjRpQvfu3QGoXbs27u7uBAQEEBoaWuYYXnnlFe6++27GjBkDQGxsLGvXruWVV17h6quvvmAMycnJ+Pv7c8MNNxAQEEDTpk3p2rXrJb0ncon2/ggn08G3NoRdUbZrBDeH1v1h51fm4pI3/rd8Y5RSUXebiFRLGzduZPLkydSoUcP+eOCBB0hJSeHkyZPceuutnDp1ivDwcB544AE+++yzIl1x5SExMZFevXoVOdarVy8SExMBLhjDddddR9OmTQkPD+fOO+/kgw8+4ORJC1r15IzCrrZ2N5kDscsq2kya2bwAThy+9LikzNSSJCJl5+lntupYcd9LVFBQwHPPPcegQcW7RXx8fGjcuDE7d+4kLi6Ob7/9ljFjxvDvf/+bVatW4el5CR+A5zh3PJNhGPZjF4ohICCAX375hZUrV7J8+XKefvppnn32WX7++Wdq1qxZbvFJCeXnwvYlZrn9LZd2raa9oH5nSNkMG+fCFf+49PikTNSSJCJlZ7OZ3V6V/bjE8UgA3bp1Y+fOnbRo0aLYw83N/K/R19eXm266iddff52VK1cSHx/P1q1bAfDy8iI/P/+SYmjbti0//vhjkWNr1qyhbdu29q8vFIOHhwe9e/fm5ZdfZsuWLezZs4fvv//+kmKSMkr6AU4dAb860PTyS7uWzQY9Ti8uuX425GVfenxSJmpJEpFq6emnn+aGG26gcePG3Hrrrbi5ubFlyxa2bt3KCy+8wDvvvEN+fj5RUVH4+fnx3nvv4evrS9OmTQFz/aMffviBYcOG4e3tTZ06dc57rwMHDrBp06Yix5o0acI//vEPbrvtNrp168a1117LF198waJFi/j2228BLhjDl19+ye7du7niiiuoVasWS5cupaCggNatNdDXEtsWmc/tbgb3cvhobX8LxD0Nx1Ph10XQZfilX1NKz5AyycjIMAAjIyPD6lBEKsWpU6eM7du3G6dOnbI6lDJ5++23jaCgoCLHvvnmG6Nnz56Gr6+vERgYaHTv3t2YNWuWYRiG8dlnnxlRUVFGYGCg4e/vb/To0cP49ttv7efGx8cbnTp1Mry9vY0L/VfatGlTAyj2ePvttw3DMIzp06cb4eHhhqenp9GqVStj3rx59nMvFMPq1auNK6+80qhVq5bh6+trdOrUyVi4cGGp3xdX/7k6hdxsw5jSxDCeCTSM3T+U33V/eMW85vRehlFQUH7XreZK8/ltMwwt61kWmZmZBAUFkZGRQWBgoNXhiFS4rKwskpKSCAsLw8fnIruai8vQz7Uc7IqDD4ZAjRCITQQ39/K57skj8Fo7yDsFI78o+4w5KaI0n98akyQiInIpfj2rq628EiQAv9rQ5XazHD+9/K4rJWZ5kjR9+nT7XzAREREXXQxt1apVRVbInTlz5nnrLliwAJvNxsCBAy/5viIiIsXkZcOOr8zypc5qc6THQ+bzb19D+u/lf325IEuTpIULFzJu3DgmTZpEQkICMTEx9OvXj+TkZIf1k5KS6N+/PzExMSQkJPDEE08wduxYPv3002J19+7dy4QJE4iJibnk+4qIiDj0xwrIzoCA+tC4R/lfv05LaNnXLK+bUf7XlwuyNEl67bXXuO+++7j//vtp27YtU6dOpXHjxsyY4fgfwsyZM2nSpAlTp06lbdu23H///dx777288sorRerl5+dzxx138NxzzxEeHn7J9xUREXHIPqttILhV0Edq9OnlADZ9aI5TkkpjWZKUk5PDxo0b6dOnT5Hjffr0Yc2aNQ7PiY+PL1a/b9++bNiwgdzcXPuxyZMnU7duXe67775yuS9AdnY2mZmZRR4i1ZHmelQt+nlegtws2LHULFdEV1uhsCsgpIO5DdDGdyruPlKMZUlSeno6+fn5hISEFDkeEhJCamqqw3NSU1Md1s/LyyM9PR2An376iTlz5jB79uxyuy/AlClTCAoKsj8aN2580e+xTE6kmwP0Cvu4RZxE4SrT2vqiasnJyQHA3b0cBxxXF398BznHILAhNLqs4u5js51pTVo/C/JyKu5eUoTli0leaEn+ktYvPH7s2DFGjBjB7NmzL7iwW1nuO3HiRGJjY+1fZ2ZmVkyilPA+fPsMNI6CNgPK//oiZeTu7k7NmjVJS0sDwM/P74K/M+L8CgoK+PPPP/Hz88PDw/KPA9dTOKut/S0V19VWqMNgiHsGjqXA9sXQ6baKvZ8AFiZJderUwd3dvVjrTVpaWrFWnkKhoaEO63t4eBAcHMy2bdvYs2cPN954o/31goICwFy+f+fOnTRu3LjU9wXw9vbG29u7VN9jmXQeBt9Nhn3r4M+dUFer54rzKNzxvjBREtfn5uZGkyZNlPCWVu4p2Pm1Wa7IrrZCHt7Q/QFY8SLET4OOt5bL9jxyYZYlSV5eXkRERBAXF8ctt5z5BxYXF8fNN9/s8Jzo6Gi++OKLIseWL19OZGQknp6etGnTxr6nUaEnn3ySY8eO8d///pfGjRuX6b6VKiAUWvYxp3smvA99nrc6IhE7m81G/fr1qVevXpFxgOK6vLy87HvVSSnsWg65JyCoCTSMqJx7Rt4Lq1+FlE2QHA9Ne1bOfasxS9tXY2NjufPOO4mMjCQ6OppZs2aRnJzM6NGjAbOL68CBA8ybNw+A0aNH88YbbxAbG8sDDzxAfHw8c+bMYf78+YC5c3eHDh2K3KNwN+yzj1/svpbrdqeZJG1eANc+De7lt+O4SHlwd3fXGBap3rZ9Zj63H1h5LTr+daDTUPjlXbM1SUlShbM0SRo6dCiHDx9m8uTJpKSk0KFDB5YuXWrfQDIlJaXI2kVhYWEsXbqU8ePHM23aNBo0aMDrr7/O4MGDy/W+lmvZB/zrwok0c7n7Nv2tjkhERArlnIDflpnlyuhqO1uPMWaStOMrOLIbahdf5kbKj/ZuK6MK37tt+ZOw5n/QegAM/7D8ry8iImXz6yL45B6o1QzGbqr8sUHvD4bfv4XuD0L/lyv33lWA9m6rCrqMMJ9/+waOHbI2FhEROcPe1XaLNYOne4wxnxPeh1NHK//+1YiSJGdVr4257oaRD1sWWB2NiIgAZB83B21D5Xe1FWp+DdRtaw4c/2WeNTFUE0qSnFnX061JCe+DekVFRKz32zeQlwW1m0NoJ2tisNkg+nRr0ro3IT/PmjiqASVJzqz9IPD0g/TfYP/PVkcjIiJWd7UV6ngb+NWBzP2Q+Ll1cVRxSpKcmU+guWkiQMJ7loYiIlLtZWWaM47Buq62Qp4+cNn9Zjl+mnobKoiSJGdX2OX26yJz2qmIiFhj59eQnw11WkFIe6ujgcvuA3cvOLAR9q23OpoqSUmSs2va01wHI+c4bFeTqoiIZZylq61QjXpn9nBbO83aWKooJUnOzmaDLneY5YT3rY1FRKS6OnUU/vjOLFvd1Xa2wuUAEr+Av/ZYGkpVpCTJFXQeDjY32PsTHP7D6mhERKqfnUshP8ecel+vrdXRnBHSHsKvAqMA1s2yOpoqR0mSKwhqCM2vNctqTRIRqXxnd7U5m+hHzOdf5pmDy6XcKElyFd3uNJ83z9eaGCIilenkEfjje7PsjElS82vNweQ5xzQTupwpSXIVrfqBXzAcSznzyyoiIhVvx1dQkAchHaBuK6ujKc7N7czYpHUzoSDf2niqECVJrsLDCzoNNcv6S0FEpPLYu9oGWhrGBXUeBr614Wgy7PjS6miqDCVJrqRwzaSdX8OJdGtjERGpDk4cht0rzXL7QZaGckGevhB5r1mO13IA5UVJkisJaQ8NukJBLmz5yOpoRESqvh1fmBuNh3aC4OZWR3Nh3R8AN0/Ytw72b7A6mipBSZKrsW96+56WoRcRqWjOPKvtXAGh0HGIWVZrUrlQkuRqOgwBDx9I2w4Hf7E6GhGRquv4n5D0g1l2hSQJzgzg3v45HN1nbSxVgJIkV+NbE9reZJa1ZpKISMVJXGIu0tigK9QOszqakqnfCZrFmF2E67W45KVSkuSKCrvctn4COSetjUVEpKpypa62s0U/bD5vfBeyj1sbi4tTkuSKmsVAzSaQnampniIiFeHYIXMrKHC9JKllX6jdHLIzYNMHVkfj0pQkuSI3N+hy1gBuEREpX4VdbQ0jzT9KXYmbG/R4yCyvna7FJS+BkiRX1WU4YDMHFR5JsjoaEZGqxVW72gp1uR18asJfe8y19aRMlCS5qppNzJ2fATZ9aGkoIiJVSmYK7F1jlp15le0L8fKHyHvM8trp1sbiwpQkubLCTW83fajmVBGR8rL9c8CAxlEQ1MjqaMqu+yhw8zDHVh1MsDoal6QkyZW1HmA2p2buP7NsvoiIXJpti8xnV+1qKxTY4MxWKvFqTSoLJUmuzNMHOt1mlrVmkojIpcvYb27rgQ3a3Wx1NJcu+vTiktsWQeZBa2NxQUqSXF3hmkk7voSTR6yNRUTE1W3/3HxuEm22xLi6Bl2haS8oyNPikmWgJMnV1e8MoR0hP8dcXFJERMru19NdbR0GWRtHeSrcqmTD25BzwtpYXIySpKqg6+kB3AnzrI1DRMSV/bUXDmwAbGe2f6oKWveDWs0g66hmQ5eSkqSqoOOt4O4FqVshZbPV0YiIuKbCrrZml0NAiLWxlCc39zOtSWtnQEGBtfG4ECVJVYFfbWhzg1nWAG4RkbKpKrPaHOlyB3gHwZE/YNdyq6NxGUqSqorCAdxbPoLcLGtjERFxNUeSzLWEbG5Vq6utkHcNiBhpluPfsDYWF2J5kjR9+nTCwsLw8fEhIiKC1atXX7D+qlWriIiIwMfHh/DwcGbOnFnk9UWLFhEZGUnNmjXx9/enS5cuvPde0f3Nnn32WWw2W5FHaGhouX9vlSr8KghsZPY57/zK6mhERFzL9sXmc7MYqFHX0lAqTNSDYHOHPashZYvV0bgES5OkhQsXMm7cOCZNmkRCQgIxMTH069eP5ORkh/WTkpLo378/MTExJCQk8MQTTzB27Fg+/fRTe53atWszadIk4uPj2bJlC/fccw/33HMPy5YtK3Kt9u3bk5KSYn9s3bq1Qr/XCufmbu7VA+pyExEprao4q+1cQY3OrP2krUpKxGYYhmHVzaOioujWrRszZsywH2vbti0DBw5kypQpxeo/9thjLFmyhMTERPux0aNHs3nzZuLj4897n27dujFgwACef/55wGxJWrx4MZs2bSpz7JmZmQQFBZGRkUFgYGCZr1OujiTB610AG4zbCjUbWx2RiIjzO/wH/K+b2coyYRf4B1sdUcXZvxHeugbcPGH8rxDg4r0oZVCaz2/LWpJycnLYuHEjffr0KXK8T58+rFmzxuE58fHxxer37duXDRs2kJubW6y+YRh899137Ny5kyuuuKLIa7t27aJBgwaEhYUxbNgwdu/efcF4s7OzyczMLPJwOrXDzKZiDE3zFBEpqW2fmc/hV1btBAmgUYS5J11BLvz8ltXROD3LkqT09HTy8/MJCSk6zTIkJITU1FSH56Smpjqsn5eXR3p6uv1YRkYGNWrUwMvLiwEDBvC///2P6667zv56VFQU8+bNY9myZcyePZvU1FR69uzJ4cOHzxvvlClTCAoKsj8aN3bSVppud5nPm97XNE8RkZIoTJLaV+GutrMVLgfw8xzIPWVtLE7O8oHbNputyNeGYRQ7drH65x4PCAhg06ZN/Pzzz7z44ovExsaycuVK++v9+vVj8ODBdOzYkd69e/PVV+ZA53ffffe89504cSIZGRn2x759+0r8PVaqtjea0zyPJpuD80RE5Pz+/A0O/QpuHtBmgNXRVI42N0DNJnDqCGxeYHU0Ts2yJKlOnTq4u7sXazVKS0sr1lpUKDQ01GF9Dw8PgoPPNJG6ubnRokULunTpwt///neGDBnicIxTIX9/fzp27MiuXbvOW8fb25vAwMAiD6fk6QsdB5tlDeAWEbkwe1fb1eaac9WBuwdEjTbLWlzygixLkry8vIiIiCAuLq7I8bi4OHr27OnwnOjo6GL1ly9fTmRkJJ6enue9l2EYZGdnn/f17OxsEhMTqV+/fim+AydWuGZS4hI4ddTSUEREnFphklSVZ7U50vVO8AqA9J3wx3dWR+O0LO1ui42N5a233mLu3LkkJiYyfvx4kpOTGT3azHAnTpzIXXfdZa8/evRo9u7dS2xsLImJicydO5c5c+YwYcIEe50pU6YQFxfH7t272bFjB6+99hrz5s1jxIgR9joTJkxg1apVJCUlsW7dOoYMGUJmZiYjR46svG++IjXoBvXaQV4W/PrpxeuLiFRHaYnwZ6K5rVPr/lZHU7l8As+MYY2fZm0sTszDypsPHTqUw4cPM3nyZFJSUujQoQNLly6ladOmAKSkpBRZMyksLIylS5cyfvx4pk2bRoMGDXj99dcZPHiwvc6JEycYM2YM+/fvx9fXlzZt2vD+++8zdOhQe539+/czfPhw0tPTqVu3Lj169GDt2rX2+7o8m81sTVr2BCS8B5fdZ3VEIiLOp7AVqfm14FvT0lAsEfUgrJsBu1fAoW0Q0t7qiJyOpeskuTKnXCfpbCfS4dU25jTP0T9BaAerIxIRcR6GAdO6Q/pvcMss6Dz04udURR/dZW7s23UE3Fw9WpRcYp0kqWD+daB1P7O86QNrYxERcTZp280Eyd37zP+V1VGPh83nLR/D8TRrY3FCSpKqsq53ms+bF0BejrWxiIg4k8JtSFpeZ47Pqa4ad4eGkZCfba6bJEUoSarKml8DAfXNtTB++9rqaEREnINhnLWA5C3WxmI1mw2iCxeXfAtys6yNx8koSarK3D2g83CzrDWTRERMqVvhyB/g4QOt+lodjfXa3gyBjeBkOmz9yOponIqSpKqucM2k37+FzIPWxiIi4gy2FXa19QHvAGtjcQbuHuZMN4D46WZLmwBKkqq+4ObQpCcYBdr0VkREXW2OdbsLPP3NdaN2r7A6GqehJKk66HZ6AHfC+/oLQUSqt5RN8Nce8PRTV9vZfGue+azQ4pJ2SpKqg3Y3g1cN+CsJ9q6xOhoREesUzmpr1Re8/K2NxdlEPQjYzOEZf+60OhqnoCSpOvDyP7MvkQZwi0h1ZRiwbbFZVldbcbXDoc0As7x2urWxOAklSdVF4ZpJ2xdDVqaloYiIWOLARshINsfetLjO6micU/TpxSU3L4ATh62NxQkoSaouGl0GdVpB7skzgxZFRKqTwv/7WvcDLz9rY3FWTaKhfhdzg/QNc62OxnJKkqqLwk1vQV1uIlL9FBSoq60kbDaIfsQsr58FednWxmMxJUnVSadhYHOH/es1KE9Eqpf9P0PmfvAKgBa9rY7GubUfCAEN4EQa/Pqp1dFYSklSdRIQAq2uN8sJ71kbi4hIZSrsamvTHzx9rI3F2bl7QvcHzHI1X1xSSVJ1U9jltnkB5OdaG4uISGUoKDAnrYC62koq4m5zLalDWyHpB6ujsYySpOqm5XXgXw9O/Am7llsdjYhIxdu3Fo6lgHeQufG3XJxfbehyu1muxssBKEmqbtw9ofMws6wB3CJSHdi72gaAh7e1sbiSqIcAG/z2DaTvsjoaSyhJqo4Ku9x+WwbHDlkbi4hIRSrIh+2fm2V1tZVOnRZnxrGunWFtLBZRklQd1W0NjbqDkQ9bFlgdjYhIxdm7Bo4fAp+aEH6V1dG4nugx5vOmD+HkEWtjsYCSpOqqcCPDX96r1jMXRKSKK+xqa3sDeHhZG4srahYDoR0h7xRsfNvqaCqdkqTqqv0t5syFw7tg33qroxERKX/5eZC4xCyrq61sbDbocXqrkvWzIS/H2ngqmZKk6so74Mx/GlozSUSqor0/mjN5fWtD2JVWR+O6OgyGGiHmDMHCpRSqCSVJ1VnhAO5tn0H2cWtjEREpb/authvNmb1SNh5eZy0u+Ua1GqKhJKk6axINtcMh5/iZ2R8iIlVBfi5sV1dbuYm4Fzx8IGWzORi+mlCSVJ1p01sRqaqSfoBTR8Cvjjn4WC6NfzB0Hm6W46dZG0slUpJU3XUeDjY3SF4D6b9bHY2ISPko7GprdxO4e1gbS1XR4/RyADuXwuE/rI2lkihJqu4CG0CL68zyJrUmiUgVkJcDiV+Y5faDrI2lKqnb6vTnhQHr3rQ6mkqhJEnOdLltmm9OmRURcWVJqyDrqLlPZdOeVkdTtUSfXg4g4X04ddTSUCqDkiQxl533C4bjqfDHd1ZHIyJyaexdbTeDm7u1sVQ14VdBvfaQewJ+edfqaCqckiQxp3d2Ktz0VmsmiYgLy8uGxC/Ncgd1tZU7m+3MViXrZpmzCKswJUliKuxy2/k1nEi3NhYRkbL6YwVkZ0CNUGjcw+poqqYOQ8C/LmTur/LLx1ieJE2fPp2wsDB8fHyIiIhg9erVF6y/atUqIiIi8PHxITw8nJkzZxZ5fdGiRURGRlKzZk38/f3p0qUL771XvHWktPet8kLaQYNuUJAHWxZaHY2ISNkUdrW1Hwhuln/EVU2ePnDZ/WY5flqVXlzS0n9BCxcuZNy4cUyaNImEhARiYmLo168fycnJDusnJSXRv39/YmJiSEhI4IknnmDs2LF8+umn9jq1a9dm0qRJxMfHs2XLFu655x7uueceli1bVub7Vhva9FZEXFluFuz4yixrVlvFirwP3L3h4C+wb53V0VQYm2FY92kYFRVFt27dmDFjhv1Y27ZtGThwIFOmTClW/7HHHmPJkiUkJibaj40ePZrNmzcTHx9/3vt069aNAQMG8Pzzz5fpvo5kZmYSFBRERkYGgYGBJTrH6WVlwCutIC8L7v8eGkVYHZGISMnt+AoW3A6BDWHcr2pJqmifP2KOY217Ewx1nfGspfn8tuxfUE5ODhs3bqRPnz5Fjvfp04c1axwveR4fH1+sft++fdmwYQO5ucUHjxmGwXfffcfOnTu54oorynxfgOzsbDIzM4s8qhyfIHM2CGgAt4i4HvustoFKkCpD4XIAO76Ev/ZYGkpFsexfUXp6Ovn5+YSEhBQ5HhISQmpqqsNzUlNTHdbPy8sjPf3MYOOMjAxq1KiBl5cXAwYM4H//+x/XXXddme8LMGXKFIKCguyPxo0bl+r7dRmFA7h//RRyTlobi4hISeWeMieegGa1VZZ6baH5NWAUVNnFJS1PtW02W5GvDcModuxi9c89HhAQwKZNm/j555958cUXiY2NZeXKlZd034kTJ5KRkWF/7Nu374Lfl8tqejnUbArZmWdWrBURcXa74szNuoMaQ0MNFag0PU63Jv3ynjlko4qxLEmqU6cO7u7uxVpv0tLSirXyFAoNDXVY38PDg+DgYPsxNzc3WrRoQZcuXfj73//OkCFD7GONynJfAG9vbwIDA4s8qiQ3t7M2vVWXm4i4iG2LzOf2A821fKRytLgW6raBnGNmolTFWJYkeXl5ERERQVxcXJHjcXFx9OzpeBn56OjoYvWXL19OZGQknp6e572XYRhkZ2eX+b7VTufhgA32rIYjSVZHIyJyYTkn4LfTM5g1q61y2WzQ4yGzvO7NKre1laXdbbGxsbz11lvMnTuXxMRExo8fT3JyMqNHjwbMLq677rrLXn/06NHs3buX2NhYEhMTmTt3LnPmzGHChAn2OlOmTCEuLo7du3ezY8cOXnvtNebNm8eIESNKfN9qr2Zjs58ZYNMH1sYiInIxu5ZD7kmo1QwadLU6muqn01Bza6uMZHMQdxXiYeXNhw4dyuHDh5k8eTIpKSl06NCBpUuX0rRpUwBSUlKKrF0UFhbG0qVLGT9+PNOmTaNBgwa8/vrrDB482F7nxIkTjBkzhv379+Pr60ubNm14//33GTp0aInvK5hdbn98B5s+hKsmav8jEXFevxZ2td2irjYrePqa6yb98LK5uGT7gVZHVG4sXSfJlVXJdZLOlpcNr7aGU3/BiE+hRW+rIxIRKS77OPy7ubm+24M/QP3OVkdUPR07BFM7QH4O3P8dNIq0OqLzcol1ksTJeXhDx9vMcsL71sYiInI+v31jJki1wyG0k9XRVF8BIdDxVrMcP83aWMqRkiQ5v8JZbju+gpNHrI1FRMQR+15tg9TVZrXCAdzbP4ejVWOZHCVJcn71O5l/meXnwNaPrY5GRKSorExzfSQwxyOJtUI7QtiVYOTD+qqxuKSSJLmwbqdnF2rTWxFxNr99A/nZENwSQtpbHY3Ama1KNr4L2cesjaUcKEmSC+sw2Nzp+dBWSNlsdTQilWPfekj4AAoKrI5ELqRwVlsHdbU5jRbXmUlrdqb5O+TilCTJhfnVhrY3mGUN4Jbq4MAv8M4A+HwMrHzJ6mjkfE4dNZcpAXW1ORM3t7MWl5wBBfnWxnOJlCTJxRUO4N76EeRmWRuLSEU6eQQ+GmmOwwP44d/mZs/ifHZ+bf6c6rYxN1oV59F5OPjWgr/2wM6lVkdzSZQkycWFXWluGpmVUeVWUxWxKyiARQ+YqwbXCoPL7jePLx4DBxOsjU2Ks+/Vpm1InI6XH0TcY5bjp1sbyyVSkiQX5+YOXW43y+pyk6rqh3/D79+Chw8MfQ/6vQwt+5hr8My/3VwsT5zDqb/gj+/NchVa3blK6T4K3DwheY3Zhe2ilCRJyRQmSbtXwtHkC1YVcTm/fwcrp5jlG/5jTmV2c4fBb0GdVnDsICy8Q93NziLxSyjIg3rtoW5rq6MRRwLrmwPqAda6bmuSkiQpmVrNzG43DHM/N5Gq4ug++PR+wIBuI8/8QQDgEwTDF4BPTdj/M3w5TkthOIPCBSQ7aMC2U+sxxnze9hlkHLA2ljJSkiQl1/VO81lTo6WqyMuGj0fCqSPmnl/9Xi5eJ7g53PoO2Nxh83xY879KD1POcvKI2aINGo/k7Bp0gaaXm61+62dZHU2ZKEmSkmt7A3gHmQNb9/xgdTQil27ZJDiw0Wwpum0eePo4rtf8arj+dHdc3NPw2/JKC1HOkbjEXNE5tJOZwIpziz7dmrTxHcg5YWkoZaEkSUrO0xc6DjHLGsAtrm7LR/DzbLM8aJbZpXwh3UeZ3XEY8Ol98OfOio5QHLHv1aauNpfQ6npz8+Gsoy45VENJkpRO4ZpJ25eYM0xEXFFaInzxqFm+4h/Qqu/Fz7HZoP8r0LSXuZrwh0O18XNlO5EOSadbsZUkuQY3d4g6vbjk2hkuN1RDSZKUToOu5oyS/GwtsieuKSsTFo6A3JMQfhVcNbHk53p4md1yNZvAX0nw8d2Qn1tRkcq5tn8ORoH5/1DtMKujkZLqcrs5CeLIH7BrmdXRlIqSJCkdm+1Ma5K63MTVGAYseQQO/w6BDWHwHPMv3dLwrwPD5oOnPyStgmVPVEysUpy62lyTdw2IuNssx0+zNJTSUpIkpddpqLlI2MEESP3V6mhESm7tdLM1ws0Tbn3XTHjKIrSDOY4JzFk7G94uvxjFsWOHYO9PZrndQEtDkTLoPsqcIbpnNaRssTqaElOSJKXnHwxt+ptltSaJq9gbb85MA+j7EjS+7NKu1/YGuOZJs7x0Auz58dKuJxeWuMTsamsYCbWaWh2NlFZQozMtgC60uKSSJCmbwjWTtiw015oRcWbH08zxQwV50GEwdH+gfK4bM8G8XkEeLLzT3NBTKoa62lxf4XIAWz+BY6nWxlJCSpKkbJpfAwENzEX4dn5tdTQi55efB5/cC8dToU5ruPF1c2xdebDZ4KY3oH4X83dh/nDIPlY+15YzMlNg7xqzrL3aXFfDCGgSDQW5sH621dGUiJIkKRs3d+gy3Cyry02c2YoXzHEQXjVg6PvmINLy5OUHw+dDjRBI2w6LHnS5ac5Ob/vngAGNo8xuG3FdhVuVbJgDOSetjaUElCRJ2XW5w3z+4zuX3ZdHqrgdX8GP/zHLN/0P6raqmPsENoBhH4K7N+z8ykzMpPyoq63qaDMAajY119nbssDqaC5KSZKUXXBzc18eowA2u95KqlLFHdkNn51exC7qoTM7kleURpFw0+tmefWr5rgLuXQZ+2HfWsAG7W62Ohq5VG7u0MN1FpdUkiSX5uw1k5z8H7tUI7mnYOFdkJ1hdtFcN7ly7tt5GPQca5Y/fxgO/FI5963Ktn9uPjeJNlvsxPV1HQHegZD+G/z+rdXRXJCSJLk07W4CrwBzVk/yGqujETF9NQEObQW/OnDrO+ZK2ZWl97PQsi/kZcGCO1xmFo/TUldb1eMdAN3uMstrnXtxSSVJcmm8/M90Y2gAtziDX+bBpvfB5gZD5lR+64ObOwx+y5xJd+wgLLgdcrMqN4aq4mgy7P8Zs6vtJqujkfIU9aD5O7p7JRzaZnU056UkSS5d4ZpJ2xab+2KJWOXgJrMVCcyFHsOvsiYOn0BzxptPTTiwEb4Ya26JIqWzbbH53OxyCAi1NBQpZzWbQNvTiW+88y4uqSRJLl2jSPOv5rxTsG2R1dFIdXXqL/joTnPz5VbXQ6/x1sYT3NzcDNfmbi66+tN/rY3HFdm72gZaGoZUkOhHzOetH5kLvjohJUly6bTprVitoAA+G212z9RsCrfMBDcn+O8t/Ero939m+dtnYec3lobjUo4kwcFfzC6ZtprVViU1vgwaXQb5OfDzW1ZH41CZ/hfZt28f+/fvt3+9fv16xo0bx6xZs8otMHExnYeBm4c5fiBth9XRSHXz42vw2zfmOkVD3wPfWlZHdMZl90PEPYABn94PaYlWR+Qati82n5vFQI26loYiFSj6YfP55zlOOXavTEnS7bffzooVKwBITU3luuuuY/369TzxxBNMnlxJU23FudSoZ3ZxACS8Z20sUr3sXgkrXjTLA16B+p0tDacYmw36/9tcUyznGMwfBiePWB2V89OstuqhzY0Q1AROppvdbk6mTEnSr7/+Svfu3QH46KOP6NChA2vWrOHDDz/knXfeKdW1pk+fTlhYGD4+PkRERLB69eoL1l+1ahURERH4+PgQHh7OzJkzi7w+e/ZsYmJiqFWrFrVq1aJ3796sX7++SJ1nn30Wm81W5BEaqkGBl6ywy23zAsjPtTYWqR4yDsAn95kLmnYdcWZasbNx9zTHJ9Vsai6X8dFd+h25kMN/QMpmczxXW81qq9LcPSBqlFmOn+50ExzKlCTl5ubi7e0NwLfffstNN5n/iNu0aUNKSkqJr7Nw4ULGjRvHpEmTSEhIICYmhn79+pGcnOywflJSEv379ycmJoaEhASeeOIJxo4dy6effmqvs3LlSoYPH86KFSuIj4+nSZMm9OnThwMHim6b0b59e1JSUuyPrVu3lvZtkHO1uM7cv+pkOvy2zOpopKrLy4GP7zb/vYV2hP6vWB3RhfkHw/AF5h5ye1bDN49bHZHzKmxFCr/SfN+kaut2l/l78Wci/PG91dEUUaYkqX379sycOZPVq1cTFxfH9deb3SwHDx4kOLjk/6Bfe+017rvvPu6//37atm3L1KlTady4MTNmzHBYf+bMmTRp0oSpU6fStm1b7r//fu69915eeeXMf44ffPABY8aMoUuXLrRp04bZs2dTUFDAd999V+RaHh4ehIaG2h9166rP+5K5e5hjk0ADuKXixT0F+9eDdxDc9h54+lod0cWFtINBswGbOVD15zlWR+ScCqf+q6utevAJOrOUzFrnWg6gTEnS//3f//Hmm29y1VVXMXz4cDp3NscALFmyxN4NdzE5OTls3LiRPn36FDnep08f1qxxvHJzfHx8sfp9+/Zlw4YN5OY6bro+efIkubm51K5du8jxXbt20aBBA8LCwhg2bBi7d+++YLzZ2dlkZmYWeYgDXU53ue1arpWGpeL8+imsO93VfstMqB1mbTyl0aY/XPuUWf76n5B04SEG1U76LnO1dDcPaHOD1dFIZSlcXPL3b51q8k+ZkqSrrrqK9PR00tPTmTt3rv34qFGjio0ROp/09HTy8/MJCQkpcjwkJITUVMcfrqmpqQ7r5+XlkZ6e7vCcxx9/nIYNG9K7d2/7saioKObNm8eyZcuYPXs2qamp9OzZk8OHD5833ilTphAUFGR/NG7cuETfZ7VTtxU07gFGvjk2SaS8/bkTPv+bWb481kw6XM3lsdBhCBTkmWs7HUmyOiLnYe9quxr8al+4rlQdtcOgzQCz7EStSWVKkk6dOkV2dja1apnTbPfu3cvUqVPZuXMn9erVK9W1bDZbka8Nwyh27GL1HR0HePnll5k/fz6LFi3Cx8fHfrxfv34MHjyYjh070rt3b7766isA3n333fPed+LEiWRkZNgf+/btu/g3V13Z10x6z+kG4YmLyz4OC++E3BPm1PCrJ1kdUdnYbHDzG9Cgq7kI5vzhWq2+0K+nF6RVV1v10+P0cgCbF8AJxw0fla1MSdLNN9/MvHnzADh69ChRUVG8+uqrDBw48Lzjic5Vp04d3N3di7UapaWlFWstKhQaGuqwvoeHR7GxUK+88govvfQSy5cvp1OnTheMxd/fn44dO7Jr167z1vH29iYwMLDIQ86j/UDw9IfDv8O+dVZHI1WFYZjbe6TvhID6MGSuOQ7OVXn6wrAPoUaoOWB10SgoyLc6KmulJZrvhZvnmVYFqT6a9IAG3cxV8zfMvXj9SlCmJOmXX34hJiYGgE8++YSQkBD27t3LvHnzeP3110t0DS8vLyIiIoiLiytyPC4ujp49ezo8Jzo6ulj95cuXExkZiaenp/3Yv//9b55//nm++eYbIiMjLxpLdnY2iYmJ1K9fv0Sxy0V4B5z5K1BrJkl5WT/LHIvk5gG3vmOuzeXqAhuYiZK7N/z2NXz/vNURWatwwHaLa8G3ppWRiBVstjOLS66fDXnZ1sZDGZOkkydPEhAQAJhJyqBBg3Bzc6NHjx7s3bu3xNeJjY3lrbfeYu7cuSQmJjJ+/HiSk5MZPXo0YHZx3XXXmXVPRo8ezd69e4mNjSUxMZG5c+cyZ84cJkyYYK/z8ssv8+STTzJ37lyaNWtGamoqqampHD9+3F5nwoQJrFq1iqSkJNatW8eQIUPIzMxk5MiRZXk7xJHCLrdfPzO7SEQuxb71sOwJs3zd8+ZfnFVFowiz6w3gx//Alo+tjccqhnFm70d1tVVf7W6GwIZwIg22fmJ1NGVLklq0aMHixYvZt28fy5Yts884S0tLK1U31NChQ5k6dSqTJ0+mS5cu/PDDDyxdupSmTZsCkJKSUmTNpLCwMJYuXcrKlSvp0qULzz//PK+//jqDBw+215k+fTo5OTkMGTKE+vXr2x9nLxOwf/9+hg8fTuvWrRk0aBBeXl6sXbvWfl8pB016QO3m5tiRwu0FRMriRDp8NNIc5NxuIPR4yOqIyl+n26DXOLO85BE4sNHScCyRth3SfzNb1Vq74GB8KR/untD99OKSa61fXNJmGKWP4JNPPuH2228nPz+fa665xt4FNmXKFH744Qe+/vrrcg/U2WRmZhIUFERGRobGJ53P6tfgu+egSTTcq409pQwK8uG9WyBpFQS3hFErzO7cqqggHxbcbu5BVyMURq2EwGo0BOD7F+CHf0PrATD8Q6ujESud+gteawe5J+GuzyH8qnK9fGk+v8vUkjRkyBCSk5PZsGEDy5adWVn52muv5T//+U9ZLilVUZfbzW0FkuMh/XeroxFXtOIlM0Hy9DM3rq2qCRKAm7u50GTdtnA81UyYck9ZHVXlMIwzs9o6DLI2FrGeb60zQzbirV0OoExJEpgzzbp27crBgwftW350796dNm3alFtw4uICQqHldWZZA7iltH5bBqtPd5Pf+DrUa2ttPJXBJxCGzzc/JA7+Akv+Znl3Q6VI3QpH/gAPH2jV1+poxBlEjYZG3aHLcEvDKFOSVFBQwOTJkwkKCqJp06Y0adKEmjVr8vzzz1NQUFDeMYors296Ox/y86yNRVzHX3tg0QNmufso6HSrpeFUqtph5ma4bh6w9WNzMHdVV7iAZMvrqnZroZRccHO4P87yQfxlSpImTZrEG2+8wb/+9S8SEhL45ZdfeOmll/jf//7HU089Vd4xiitr2Rf86sDxQ+Zy8yIXk5sFH90FWRnQMBL6vGh1RJUv7Aro939m+bvJsLMKj/MsMqtNXW3iXMqUJL377ru89dZbPPTQQ3Tq1InOnTszZswYZs+ezTvvvFPOIYpL8/A6a9NbdblJCXz9T0jZDL614bZ3zX9D1dFl90PkfYABn94Ph7ZbHVHFSNlkthx6+KqrTZxOmZKkI0eOOBx71KZNG44cOXLJQUkVU9jl9ts3cPxPa2MR55bwAfzyLmCDIXMgqJHVEVmr3/+Z26/kHIf5w+DE+feXdFmFXW2t+oKXv7WxiJyjTElS586deeONN4odf+ONNy66BYhUQ/Xamt0mBXmwZaHV0YizSt0KX8Wa5aufgObXWBuPM3D3NMcn1WwKR/fCxyMhP9fqqMqPYZxJkjSrTZxQmTY+evnllxkwYADffvst0dHR2Gw21qxZw759+1i6dGl5xyhVQdcRcGCD2eUW/bC5/LxIoVNHzY1r87KgxXUQM+Gip1QbfrXh9oXwVm/Ys9rsjryhigzmPvALHE0293pscZ3V0YgUU6aWpCuvvJLffvuNW265haNHj3LkyBEGDRrEtm3bePvtt8s7RqkKOgwyxxz8uaN6riYs52cYsHgM/JUEQU1g0CxwK/PqJFVTvbYw+C3AZm78uX621RGVj8IB262vBy8/a2MRcaBMK26fz+bNm+nWrRv5+VV/J2utuF0Gix6ELQsg4m648b9WRyPO4sep8O0z4O4F9y6Dht2sjsh5Fa5ib3OHOz+D8CutjqjsCgpgakfI3A9DP4C2N1gdkVQTFb7itkiZFA7g3vop5Jy0NhZxDkmrzQ99gH4vK0G6mMvHQ8fbwMg3xycd2W11RGV3YIOZIHnVgBa9rY5GxCElSVJ5mvaCWs0g5xgkLrE6GrFaZgp8cg8YBdD5drOFUS7MZoObXocG3cz9rT4cBlmZVkdVNoXbkLTuD54+1sYich5KkqTyuLlBl9OtSQnvWxuLWCs/10yQTvwJIR1gwKsazF9Snr4w7EMIqA/pO801lApcbIhDQQFsX2yWNatNnFipZrcNGnThf8xHjx69lFikOuhyO6x40Zylc2Q31A63OiKxwrfPmhsfeweaU9w1aLd0AuvDsA/g7f6wa5m5Kvd1z1kdVcntWwfHUsA7SEs9iFMrVUtSUFDQBR9NmzblrrvuqqhYpSoIaggtrjXLCR9YG4tYY9tiiD+9ztrAGeYeTVJ6DSPgptPv409TYbMLrUFWOKutzQDw8LY2FpELKFVLkqb3S7noOsLcx23Th+aigW7uVkcklSV9F3z+iFnuOVYzmi5Vp1shbTv8+Bos+ZuZcDaKtDqqCyvIh+2fm2WLNy8VuRiNSZLK17o/+NaCYwfhjxVWRyOVJeeEuWBkzjFzEP+1z1gdUdVwzVPm71R+Niy4AzIPWh3RhSXHmxte+9SE8KusjkbkgpQkSeXz8IZOQ82yNr2tHgwDvhgHfyZCjRAY8ja4l2nBfzmXm5u5AGe9dnA8FRbcDrmnrI7q/ApntbW9ofpuXiwuQ0mSWKNwzaQdX1XNTTulqA1zYOtH5iKIt74DASFWR1S1eAfA8PngWxsOJsDnD5uJqbPJzzuz/Ie62sQFKEkSa4R2hPpdoCAXtn5sdTRSkfZvhK8fN8vXPQdNe1obT1VVq5k5U9DNA379FFa/anVExe39yVz2wbc2hLnwauFSbShJEusUtiYlvOecf/XKpTtxGD66y0yG294I0Y9YHVHVFhZjrlwO8P3zZkutMymc1db2RnD3tDYWkRJQkiTW6TgE3L3h0K+QssnqaKS8FeTDovvNrSdqN4ebp2vByMpw2X1w2f1m+dMH4NA2a+MplJ8H29XVJq5FSZJYx7eW+RclaAXuqmjVy/DH9+DhC0PfAx9tBF1prv8XNIuB3BMwfxicSLc6IkhaBaeOgF8dMzYRF6AkSaxl3/T2Y+eekSOls+tbWPV/ZvnG/0JIe2vjqW7cPc3xSbXC4Giy2eWZl2NtTNs+M5/b3aSZjeIylCSJtcKuhKDGkJXhfOMnpGyOJpvdbBgQeS90Hmp1RNWTX20YvgC8AswB01//w7qxf/m5kPiFWVZXm7gQJUliLTc36HKHWdaaSa4vL9tstTj1FzToanb7iHXqtYEhcwAbbHwH1s+2Jo7dKyHrKPjXMxcSFXERSpLEel3vAGywexX8tdfqaORSfDPRXKfHt5bZ3aN9uazXqi/0ftYsf/O4mbBUNntX283ahkhcipIksV7NJhB+JWCY+7mJa9q8wFw0EhsMesv8uYpz6PUodBoGRj58NBIO/1F5987LgcQvzbK62sTFKEkS59D1TvN50wdQUGBtLFJ6h7aZ244AXPkYtOxtaThyDpvNHEDfMNLs9po/3BwHWBn++B6yM6BGKDSJrpx7ipQTJUniHNoMAJ8gyNhnThUW15GVaW5cm3cKml8LV/7T6ojEEU8fGPYBBDSA9J3w6f3mWlYVrbCrrf1AcwyiiAvRv1hxDp6+0PFWs6w1k1yHYcDnY+DIHxDYCAbN1pgTZxYQaiZKHj6wazl8+2zF3i83C3YuNcvqahMXZHmSNH36dMLCwvDx8SEiIoLVq1dfsP6qVauIiIjAx8eH8PBwZs6cWeT12bNnExMTQ61atahVqxa9e/dm/fr1l3xfqQSFayYlfmHOjhLnF/+G+fNyO70uj3+w1RHJxTTsBgOnm+U1r8Om+RV3rz++g+xMCGwIjbpX3H1EKoilSdLChQsZN24ckyZNIiEhgZiYGPr160dycrLD+klJSfTv35+YmBgSEhJ44oknGDt2LJ9++qm9zsqVKxk+fDgrVqwgPj6eJk2a0KdPHw4cOFDm+0olqd8FQjpCfjZs/cTqaORi9q6BuGfMcr9/QaMIa+ORkuswGGImmOUvxsK+nyvmPvZZbQPV1SYuyWYY1u0sGhUVRbdu3ZgxY4b9WNu2bRk4cCBTpkwpVv+xxx5jyZIlJCYm2o+NHj2azZs3Ex8f7/Ae+fn51KpVizfeeIO77rqrTPd1JDMzk6CgIDIyMggM1HYL5WbtTPjmMTNhelBjk5zWsUPwZgwcPwQdb4NBs7Qvm6spKICFI2DnV+b6RaNWQlDD8rt+7in4dwvIOQ73fQuNLyu/a4tcgtJ8fluW2ufk5LBx40b69OlT5HifPn1Ys2aNw3Pi4+OL1e/bty8bNmwgNzfX4TknT54kNzeX2rVrl/m+Uok63QbuXuaGt6lbrY5GHMnPg0/uMROkum3hxqlKkFyRmxsMehPqtYMTabBgOOScLL/r74ozE6SgxtAosvyuK1KJLEuS0tPTyc/PJyQkpMjxkJAQUlNTHZ6TmprqsH5eXh7p6Y43cHz88cdp2LAhvXv3LvN9AbKzs8nMzCzykArgVxta9zfLGsDtnL6fbG5z4RVgblzr5W91RFJW3gEwfD74BUPKZvj84fLbuuTsWW1KosVFWd5JbDvnl8cwjGLHLlbf0XGAl19+mfnz57No0SJ8fHwu6b5TpkwhKCjI/mjcuPF568olKlwzactCc5sLcR6JX8BP/zXLN78BdVpaG49culrNzEH3bh6wbRH88MqlXzPnBPz2jVnWrDZxYZYlSXXq1MHd3b1Y601aWlqxVp5CoaGhDut7eHgQHFx0Vs0rr7zCSy+9xPLly+nUqdMl3Rdg4sSJZGRk2B/79u0r0fcpZdD8anMtl1N/nZk+LNY7/AcsHmOWox8xWwikamh2OfQ/nRyteOHMZrRltWs55J6Emk2hQbdLj0/EIpYlSV5eXkRERBAXF1fkeFxcHD179nR4TnR0dLH6y5cvJzIyEk9PT/uxf//73zz//PN88803REYW7Qsvy30BvL29CQwMLPKQCuLmDl1uN8vqcnMOOSfNjWuzM81Vkwv3ApOqI/Ie6D7KLC96EFJ/Lfu17F1tt6irTVyapd1tsbGxvPXWW8ydO5fExETGjx9PcnIyo0ePBszWm8IZaWDOZNu7dy+xsbEkJiYyd+5c5syZw4QJE+x1Xn75ZZ588knmzp1Ls2bNSE1NJTU1lePHj5f4vuIEut5hPv/+HWTstzaW6s4w4KtYOPQr+NeFIW+Du+fFzxPX03cKhF0JuSfMrUuO/1n6a2Qfh9+Wm2V1tYmrMyw2bdo0o2nTpoaXl5fRrVs3Y9WqVfbXRo4caVx55ZVF6q9cudLo2rWr4eXlZTRr1syYMWNGkdebNm1qAMUezzzzTInvWxIZGRkGYGRkZJTqPCmFtwcYxjOBhrHqZasjqd5+nmv+HJ6taRi7f7A6GqloJw4bxn+7mD/zOdcbRm526c7f8rF57n+7GEZBQcXEKHIJSvP5bek6Sa5M6yRVgs0L4LMHzYGlf0vQYnRWOPALzO0L+TlmF9vl462OSCrDnzvhrd5m92q3u+DG10vebbbgDtjxJcT8Ha59umLjFCkDl1gnSeSi2t5kTjP/a4855Vwq18kj8NFIM0FqPQB6jbM6IqksdVvD4DmADX6ZB+veLNl5WZnm+kgA7QdVWHgilUVJkjgvLz/oONgsawB35SooMFvxMpKhVpi515cG4FYvrfrAdZPN8rKJ8Mf3Fz/nt2/MbYWCW0JI+4qNT6QSKEkS51a4ZtL2zyErw9pYqpPVr5rTuD18zAUjfWtaHZFYoeffoPNwMArg47vNZSAuRLPapIpRkiTOrWGEufVF3in4dZHV0VQPf3wPK140ywNeg9CO1sYj1rHZ4Iap0Ogy84+U+cPO/8fKqaPw+7dmuYO62qRqUJIkzs1mg64jzLK63Cpexn749H7AgG4jzyzFINWXpw8Mfd9c4DX9N/jkXijIL15v59fm+LW6baBe28qPU6QCKEkS59dpqLllwoENkJZodTRVV16OOVD75GGo3xn6vWx1ROIsAkJh+Ifg4Wu2FsU5mLV2dlebSBWhJEmcX4260Op6s6zWpIqzfJKZiPoEmXt5efpc/BypPhp0hYHTzHL8G7DpwzOvnfrrzMBuJUlShShJEtdQOIB78wKzxUPK19ZPYP0sszxotrk2lci5OgyGK/5hlr94FJLXmeUdX0FBLtRrby4fIFJFKEkS19CiN9QIgZPpsGuZ1dFULWmJsORvZjlmArTqa2084tyuegLa3GCOP1o4whzHVjipQq1IUsUoSRLX4O5hTkUGdbmVp+xjsPBOc8f2sCvh6iesjkicnZsb3PImhHSAE2nwwW2we6X5mpIkqWKUJInrKOxy27UcMlOsjaUqMAyzBenwLghsCEPmgpu71VGJK/CuAcM+BL9gSNsGRr65VESdFlZHJlKulCSJ66jTAppEmwvbbVlgdTSub91Mc0aSmwfc+g7417E6InEltZqaSwO4eZpfqxVJqiAlSeJazl4zSXszl13yWlj+pFnu+xI07m5tPOKamvaE2941l+mIvM/qaETKnZIkcS3tBoKnPxz+3fygl9I7/qe5xURBnjlbqfsoqyMSV9ZmAAyapa1rpEpSkiSuxbsGdDjdrK8B3KWXnwef3APHUqBOa7jxde2xJSJyHkqSxPUUDuDe9pk5O0tKbsWLsGe12Ro39D0z6RQREYeUJInraRwFwS0h9wRsW2x1NM4pPw+yMuF4Gvy1B9J2QMIH8ONr5us3/0+L/omIXISH1QGIlFrhprffPmN2uXW70+qISiY/D/JOQW6WuS5R3unnIl+fOutRgjp5p875+nS9grzzxxE12hyLJCIiF6QkSVxT52Hw3WTYtxbSd0GdlmW7TkF+0eSipAnMucnJBesUJi655fselJSHL3iefoRfDdc9b00cIiIuRkmSuKaAUGjZB377GpZNgkaRF29dKUxWzq6Tb9E+cB4+ZtJydgLj6Xv6uJ+5uayn3zlfO6pfWD73nLOup4HZIiJloiRJXFfXEWaStGtZ+ezn5u59ngTk3ATGUR1HSc15vvbwMbd2EBERp6YkSVxX637mhqwZ+8rQKnPO1x6+SlxERKQIJUniutzc4dqnrI5CRESqKP3pLCIiIuKAkiQRERERB5QkiYiIiDigJElERETEASVJIiIiIg4oSRIRERFxQEmSiIiIiANKkkREREQcUJIkIiIi4oDlSdL06dMJCwvDx8eHiIgIVq9efcH6q1atIiIiAh8fH8LDw5k5c2aR17dt28bgwYNp1qwZNpuNqVOnFrvGs88+i81mK/IIDQ0tz29LREREXJylSdLChQsZN24ckyZNIiEhgZiYGPr160dycrLD+klJSfTv35+YmBgSEhJ44oknGDt2LJ9++qm9zsmTJwkPD+df//rXBROf9u3bk5KSYn9s3bq13L8/ERERcV2W7t322muvcd9993H//fcDMHXqVJYtW8aMGTOYMmVKsfozZ86kSZMm9tahtm3bsmHDBl555RUGDx4MwGWXXcZll10GwOOPP37ee3t4eKj1SERERM7LspaknJwcNm7cSJ8+fYoc79OnD2vWrHF4Tnx8fLH6ffv2ZcOGDeTm5pbq/rt27aJBgwaEhYUxbNgwdu/efcH62dnZZGZmFnmIiIhI1WVZkpSenk5+fj4hISFFjoeEhJCamurwnNTUVIf18/LySE9PL/G9o6KimDdvHsuWLWP27NmkpqbSs2dPDh8+fN5zpkyZQlBQkP3RuHHjEt9PREREXI/lA7dtNluRrw3DKHbsYvUdHb+Qfv36MXjwYDp27Ejv3r356quvAHj33XfPe87EiRPJyMiwP/bt21fi+4mIiIjrsWxMUp06dXB3dy/WapSWllastahQaGiow/oeHh4EBweXORZ/f386duzIrl27zlvH29sbb2/vMt9DREREXItlLUleXl5EREQQFxdX5HhcXBw9e/Z0eE50dHSx+suXLycyMhJPT88yx5KdnU1iYiL169cv8zVERESkarG0uy02Npa33nqLuXPnkpiYyPjx40lOTmb06NGA2cV111132euPHj2avXv3EhsbS2JiInPnzmXOnDlMmDDBXicnJ4dNmzaxadMmcnJyOHDgAJs2beL333+315kwYQKrVq0iKSmJdevWMWTIEDIzMxk5cmTlffMiIiLi1CxdAmDo0KEcPnyYyZMnk5KSQocOHVi6dClNmzYFICUlpciaSWFhYSxdupTx48czbdo0GjRowOuvv26f/g9w8OBBunbtav/6lVde4ZVXXuHKK69k5cqVAOzfv5/hw4eTnp5O3bp16dGjB2vXrrXfV0RERMRmFI58llLJzMwkKCiIjIwMAgMDrQ5HRERESqA0n9+Wz24TERERcUZKkkREREQcUJLkhFbsTCMrN9/qMERERKo1JUlOZnHCAe5952fuf3cDJ3PyrA5HRESk2lKS5GRCg3zw83Tnx9/TGTl3PceySrcnnYiIiJQPJUlOpkd4MO/dH0Wgjwc/7/mLO95ax9GTOVaHJSIiUu0oSXJC3ZrU4sMHelDb34st+zMYNmstfx7LtjosERGRakVJkpPq0DCIhaN6UC/Amx2pxxj6ZjwpGaesDktERKTaUJLkxFqGBPDRg9E0rOnL7vQT3DoznuTDJ60OS0REpFpQkuTkmtXx56PR0TQL9mP/X6e47c14fk87bnVYIiIiVZ6SJBfQsKYvHz0YTauQGqRmZjFsVjyJKZlWhyUiIlKlKUlyEfUCfVgwKpoODQNJP57DsFlr2bzvqNVhiYiIVFlKklxIbX8vPri/B92a1CTjVC53vLWO9UlHrA5LRESkSlKS5GKCfD15774oosODOZ6dx11z17F6159WhyUiIlLlKElyQf7eHrx9z2Vc3bouWbkF3PfOBr7dfsjqsERERKoUJUkuysfTnTfvjKRfh1By8gsY/f5Gvth80OqwREREqgwlSS7My8ON/w3vyi1dG5JXYPDoggQ+3rDP6rBERESqBCVJLs7D3Y1Xb+3M8O5NKDDgH59s4b34PVaHJSIi4vKUJFUBbm42XrqlA/f2CgPgqc+38eaqPyyOSkRExLUpSaoibDYbT93Qlr9d0wKAKV/v4D9xv2EYhsWRiYiIuCYlSVWIzWbj731a84++rQH473e7mPL1DiVKIiIiZaAkqQp6+OoWPHNjOwBm/bCbpz7/lYICJUoiIiKloSSpirqnVxj/GtQRmw3eX5vMPz7ZQl5+gdVhiYiIuAwlSVXYsO5NmDq0C+5uNj79ZT+PLtxErhIlERGRElGSVMXd3KUh027vhqe7ja+2pPDQ+xvJys23OiwRERGnpySpGri+Qyiz74rE28ONbxPTuP/dDZzMybM6LBEREaemJKmauKp1Pd65pzt+Xu78+Hs6I+eu51hWrtVhiYiIOC0lSdVIdPNg3r8/igAfD37e8xd3vLWOoydzrA5LRETEKSlJqma6NanF/Ad6UNvfiy37Mxg2ay1/Hsu2OiwRERGnoySpGurQMIiFo3pQL8CbHanHGPpmPCkZp6wOS0RExKkoSaqmWoYE8NGD0TSs6cvu9BPcOjOe5MMnrQ5LRETEaVieJE2fPp2wsDB8fHyIiIhg9erVF6y/atUqIiIi8PHxITw8nJkzZxZ5fdu2bQwePJhmzZphs9mYOnVqudy3KmpWx5+PRkfTLNiP/X+d4rY34/k97bjVYYmIiDgFS5OkhQsXMm7cOCZNmkRCQgIxMTH069eP5ORkh/WTkpLo378/MTExJCQk8MQTTzB27Fg+/fRTe52TJ08SHh7Ov/71L0JDQ8vlvlVZw5q+fPRgNC3r1SA1M4uhb8aTmJJpdVgiIiKWsxkW7n4aFRVFt27dmDFjhv1Y27ZtGThwIFOmTClW/7HHHmPJkiUkJibaj40ePZrNmzcTHx9frH6zZs0YN24c48aNu6T7OpKZmUlQUBAZGRkEBgaW6BxnduREDnfOWce2g5kE+Xoy797udG5c0+qwREREylVpPr8ta0nKyclh48aN9OnTp8jxPn36sGbNGofnxMfHF6vft29fNmzYQG5uydb8Kct9q4Pa/l58+EAPujWpScapXO54ax3rk45YHZaIiIhlLEuS0tPTyc/PJyQkpMjxkJAQUlNTHZ6TmprqsH5eXh7p6ekVdl+A7OxsMjMzizyqmiBfT967L4ro8GCOZ+dx19x1rN71p9VhiYiIWMLygds2m63I14ZhFDt2sfqOjpf3fadMmUJQUJD90bhx41Ldz1X4e3vw9j2XcXXrumTlFnDfOxv4dvshq8MSERGpdJYlSXXq1MHd3b1Y601aWlqxVp5CoaGhDut7eHgQHBxcYfcFmDhxIhkZGfbHvn37SnQ/V+Tj6c6bd0ZyfftQcvILGP3+Rr7YfNDqsERERCqVZUmSl5cXERERxMXFFTkeFxdHz549HZ4THR1drP7y5cuJjIzE09Ozwu4L4O3tTWBgYJFHVebl4cYbt3fllq4NySsweHRBAh9vqLqJoYiIyLk8rLx5bGwsd955J5GRkURHRzNr1iySk5MZPXo0YLbeHDhwgHnz5gHmTLY33niD2NhYHnjgAeLj45kzZw7z58+3XzMnJ4ft27fbywcOHGDTpk3UqFGDFi1alOi+YvJwd+PVWzvj4+nO/PXJ/OOTLWTl5nNndDOrQxMREal4hsWmTZtmNG3a1PDy8jK6detmrFq1yv7ayJEjjSuvvLJI/ZUrVxpdu3Y1vLy8jGbNmhkzZswo8npSUpIBFHuce50L3bckMjIyDMDIyMgo1XmuqKCgwHhuyTaj6WNfGk0f+9KYufJ3q0MSEREpk9J8flu6TpIrq2rrJF2MYRi8uvw33ljxOwCPXtuScb1blnrAvIiIiJVcYp0kcS02m40JfVvzj76tAfjvd7uY8vUOlGOLiEhVpSRJSuXhq1vw9A3tAJj1w26e+vxXCgqUKImISNWjJElK7d7Lw/jXoI7YbPD+WnNAd15+gdVhiYiIlCslSVImw7o3YerQLri72fj0l/08umATOXlKlEREpOpQkiRldnOXhky7vRue7ja+2prCQ+9vJCs33+qwREREyoWSJLkk13cIZfZdkXh7uPHdjjTuf3cDJ3PyrA5LRETkkilJkkt2Vet6vHNPd/y83Pnx93TumrOezKxcq8MSERG5JEqSpFxENw/m/fujCPDxYMPevxjx1jqOnsyxOiwREZEyU5Ik5aZbk1rMf6AHtf292LI/g2Gz1vLnsWyrwxIRESkTJUlSrjo0DGLhqB7UC/BmR+oxhr4ZT0rGKavDEhERKTUlSVLuWoYE8NGD0TSs6cvu9BPcOjOe5MMnrQ5LRESkVJQkSYVoVsefj0ZH0yzYj/1/neK2N+P5Pe241WGJiIiUmJIkqTANa/ry0YPRtKxXg9TMLIa+GU9iSqbVYYmIiJSIkiSpUPUCfVj4YDTtGwRy+EQOw2atZfO+o1aHJSIiclFKkqTC1fb34sMHetCtSU0yTuVyx1vrWJ90xOqwRERELkhJklSKIF9P3rsviujwYI5n53HX3HWs3vWn1WGJiIicl5IkqTT+3h68fc9lXNW6Llm5Bdz3zga+3X7I6rBEREQcUpIklcrH050374zg+vah5OQXMPr9jXyx+aDVYYmIiBSjJEkqnbeHO2/c3pVbujYkr8Dg0QUJfLxhn9VhiYiIFKEkSSzh4e7Gq7d2Znj3xhQY8I9PtvBe/B6rw6rS8vILyC8wrA5DRMRleFgdgFRfbm42XrqlIz6e7rz90x6e+nwbJ3PyefDK5laH5tIKCgz2/XWSnanH+O3QMX47dJzfDh3jjz+P4+XuRmSz2vQIDya6eTAdGgTi4a6/lUREHFGSJJay2Ww8fUM7/L08eGPF70z5egcnc/IZ17slNpvN6vCcmmEYpGRksfPQMX5LPZMM7Uo7RlZugcNzcvPzWfXbn6z6zZxZWMPbg8ua1bInTe0bBOHupvddRASUJIkTsNlsTOjbGl8vd/69bCf//W4Xp3LzmdivjRIlzGToz+PZ7Dp0/KzWoWPsOnScY9l5Ds/x8nCjZb0atAoJoFVIAK1Da9CyXgDHsvJYu/sw8bsPs273YTKz8lix809W7DSTpgBvD7qHnWlpals/UEmTiFRbNsMwNEihDDIzMwkKCiIjI4PAwECrw6ky5v6YxOQvtwMwokcTJt/UAbdq9CF99GQOvx06flbrkPn462Suw/oebjbC6/rTMiSA1qcTolYhNWga7H/R5Ca/wCAxJZO1uw+zdvdh1iUd4VhW0aQr0MeD7mHB9AivbSZNoYHV6uchIlVPaT6/lSSVkZKkirNgfTITP9uKYcDgbo34v8Edq9y4mePZeew6nQDtTD3OrrRj7Ew9RtqxbIf1bTZoFuxPy3o1aB0aYG8hCqvjj5dH+bw3+QUG2w9m2lua1icd4fg5LVVBvp5EhZkJU4/wYFqHBChpEhGXoiSpEihJqliLEw7w9483k19gMKBjff4ztEu5JQOVKSs3n9/TzLFCO093ke1MPcaBo6fOe07Dmr60CqlBq9AzrUPN69bA18u9EiM3Z8NtOytp+jnpCCdy8ovUqeXnSVRYsD1pahVSQ12kIuLUlCRVAiVJFe+bX1P52/xfyM03uLZNPabd0Q0fz8pNFEoqJ6+APYdPFBkz9Nuh4+w9fILzzbqvF+BddMxQSAAt69UgwMezcoMvobz8ArYeyGDt7iPE7z7Mhj1HOHlO0hTs70VUeG2iw82kqUU9JU0i4lyUJFUCJUmVY+XONB58byPZeQVc3qIOs+6KwM/LuvkG+QUGew+fsM8kK3zs/vMEeefJhmr6eZqJUEgArUIDaHV6QHUtf69Kjr585eYXsGV/hn1M0897jhSbVVenhhdR4cH2pKl5XX8lTSJiKSVJlUBJUuWJ/+Mw9737Mydz8olsWou591xGYAW3thQUGBw4eur0WKEzCdHvacfJznM8vb6GtwctQ2qcNYA6gFahNahbw7taJAY5eQVs2X+U+D8OszbpMBv2/FXsvaob4G3OnAs3B4OH1VHSJCKVS0lSJVCSVLl+Sf6LkXPXcywrj06Ngph3b3dq+l16S4xhGKQdyz49gPpMN9muQ8eKjb8p5OPpRovTrUH2hCg0gAZBPvrAP0t2Xj6b92WYSdPuw2xM/oucc5KmkMCzk6Zgmgb76T0UkQqlJKkSKEmqfL8eyOCuues5ciKHNqEBvHdfFHUDvEt8/pETOfYWoZ2ppwdRHzpGxinH0+s93W00r1vj9PT6M2sONa7tp7WDyiArN59N+47ak6aE5KPk5BdNmuoH+RRJmhrX9lXSJCLlSklSJVCSZI1dh45xx1vrSDuWTXgdfz54IIr6Qb5F6mRm5bLr9JihnanH7F1m6ccdT693s0GzOv60qhdw1oyyGjSr449nFVt6wJlk5ebzS/JfrP3jMGt3HyFh31/k5hf976hhTV96hJ9Zp6lRLT+LohWRqsKlkqTp06fz73//m5SUFNq3b8/UqVOJiYk5b/1Vq1YRGxvLtm3baNCgAf/85z8ZPXp0kTqffvopTz31FH/88QfNmzfnxRdf5JZbbrG//uyzz/Lcc88VOSckJITU1NQSx60kyTp70k9wx1vrOHD0FI1q+fLw1S1ISj9hthKlHuNgRtZ5z21c27dIMtQypAbN69Zw2llz1cmpnHw27v3LvuTA5n1Hiw2Gb1TL197KFN08mAY1fc9zNRERx0rz+W3ptiQLFy5k3LhxTJ8+nV69evHmm2/Sr18/tm/fTpMmTYrVT0pKon///jzwwAO8//77/PTTT4wZM4a6desyePBgAOLj4xk6dCjPP/88t9xyC5999hm33XYbP/74I1FRUfZrtW/fnm+//db+tbu7PiRdRbM6/ix8sAcj3lrHnsMnmbhoa7E6oYE+ZwZRn158sWW9Gvh7ayceZ+Xr5c7lLetwecs6AJzMyWPDnjNJ05b9Gez/6xQfb9zPxxv3A9Cktp+ZNDWvTXR4HUKDfKz8FkSkirG0JSkqKopu3boxY8YM+7G2bdsycOBApkyZUqz+Y489xpIlS0hMTLQfGz16NJs3byY+Ph6AoUOHkpmZyddff22vc/3111OrVi3mz58PmC1JixcvZtOmTWWOXS1J1kvLzOK5L7dz+Hh2kWSoVb0Agvycc60hKbsT2Xn8vOeIfZ2mXw9kkH9OS1OzYD/7wpY9woMJCVTSJCJFuURLUk5ODhs3buTxxx8vcrxPnz6sWbPG4Tnx8fH06dOnyLG+ffsyZ84ccnNz8fT0JD4+nvHjxxerM3Xq1CLHdu3aRYMGDfD29iYqKoqXXnqJ8PDw88abnZ1NdvaZMS2ZmZkl+TalAtUL9GHa7d2sDkMqib+3B1e1rsdVresBcCwrt0hL068HMthz+CR7Dp9k/vp9AITX8aeHPWmqTb0AJU0iUnKWJUnp6enk5+cTEhJS5PiFxgalpqY6rJ+Xl0d6ejr169c/b52zrxkVFcW8efNo1aoVhw4d4oUXXqBnz55s27aN4OBgh/eeMmVKsXFMImKdAB9Prm5Tj6vbmElTZlYuPycdsSdN2w5msjv9BLvTT/DhumQAWtSrYQ4CD69DVHht6tQo+ezI6s4wDPIKDHLyCsxHvvmcnVdAfoGBp7sNLw83vDzc8HZ3x9PDhpe7W5Xbd1EurqDAICe/gKzcfLLzCsjOLSA7zyzbj+Xlnz5ulrNyix/LziugQ8MgbotsbNn3YvkAjXOn9xqGccEpv47qn3v8Ytfs16+fvdyxY0eio6Np3rw57777LrGxsQ7vO3HixCKvZWZm0rixdT84ESkq0MeTa9uGcG1b84+kjFO5rC9Mmv44TGJqJr+nHef3tOO8v9ZMmlqF1LAvORAVHkxtJ1oFvfCDJvucpORMkpJ/5rVzXz8rgXF87lmv5xeQk5d/3npnX6MsgzPcbJjJk7tb0efTD0/3M8e8HRyzPxwc83Q/fY77Odc7fcz73GNnXaeqb8ycl1+YbJxJPrLOTUJOl4skLqeTmjN1889cJzefrNPP51777Oudu7THpbipc4PqmSTVqVMHd3f3Yq1GaWlpxVqCCoWGhjqs7+HhYW8BOl+d810TwN/fn44dO7Jr167z1vH29sbbW391iriKIF9PrmsXwnXtzN/9oydzWJd0xL5O047UY6e3lznOvPi9ALQJDbCPZ2oTGkBeQcEFE5HSJSnFE5Hs85yXk1dw3m1unIW7m82enHi42c7Efk4yVWBAVm5BsS1rrObhZiuaOJ2bwLkXT7C8HRy72Lne5yR67m42cvPPTU6KJh7na20pkrTkntMCc851nOXfj5sNfDzd8fZwsz97e7jj7elmL/t4nj7m4Xb6uLv9uW1ogKXxW5YkeXl5ERERQVxcXJHp+XFxcdx8880Oz4mOjuaLL74ocmz58uVERkbi6elprxMXF1dkXNLy5cvp2bPneWPJzs4mMTHxgksPiIhrq+nnRd/2ofRtHwqYi4uuTzp8Omk6ws5Dx9iRaj7eWbPH2mAdOPtDutgH9Fllb4evuZ/5oD/PeecmAo5e9z7rOudbULWwWy7XQTKYe05LVXZ+AbnnSxQdtGrlOkhMHd0nJ++ce+UXFFuDK6/AIC8nv9gmzVWRp7utWDLi5eGGd7Hk5UyC4nNOIlOk3tlJTeFxR8c8XL+71dLuttjYWO68804iIyOJjo5m1qxZJCcn29c9mjhxIgcOHGDevHmAOZPtjTfeIDY2lgceeID4+HjmzJljn7UG8Oijj3LFFVfwf//3f9x88818/vnnfPvtt/z444/2OhMmTODGG2+kSZMmpKWl8cILL5CZmcnIkSMr9w0QEcvU9vfi+g71ub5DfQDSj2ez/nRLU/zuwxw8esph1835kpNzExBvD/eL1nH8mnuxJMXT3eYyK4/bbDY83W14urtRDjsHlZuCAoPcguLJmKPEq9hxB4lX9nmSscJkLddBspebbyaPhT/rIolLCRISx0mK42sUHrtQQisXZ2mSNHToUA4fPszkyZNJSUmhQ4cOLF26lKZNmwKQkpJCcnKyvX5YWBhLly5l/PjxTJs2jQYNGvD666/b10gC6NmzJwsWLODJJ5/kqaeeonnz5ixcuLDIGkn79+9n+PDhpKenU7duXXr06MHatWvt9xWR6qdODW/6d6xP/471rQ5FKoCbmw1vN3e8PbQmnpSc5StuuyqtkyQiIuJ6SvP57dqdhSIiIiIVREmSiIiIiANKkkREREQcUJIkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSRERERBxQkiQiIiLigJIkEREREQc8rA7AVRmGAZi7CYuIiIhrKPzcLvwcvxAlSWV07NgxABo3bmxxJCIiIlJax44dIygo6IJ1bEZJUikppqCggIMHDxIQEIDNZivXa2dmZtK4cWP27dtHYGBguV67qtF7VXJ6r0pO71XJ6b0qOb1XpVNR75dhGBw7dowGDRrg5nbhUUdqSSojNzc3GjVqVKH3CAwM1C9SCem9Kjm9VyWn96rk9F6VnN6r0qmI9+tiLUiFNHBbRERExAElSSIiIiIOKElyQt7e3jzzzDN4e3tbHYrT03tVcnqvSk7vVcnpvSo5vVel4wzvlwZui4iIiDigliQRERERB5QkiYiIiDigJElERETEASVJIiIiIg4oSXIy06dPJywsDB8fHyIiIli9erXVITmlH374gRtvvJEGDRpgs9lYvHix1SE5rSlTpnDZZZcREBBAvXr1GDhwIDt37rQ6LKc0Y8YMOnXqZF+8Ljo6mq+//trqsFzClClTsNlsjBs3zupQnM6zzz6LzWYr8ggNDbU6LKd14MABRowYQXBwMH5+fnTp0oWNGzdaEouSJCeycOFCxo0bx6RJk0hISCAmJoZ+/fqRnJxsdWhO58SJE3Tu3Jk33njD6lCc3qpVq3j44YdZu3YtcXFx5OXl0adPH06cOGF1aE6nUaNG/Otf/2LDhg1s2LCBa665hptvvplt27ZZHZpT+/nnn5k1axadOnWyOhSn1b59e1JSUuyPrVu3Wh2SU/rrr7/o1asXnp6efP3112zfvp1XX32VmjVrWhKPlgBwIlFRUXTr1o0ZM2bYj7Vt25aBAwcyZcoUCyNzbjabjc8++4yBAwdaHYpL+PPPP6lXrx6rVq3iiiuusDocp1e7dm3+/e9/c99991kdilM6fvw43bp1Y/r06bzwwgt06dKFqVOnWh2WU3n22WdZvHgxmzZtsjoUp/f444/z008/OU0vilqSnEROTg4bN26kT58+RY736dOHNWvWWBSVVEUZGRmA+eEv55efn8+CBQs4ceIE0dHRVofjtB5++GEGDBhA7969rQ7Fqe3atYsGDRoQFhbGsGHD2L17t9UhOaUlS5YQGRnJrbfeSr169ejatSuzZ8+2LB4lSU4iPT2d/Px8QkJCihwPCQkhNTXVoqikqjEMg9jYWC6//HI6dOhgdThOaevWrdSoUQNvb29Gjx7NZ599Rrt27awOyyktWLCAX375RS3dFxEVFcW8efNYtmwZs2fPJjU1lZ49e3L48GGrQ3M6u3fvZsaMGbRs2ZJly5YxevRoxo4dy7x58yyJx8OSu8p52Wy2Il8bhlHsmEhZPfLII2zZsoUff/zR6lCcVuvWrdm0aRNHjx7l008/ZeTIkaxatUqJ0jn27dvHo48+yvLly/Hx8bE6HKfWr18/e7ljx45ER0fTvHlz3n33XWJjYy2MzPkUFBQQGRnJSy+9BEDXrl3Ztm0bM2bM4K677qr0eNSS5CTq1KmDu7t7sVajtLS0Yq1LImXxt7/9jSVLlrBixQoaNWpkdThOy8vLixYtWhAZGcmUKVPo3Lkz//3vf60Oy+ls3LiRtLQ0IiIi8PDwwMPDg1WrVvH666/j4eFBfn6+1SE6LX9/fzp27MiuXbusDsXp1K9fv9gfJG3btrVsApOSJCfh5eVFREQEcXFxRY7HxcXRs2dPi6KSqsAwDB555BEWLVrE999/T1hYmNUhuRTDMMjOzrY6DKdz7bXXsnXrVjZt2mR/REZGcscdd7Bp0ybc3d2tDtFpZWdnk5iYSP369a0Oxen06tWr2BIlv/32G02bNrUkHnW3OZHY2FjuvPNOIiMjiY6OZtasWSQnJzN69GirQ3M6x48f5/fff7d/nZSUxKZNm6hduzZNmjSxMDLn8/DDD/Phhx/y+eefExAQYG+tDAoKwtfX1+LonMsTTzxBv379aNy4MceOHWPBggWsXLmSb775xurQnE5AQECxcW3+/v4EBwdrvNs5JkyYwI033kiTJk1IS0vjhRdeIDMzk5EjR1odmtMZP348PXv25KWXXuK2225j/fr1zJo1i1mzZlkTkCFOZdq0aUbTpk0NLy8vo1u3bsaqVausDskprVixwgCKPUaOHGl1aE7H0fsEGG+//bbVoTmde++91/77V7duXePaa681li9fbnVYLuPKK680Hn30UavDcDpDhw416tevb3h6ehoNGjQwBg0aZGzbts3qsJzWF198YXTo0MHw9vY22rRpY8yaNcuyWLROkoiIiIgDGpMkIiIi4oCSJBEREREHlCSJiIiIOKAkSURERMQBJUkiIiIiDihJEhEREXFASZKIiIiIA0qSREQugc1mY/HixVaHISIVQEmSiLisu+++G5vNVuxx/fXXWx2aiFQB2rtNRFza9ddfz9tvv13kmLe3t0XRiEhVopYkEXFp3t7ehIaGFnnUqlULMLvCZsyYQb9+/fD19SUsLIyPP/64yPlbt27lmmuuwdfXl+DgYEaNGsXx48eL1Jk7dy7t27fH29ub+vXr88gjjxR5PT09nVtuuQU/Pz9atmzJkiVL7K/99ddf3HHHHdStWxdfX19atmxZLKkTEeekJElEqrSnnnqKwYMHs3nzZkaMGMHw4cNJTEwE4OTJk1x//fXUqlWLn3/+mY8//phvv/22SBI0Y8YMHn74YUaNGsXWrVtZsmQJLVq0KHKP5557jttuu40tW7bQv39/7rjjDo4cOWK///bt2/n6669JTExkxowZ1KlTp/LeABEpO8u21hURuUQjR4403N3dDX9//yKPyZMnG4ZhGIAxevToIudERUUZDz30kGEYhjFr1iyjVq1axvHjx+2vf/XVV4abm5uRmppqGIZhNGjQwJg0adJ5YwCMJ5980v718ePHDZvNZnz99deGYRjGjTfeaNxzzz3l8w2LSKXSmCQRcWlXX301M2bMKHKsdu3a9nJ0dHSR16Kjo9m0aRMAiYmJdO7cGX9/f/vrvXr1oqCggJ07d2Kz2Th48CDXXnvtBWPo1KmTvezv709AQABpaWkAPPTQQwwePJhffvmFPn36MHDgQHr27Fmm71VEKpeSJBFxaf7+/sW6vy7GZrMBYBiGveyojq+vb4mu5+npWezcgoICAPr168fevXv56quv+Pbbb7n22mt5+OGHeeWVV0oVs4hUPo1JEpEqbe3atcW+btOmDQDt2rVj06ZNnDhxwv76Tz/9hJubG61atSIgIIBmzZrx3XffXVIMdevW5e677+b9999n6tSpzJo165KuJyKVQy1JIuLSsrOzSU1NLXLMw8PDPjj6448/JjIykssvv5wPPviA9evXM2fOHADuuOMOnnnmGUaOHMmzzz7Ln3/+yd/+9jfuvPNOQkJCAHj22WcZPXo09erVo1+/fhw7doyffvqJv/3tbyWK7+mnnyYiIoL27duTnZ3Nl19+Sdu2bcvxHRCRiqIkSURc2jfffEP9+vWLHGvdujU7duwAzJlnCxYsYMyYMYSGhvLBBx/Qrl07APz8/Fi2bBmPPvool112GX5+fgwePJjXXnvNfq2RI0eSlZXFf/7zHyZMmECdOnUYMmRIiePz8vJi4sSJ7NmzB19fX2JiYliwYEE5fOciUtFshmEYVgchIlIRbDYbn332GQMHDrQ6FBFxQRqTJCIiIuKAkiQRERERBzQmSUSqLI0mEJFLoZYkEREREQeUJImIiIg4oCRJRERExAElSSIiIiIOKEkSERERcUBJkoiIiIgDSpJEREREHFCSJCIiIuKAkiQRERERB/4fARWiuzn0XeEAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Step 5 - Model Training\n",
    "\n",
    "#Printing the learning curve\n",
    "plt.plot(train_losses, label='Train Loss')\n",
    "plt.plot(test_losses, label='Test Loss')\n",
    "plt.xlabel('Epochs')\n",
    "plt.ylabel('Loss')\n",
    "plt.title('Learning Curve')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55e3a217-8042-4676-a203-55e4441ee2cf",
   "metadata": {},
   "source": [
    "Learning Curve Chart: Die Lernkurve zeigt den Verlust von Trainings- und Testdaten über die Anzahl der Epochen. Der kontinuierliche Abwärtstrend beider Kurven deutet darauf hin, dass das Modell im Laufe der Zeit besser wird und keine Anzeichen von Überanpassung zeigt, da der Testverlust (orange Linie) dem Trainingsverlust (blaue Linie) folgt. Das Konvergieren beider Kurven ist ein gutes Zeichen dafür, dass das Modell generalisiert und nicht nur die Trainingsdaten auswendig lernt."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "a22fa477-6ab6-4e77-827e-8bb770345c44",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mean Squared Error (MSE): 36304.058488096474\n",
      "Mean Absolute Error (MAE): 162.9043857530535\n",
      "Root Mean Square Error (RMSE): 190.53623930396148\n",
      "Mean Absolute Percentage Error (MAPE): 22.51108406593072%\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABBAAAAIUCAYAAACjJN/cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8M9JmqRNR7onpWWWspdsZYMiCKKiogiCe11UXFcZXhGvqMgVtzIUEFF/gCjKEgGRPYrsWUbp3nsk+f7+SM5p073T8Xm/XlWanJzzTZr55BmSEEKAiIiIiIiIiKgcKnsvgIiIiIiIiIgaPgYQiIiIiIiIiKhCDCAQERERERERUYUYQCAiIiIiIiKiCjGAQEREREREREQVYgCBiIiIiIiIiCrEAAIRERERERERVYgBBCIiIiIiIiKqEAMIRERERERERFQhBhCIqEb++ecfPPzww2jVqhUcHR3h4uKCnj17YuHChUhOTrb38urctGnTEBoaau9l1NixY8cwePBgGAwGSJKExYsXV3iZxMRE6HQ6SJKEw4cPV/vYn376KVasWFHty1fFihUrIEkSrly5Ui/Hq4whQ4ZgyJAhFW4XGhoKSZKUHxcXF/Tt2xfffvtt3S8Spd92lV17cQsWLMCGDRtqbW2yK1euQJKkcu9Pzz//PCRJwtmzZ8vc5vXXX4ckSTh69Giljx0aGopp06ZVYbX2s3PnTpv7Unk/Dc2SJUvQtm1baLVaSJKE1NRUey+JSpGTk4P27dtDkiS8//77Jc6/ePEipkyZgpYtW8LJyQlt2rTBCy+8gKSkpAr3LT8XlfW6M3bs2CbxukzUUDnYewFE1Hh99dVXeOqppxAWFoaXXnoJHTt2REFBAQ4fPozPP/8c+/btw/r16+29zDo1e/Zs/Otf/7L3Mmps+vTpyMrKwvfffw8PD49KvflauXIl8vPzAQBLly5F7969q3XsTz/9FN7e3o3mw5c9DRw4UHkzHhUVhffffx9Tp05FVlYWnnzyyXpfz6efflqtyy1YsAB33303JkyYULsLqoQZM2Zg8eLFWLZsGRYuXFjifLPZjG+//Rbdu3dHz54963199aFnz57Yt2+fzWl33nkn2rRpU+qHvYYiIiICzz33HB555BFMnToVDg4OcHV1tfeyqBSzZ89GVlZWqeclJCSgX79+cHNzw1tvvYWWLVvi2LFjmDt3Lv78808cOXIEKhW/4yRqqBhAIKJq2bdvH5588kmMHDkSGzZsgE6nU84bOXIkXnzxRWzevNmOK6xb2dnZ0Ov1aNOmjb2XUitOnjyJRx99FLfddlulL7Ns2TL4+voiJCQEa9aswaJFi+Dk5FSHqyR3d3f069dP+X3EiBEICQnBokWLygwgmEwmGI1Gm8dobenYsWOt77Oude7cGX369MHKlSuxYMECODjYvhXaunUroqKi8Morr9hphXXPzc3N5n4EADqdrsT9qzghBHJzc+32OD916hQA4NFHH0WfPn1qZZ/yc7k9NYQ1VEZln0sOHjyIJUuWYPXq1bjnnntKnP/zzz8jKSkJa9euxfDhwwEAQ4cORV5eHv7973/j+PHj6NGjR51ch7qUk5MDR0fHBpm5Q1SbGN4jompZsGABJEnCl19+WeqbCa1WizvuuEP53Ww2Y+HChejQoQN0Oh18fX3x0EMPISoqyuZyQ4YMQefOnbFv3z4MGDAATk5OCA0NxfLlywEAmzZtQs+ePaHX69GlS5cSQYp58+ZBkiQcO3YMEydOhJubGwwGAx588EEkJCTYbLt27VqMGjUKAQEBcHJyQnh4OF599dUS35pMmzYNLi4uOHHiBEaNGgVXV1flTU9pJQw//vgj+vbtC4PBAL1ej9atW2P69Ok221y7dg0PPvggfH19odPpEB4ejg8++ABms1nZRk7Hfv/997Fo0SK0atUKLi4u6N+/P/bv31/en0dx8uRJjB8/Hh4eHnB0dET37t3xzTffKOfLqaBGoxGfffZZpdOWDxw4gJMnT2LKlCl49NFHkZaWhv/7v/8rsZ3ZbMaSJUvQvXt3ODk5KR9QNm7cCMCS9n3q1Cns2rVLObZ8e5ZVbiCnX+/cuVM5bdu2bRg/fjxatGgBR0dHtG3bFo8//jgSExMrdTsVd/HiRTz88MNo164d9Ho9goKCMG7cOJw4caLUtaxZswavv/46AgMD4ebmhhEjRuDcuXM22wohsHDhQoSEhMDR0RE9e/bE77//Xq31ydzd3REWFoarV68CKLzPLFy4EPPnz0erVq2g0+nw559/AgAOHz6MO+64A56ennB0dESPHj3www8/lNjv/v37MXDgQDg6OiIwMBCvvfYaCgoKSmxXWglDXl4e/vOf/yA8PByOjo7w8vLC0KFDsXfvXgCAJEnIysrCN998o/zNi+4jNjYWjz/+OFq0aAGtVotWrVrhzTffhNFotDlOdHQ0Jk2aBFdXVxgMBtx7772IjY2t1O02Y8YMxMbGlnr7L1++HDqdDg888AByc3Px4osvonv37jAYDPD09ET//v3x888/V3iMqtx/AWD79u0YPnw43NzcoNfrMXDgQPzxxx822yQkJOCxxx5DcHAwdDodfHx8MHDgQGzfvr1S17uqJEnCM888g88//xzh4eHQ6XTK88ebb76Jvn37wtPTE25ubujZsyeWLl0KIYTNPkJDQzF27Fhs3rwZPXv2hJOTEzp06IBly5bZbJednY1Zs2Yp5XCenp7o3bs31qxZA8ByX3vwwQcBAH379oUkSTZZS8uWLUO3bt2Uy9555504c+aMzTHKey6Xr+vy5csRFhYGJycn9O7dG/v374cQAu+9957yHDxs2DBcvHixxO1Vmb+h/Bp19OhR3H333fDw8KgwEF3R83hCQgK0Wi1mz55d4rJnz56FJEn46KOPlNMq8xir6LmkLPn5+Zg+fTqefvrpMrPSNBoNAMBgMNic7u7uDgBwdHQs9xjVkZubi9deew2tWrWCVqtFUFAQnn766RIlMJIkYd68eSUuX7xESX58b926FdOnT4ePjw/0ej3y8vLq/XFKVO8EEVEVGY1GodfrRd++fSt9mccee0wAEM8884zYvHmz+Pzzz4WPj48IDg4WCQkJynaDBw8WXl5eIiwsTCxdulRs2bJFjB07VgAQb775pujSpYtYs2aN+O2330S/fv2ETqcTN27cUC4/d+5cAUCEhISIl156SWzZskUsWrRIODs7ix49eoj8/Hxl27feekt8+OGHYtOmTWLnzp3i888/F61atRJDhw61WfvUqVOFRqMRoaGh4p133hF//PGH2LJli3JeSEiIsu3evXuFJEnivvvuE7/99pvYsWOHWL58uZgyZYqyTXx8vAgKChI+Pj7i888/F5s3bxbPPPOMACCefPJJZbvIyEgBQISGhopbb71VbNiwQWzYsEF06dJFeHh4iNTU1HJv87NnzwpXV1fRpk0b8e2334pNmzaJ+++/XwAQ7777rrKWffv2CQDi7rvvFvv27RP79u2r8O/56KOPCgDi1KlTIj09Xej1ejFkyJAS202ZMkVIkiQeeeQR8fPPP4vff/9dvP322+J///ufEEKIo0ePitatW4sePXooxz569KgQQojly5cLACIyMtJmn3/++acAIP7880/ltM8++0y88847YuPGjWLXrl3im2++Ed26dRNhYWE2f/Oy9lncrl27xIsvvih++uknsWvXLrF+/XoxYcIE4eTkJM6ePVtiLaGhoeKBBx4QmzZtEmvWrBEtW7YU7dq1E0ajUdlWvm/OmDFD/P777+LLL78UQUFBwt/fXwwePLjC2zwkJETcfvvtNqfl5+cLX19fERgYKIQovM8EBQWJoUOHip9++kls3bpVREZGih07dgitVituvvlmsXbtWrF582Yxbdo0AUAsX75c2eepU6eEXq8XHTt2FGvWrBE///yzGD16tGjZsmWJ227w4ME2ay8oKBBDhw4VDg4OYtasWeK3334TGzduFP/+97/FmjVrhBBC7Nu3Tzg5OYkxY8Yof/NTp04JIYSIiYkRwcHBIiQkRHzxxRdi+/bt4q233hI6nU5MmzZNOU52drYIDw8XBoNBLFmyRGzZskU899xzyhqLXp/SyPfZCRMm2JyenJwsdDqduO+++4QQQqSmpopp06aJlStXih07dojNmzeLWbNmCZVKJb755psSf5+pU6cqv1fl/rty5UohSZKYMGGCWLdunfjll1/E2LFjhVqtFtu3b1e2Gz16tPDx8RFffvml2Llzp9iwYYOYM2eO+P7770vsf+7cueXeBsWVdv+S70tdu3YV3333ndixY4c4efKkEEKIadOmiaVLl4pt27aJbdu2ibfeeks4OTmJN998s8R+W7RoITp27Ci+/fZbsWXLFnHPPfcIAGLXrl3Kdo8//rjQ6/Vi0aJF4s8//xS//vqr+O9//yuWLFkihLDcL9944w3l77tv3z5x8eJFIYQQCxYsEADE/fffLzZt2iS+/fZb0bp1a2EwGMT58+eVY5T3XC6/bgwYMECsW7dOrF+/XrRv3154enqK559/XowfP178+uuvYvXq1cLPz0907dpVmM3mKv8Ni75GvfLKK2Lbtm1iw4YNZf5dKvM8LoQQd955pwgODhYmk8nm8i+//LLQarUiMTFRCFH5x1h5zyXlef3110VoaKjIzMxU9vHee+/ZbJOamipatmwpbrnlFnHy5EmRkZEhdu3aJVq2bCnGjRtX7v6FKHxs7d+/XxQUFJT4GTNmjM3rstlsFqNHjxYODg5i9uzZYuvWreL9999X3hfk5uYq25b12Cnr8R0UFCQee+wx8fvvv4uffvpJGI3GSj1OiRozBhCIqMpiY2MFAOVNdkXOnDkjAIinnnrK5vQDBw4IAOLf//63ctrgwYMFAHH48GHltKSkJKFWq4WTk5NNsCAiIkIAEB999JFymvzm7Pnnn7c51urVqwUAsWrVqlLXaDabRUFBgdi1a5cAII4fP66cN3XqVAFALFu2rMTligcQ3n//fQGg3A/3r776qgAgDhw4YHP6k08+KSRJEufOnRNCFL6B69Kli80H0YMHDwoAygeystx3331Cp9OJa9eu2Zx+2223Cb1eb7NGAOLpp58ud3+yrKws4ebmJvr166ecNnXqVCFJkvKGXgghdu/eLQCI119/vdz9derUqdQP0FX5AFaU/Le8evWqACB+/vnnCvdZEaPRKPLz80W7du1s7lvyWsaMGWOz/Q8//CAAKMGYlJQU4ejoKO68806b7f7++28BoNIBhDFjxihvkiMjI5X75ksvvSSEKLzPtGnTxiZwIoQQHTp0ED169BAFBQU2p48dO1YEBAQoHzzuvfde4eTkJGJjY22uf4cOHSoMIHz77bcCgPjqq6/KvS7Ozs42b8Zljz/+uHBxcRFXr161OV1+XMmBhs8++6zE31aIwsBWRQEEIQo/TMbFxSmnLVmyRAAQ27ZtK/UyRqNRFBQUiBkzZogePXrYnFfdAEJWVpbw9PQs8cHJZDKJbt26iT59+iinubi4iJkzZ5Z7vXbu3CnUanWJD/IVKSuAYDAYRHJycrmXNZlMoqCgQPznP/8RXl5eNh+sQ0JChKOjo83fNCcnR3h6eorHH39cOa1z584lAjrFybfpoUOHlNNSUlKUgFRR165dEzqdTkyePFk5rbzncgDC399fZGZmKqdt2LBBABDdu3e3uU6LFy8WAMQ///wjhKja31B+jZozZ06511VW2efxjRs3CgBi69atyjZGo1EEBgaKu+66Szmtso+x8p5LynLs2DGh0WjE5s2bbfZRPIAghBDR0dGif//+AoDyc88999h8mC+LfD8o76fo6/LmzZsFALFw4UKb/axdu1YAEF9++aVyWlUDCA899FCJbSvzOCVqzFjCQER1Tk55LN4kr0+fPggPDy+R4hkQEIBevXopv3t6esLX1xfdu3dHYGCgcnp4eDgAKOnbRT3wwAM2v0+aNAkODg426ZeXL1/G5MmT4e/vD7VaDY1Gg8GDBwNAidRXALjrrrsqvK433XSTcrwffvgBN27cKLHNjh070LFjxxI1vNOmTYMQAjt27LA5/fbbb4darVZ+79q1K4DSr3fx4wwfPhzBwcEljpOdnV2iiVpl/fDDD0hPT7cpy5g+fTqEEEqpCQAlPfzpp5+u1nGqIj4+Hk888QSCg4Ph4OAAjUaDkJAQAKX/LStiNBqxYMECdOzYEVqtFg4ODtBqtbhw4UKp+ytargOU/Bvt27cPubm5Je6XAwYMUNZZGb/99hs0Gg00Gg1atWqFH374Ac8++yzmz59fYj1ymjBgKck4e/ascnyj0aj8jBkzBjExMUrJxZ9//onhw4fDz89Pubxarca9995b4fp+//13ODo6lijZqaxff/0VQ4cORWBgoM0a5d4cu3btUtbo6upa4nafPHlypY81Y8YMFBQUYOXKlcppy5cvR0hIiJLWDlhKkgYOHAgXFxflvrV06dJq3a9Ks3fvXiQnJ2Pq1Kk219lsNuPWW2/FoUOHlLKqPn36YMWKFZg/fz72799falnJ4MGDYTQaMWfOnFpZ37Bhw+Dh4VHi9B07dmDEiBEwGAzK8+ecOXOQlJSE+Ph4m227d++Oli1bKr87Ojqiffv2Ns9hffr0we+//45XX30VO3fuRE5OTqXWt2/fPuTk5JR4fQkODsawYcNKvL4AZT+XDx06FM7Ozsrv8mvMbbfdZlPaVfy1pyp/w4rWUFxln8dvu+02+Pv72zwHb9myBdHR0TaPx8o+xmTFn0vKYjQaMX36dNx7770YPXp0udumpKRg/PjxSE9Px+rVq7F79258+umn2LNnD+64444S5Upl+fbbb3Ho0KESP4MGDbLZTn5NLX4fueeee+Ds7FzqfaSySvs7VuZxStSYMYBARFXm7e0NvV6PyMjISm0vj2UKCAgocV5gYGCJsU2enp4lttNqtSVO12q1ACy1jcX5+/vb/O7g4AAvLy/lWJmZmbj55ptx4MABzJ8/Hzt37sShQ4ewbt06ACjx5lWv18PNza3c6wkAt9xyCzZs2ACj0YiHHnoILVq0QOfOnZU6XsBye5R1W8jnF+Xl5WXzu9xzoqI32FU9TmUtXboUjo6OuPXWW5GamorU1FR07doVoaGhWLFiBUwmEwBLXa5arS7xt6htZrMZo0aNwrp16/Dyyy/jjz/+wMGDB5U+EZX9IFLUCy+8gNmzZ2PChAn45ZdfcODAARw6dAjdunUrdX8V/Y3k27q026Iqt8+gQYNw6NAhHD58GKdPn0Zqaio++ugj5bEgK/53j4uLAwDMmjVLCUDIP0899RQAKP0ikpKSqr3OhIQEBAYGVruDelxcHH755ZcSa+zUqVOJNRYNcFRljbKbb74Z7du3Vz5w/fPPPzh69Cgefvhh5cPiunXrMGnSJAQFBWHVqlXYt28fDh06hOnTp5f6vFMd8t/m7rvvLnG93333XQghlJG4a9euxdSpU/H111+jf//+8PT0xEMPPVTp3g/VUdpzyMGDBzFq1CgAlmk8f//9Nw4dOoTXX38dQMnHXPHHB2B5jBTd7qOPPsIrr7yCDRs2YOjQofD09MSECRNw4cKFctdX1deX8p7Ly3qNqei1pyp/Q1lp6y3r+lXmedzBwQFTpkzB+vXrlbr+FStWICAgwOYDfWUfY1Vd5+LFi3H58mXMnTtXeV1IT08HYLmdUlNTldeGd999FxEREdi2bRsmT56Mm2++GU8++SRWr16NrVu3YvXq1ZU6Znh4OHr37l3ip3hvhaSkJDg4OMDHx8fmdEmS4O/vX+3XQqD028cej1Oi+sQpDERUZWq1GsOHD8fvv/+OqKgotGjRotzt5TePMTExJbaNjo6Gt7d3ra8xNjYWQUFByu9GoxFJSUnKWnbs2IHo6Gjs3LlTyToAUOZM8ap0VR4/fjzGjx+PvLw87N+/H++88w4mT56M0NBQ9O/fH15eXoiJiSlxuejoaACotdujLo5z/vx57NmzBwBsvlEsasuWLRgzZgx8fHxgMpkQGxtb6TehRcmNtPLy8mxOL/4G9+TJkzh+/DhWrFiBqVOnKqeX1uSsslatWoWHHnoICxYsKHFsudFXVcj3u9LeQMbGxlZ6ZrnBYKjUuMzi91f5b/3aa69h4sSJpV4mLCxMWWtZ66yIj48P9uzZA7PZXK0ggre3N7p27Yq333671PPlD01eXl44ePBgtdZY1PTp0/Hqq6/i4MGD+O6776BSqWy+pVy1ahVatWqFtWvX2tymxe+Tpans/Vf+2yxZsqTMCQhysMTb2xuLFy/G4sWLce3aNWzcuBGvvvoq4uPj62zqTWnPfd9//z00Gg1+/fVXm4Z3GzZsqPZxnJ2d8eabb+LNN99EXFycko0wbtw4nD17tszLFX19Ka6015e66JBflb9hVddRlefxhx9+GO+99x6+//573Hvvvdi4cSNmzpxpk8FW2cdYVdd58uRJpKWloV27diXOmz17NmbPno1jx46he/fuiIiIQFBQUInXBTmD7+TJk5U6ZmV5eXnBaDQiISHBJogghEBsbKxyXMAS2Crt8V1WkKG028cej1Oi+sQMBCKqltdeew1CCDz66KPIz88vcX5BQQF++eUXAJYUWMDyZryoQ4cO4cyZMzbpwrWl+DcYP/zwA4xGo9LtXX7RLz5B4osvvqi1Neh0OgwePBjvvvsuAODYsWMAgOHDh+P06dM4evSozfbffvstJEnC0KFDa+X4w4cPVwIlxY+j1+vLHddWlqVLlwKwfOv4559/2vzI6fVyd3U5Jfazzz4rd5/Fv4mUyR+q//nnH5vT5QkOsrr4W0qSVGJ/mzZtKrUkpTL69esHR0fHEvfLvXv3VliKUhvCwsLQrl07HD9+vNRv7Hr37g1XV1cAljTuP/74Q/lWFbCMb1u7dm2Fx7ntttuQm5uLFStWlLtdWX/zsWPH4uTJk2jTpk2pa5Q/3AwdOhQZGRkl7gvfffddhWssaurUqXBwcMAXX3yB1atXY/jw4TYlJZIkQavV2nxIiI2NrdQUhsrefwcOHAh3d3ecPn26zL9N8QwTwBLAe+aZZzBy5MgSzyV1TZIkODg42HwwzcnJsSkHqQk/Pz9MmzYN999/P86dO4fs7Owyt+3fvz+cnJxKvL5ERUUp6f91rbp/w8qoyvN4eHg4+vbti+XLl+O7775DXl4eHn74YZvLVfYxVlWvvvpqidcEOfPuiSeewJ9//om2bdsCsAQpoqKiSjyfyuUYFX0pUVXyfaD4feT//u//kJWVZXMfCQ0NLfGY3bFjBzIzM6t1bHs+TonqCjMQiKha+vfvj88++wxPPfUUevXqhSeffBKdOnVCQUEBjh07hi+//BKdO3fGuHHjEBYWhsceewxLliyBSqXCbbfdhitXrmD27NkIDg7G888/X+vrW7duHRwcHDBy5EicOnUKs2fPRrdu3TBp0iQAltpzDw8PPPHEE5g7dy40Gg1Wr16N48eP1+i4c+bMQVRUFIYPH44WLVogNTUV//vf/2z6Kzz//PP49ttvcfvtt+M///kPQkJCsGnTJnz66ad48skn0b59+xpffwCYO3euUu86Z84ceHp6YvXq1di0aRMWLlxYIs2zIkajEd9++y3Cw8PxyCOPlLrNuHHjsHHjRiQkJODmm2/GlClTMH/+fMTFxWHs2LHQ6XQ4duwY9Ho9nn32WQBAly5d8P3332Pt2rVo3bo1HB0d0aVLF9x0000ICwvDrFmzYDQa4eHhgfXr1ysZELIOHTqgTZs2ePXVVyGEgKenJ3755Rds27atejccLG+yV6xYgQ4dOqBr1644cuQI3nvvvWq/sfXw8MCsWbMwf/58PPLII7jnnntw/fp1zJs3r85LPGRffPEFbrvtNowePRrTpk1DUFAQkpOTcebMGRw9ehQ//vgjAOCNN97Axo0bMWzYMMyZMwd6vR6ffPJJiRru0tx///1Yvnw5nnjiCZw7dw5Dhw6F2WzGgQMHEB4ejvvuuw+A5W++c+dO/PLLLwgICICrqyvCwsLwn//8B9u2bcOAAQPw3HPPISwsDLm5ubhy5Qp+++03fP7552jRogUeeughfPjhh3jooYfw9ttvo127dvjtt9+wZcuWKt0m/v7+GDNmDJYvXw4hBGbMmGFz/tixY7Fu3To89dRTuPvuu3H9+nW89dZbCAgIqDC1vrL3XxcXFyxZsgRTp05FcnIy7r77bvj6+iIhIQHHjx9HQkICPvvsM6SlpWHo0KGYPHkyOnToAFdXVxw6dAibN2+2ySrZtWsXhg8fjjlz5tRaH4Tibr/9dixatAiTJ0/GY489hqSkJLz//vuljvStrL59+2Ls2LHo2rUrPDw8cObMGaxcuRL9+/eHXq8v83Lu7u6YPXs2/v3vf+Ohhx7C/fffj6SkJLz55ptwdHTE3Llzq72myqrs37A6qvo8Pn36dDz++OOIjo7GgAEDlMwiWWUfY1XVoUMHdOjQweY0eYRpmzZtbEa1Pv3001i9ejVGjhyJV199FcHBwTh58iTmz58PPz+/Er1iamrkyJEYPXo0XnnlFaSnp2PgwIH4559/MHfuXPTo0QNTpkxRtp0yZQpmz56NOXPmYPDgwTh9+jQ+/vjjSr9eVvZxStSo2a9/IxE1BREREWLq1KmiZcuWQqvVKmOR5syZI+Lj45XtTCaTePfdd0X79u2FRqMR3t7e4sEHHxTXr1+32d/gwYNFp06dShyntA7hQpScHiB3uD5y5IgYN26ccHFxEa6uruL++++36bYuhGXkYv/+/YVerxc+Pj7ikUceEUePHi3RxX3q1KnC2dm51OtffArDr7/+Km677TYRFBQktFqt8PX1FWPGjBF//fWXzeWuXr0qJk+eLLy8vIRGoxFhYWHivffesxnBVV4Ha1RyTNuJEyfEuHHjhMFgEFqtVnTr1q3UDvXFb8fSyB3JFy9eXOY2crfrDz74QAhh+bt/+OGHonPnzkKr1QqDwSD69+8vfvnlF+UyV65cEaNGjRKurq4lumefP39ejBo1Sri5uQkfHx/x7LPPik2bNpWYwnD69GkxcuRI4erqKjw8PMQ999wjrl27VuJ2quwUhpSUFDFjxgzh6+sr9Hq9GDRokPjrr79KTB2QO+r/+OOPNpeX/3ZFb2uz2SzeeecdERwcLLRarejatav45ZdfSuyzLGU9Bko7bmn3GSGEOH78uJg0aZLw9fUVGo1G+Pv7i2HDhonPP//cZru///5bGZPq7+8vXnrpJfHll19WOIVBCEuH/Tlz5oh27doJrVYrvLy8xLBhw8TevXuVbSIiIsTAgQOFXq8vMYUiISFBPPfcc6JVq1ZCo9EIT09P0atXL/H666/bdMiPiooSd911l/IYv+uuu8TevXsrPYVB9vPPPwsAwtPTs9QO8P/9739FaGio0Ol0Ijw8XHz11VfK80xRxbu0C1H5+68QltGht99+u/D09BQajUYEBQWJ22+/Xblv5ebmiieeeEJ07dpVuLm5CScnJxEWFibmzp0rsrKylP3U9hjHsp4Xli1bJsLCwoROpxOtW7cW77zzjli6dGmJ+0hZ99vi951XX31V9O7dW3h4eCj7fP7555Xxg0KUPoVB9vXXX4uuXbsqzzPjx49XJgrIynsuL+26lvV4KutxX9HfUIjC16ii44srUtnncSGESEtLE05OTuVOQ6nMY6yi55LKKG8fR48eFXfeeado0aKF8vd+5JFHSkybKE159wMhhLj99tttXkeEsDwvvfLKKyIkJERoNBoREBAgnnzySZGSkmKzXV5ennj55ZdFcHCwcHJyEoMHDxYRERFlTmEovobKPk6JGjNJCCHqOkhBRFRf5s2bhzfffBMJCQl10luBiIiIiKi5Yg8EIiIiIiIiIqoQAwhEREREREREVCGWMBARERERERFRhZiBQEREREREREQVYgCBiIiIiIiIiCrEAAIRERERERERVcjB3gsgW2azGdHR0XB1dYUkSfZeDhERERERETVxQghkZGQgMDAQKlXZeQYMIDQw0dHRCA4OtvcyiIiIiIiIqJm5fv06WrRoUeb5DCA0MK6urgAsfzg3Nzc7r4aIiIiIiIiauvT0dAQHByufR8vCAEIDI5ctuLm5MYBARERERERE9aaiMno2USQiIiIiIiKiCjGAQEREREREREQVYglDI2UymVBQUGDvZVAzptFooFar7b0MIiIiIiKqJwwgNDJCCMTGxiI1NdXeSyGCu7s7/P39OXKUiIiIiKgZYAChkZGDB76+vtDr9fzgRnYhhEB2djbi4+MBAAEBAXZeERERERER1TUGEBoRk8mkBA+8vLzsvRxq5pycnAAA8fHx8PX1ZTkDEREREVETxyaKjYjc80Cv19t5JUQW8n2R/TiIiIiIiJo+BhAaIZYtUEPB+yIRERERUfPBAAIRERERERERVYgBBCIiIiIiIiKqEAMI1OxJkoQNGzbU6TGGDBmCmTNn1ukxiIiIiIiI6hIDCFRv9u7dC7VajVtvvbXKlw0NDcXixYtrf1EVGDduHEaMGFHqefv27YMkSTh69Gg9r4qIiIiIiKj+MYBA9WbZsmV49tlnsWfPHly7ds3ey6mUGTNmYMeOHbh69WqJ85YtW4bu3bujZ8+edlgZERERERFR/WIAoRETQiAnP88uP0KIKq01KysLP/zwA5588kmMHTsWK1asKLHNxo0b0bt3bzg6OsLb2xsTJ04EYEn/v3r1Kp5//nlIkqR0/p83bx66d+9us4/FixcjNDRU+f3QoUMYOXIkvL29YTAYMHjw4CplDIwdOxa+vr4l1pudnY21a9dixowZSEpKwv33348WLVpAr9ejS5cuWLNmTbn7La1swt3d3eY4N27cwL333gsPDw94eXlh/PjxuHLlinL+zp070adPHzg7O8Pd3R0DBw4sNdBBRERERERUGxzsvQCqvtyCfNz65it2Ofbmue/CSaur9PZr165FWFgYwsLC8OCDD+LZZ5/F7NmzlWDApk2bMHHiRLz++utYuXIl8vPzsWnTJgDAunXr0K1bNzz22GN49NFHq7TOjIwMTJ06FR999BEA4IMPPsCYMWNw4cIFuLq6Vnh5BwcHPPTQQ1ixYgXmzJmjrPfHH39Efn4+HnjgAWRnZ6NXr1545ZVX4Obmhk2bNmHKlClo3bo1+vbtW6X1yrKzszF06FDcfPPN2L17NxwcHDB//nzceuut+Oeff6BSqTBhwgQ8+uijWLNmDfLz83Hw4EGOVSQiIiIiAMDqXdux48QxfPDwk3B3drH3cqiJYACB6sXSpUvx4IMPAgBuvfVWZGZm4o8//lD6C7z99tu477778OabbyqX6datGwDA09MTarUarq6u8Pf3r9Jxhw0bZvP7F198AQ8PD+zatQtjx46t1D6mT5+O9957Dzt37sTQoUMBWMoXJk6cCA8PD3h4eGDWrFnK9s8++yw2b96MH3/8sdoBhO+//x4qlQpff/21EhRYvnw53N3dsXPnTvTu3RtpaWkYO3Ys2rRpAwAIDw+v1rGIiIiIqGkxmc34bvcfyMzNwZFL5zG8K0tuqXYwgNCIOWq02Dz3Xbsdu7LOnTuHgwcPYt26dQAs3+rfe++9WLZsmRJAiIiIqHJ2QWXEx8djzpw52LFjB+Li4mAymZCdnV2lHgwdOnTAgAEDsGzZMgwdOhSXLl3CX3/9ha1btwIATCYT/vvf/2Lt2rW4ceMG8vLykJeXB2dn52qv+8iRI7h48WKJLInc3FxcunQJo0aNwrRp0zB69GiMHDkSI0aMwKRJkxAQEFDtYxIRERFR03A+OgqZuTkAgLjUZDuvhpoSBhAaMUmSqlRGYC9Lly6F0WhEUFCQcpoQAhqNBikpKfDw8ICTk1OV96tSqUr0YigoKLD5fdq0aUhISMDixYsREhICnU6H/v37Iz8/v0rHmjFjBp555hl88sknWL58OUJCQjB8+HAAlrKIDz/8EIsXL0aXLl3g7OyMmTNnlnsMSZLKXbvZbEavXr2wevXqEpf18fEBYMlIeO6557B582asXbsWb7zxBrZt24Z+/fpV6boRERERUdNy5NI55d9xqan2Wwg1OWyiSHXKaDTi22+/xQcffICIiAjl5/jx4wgJCVE+IHft2hV//PFHmfvRarUwmUw2p/n4+CA2Ntbmg3hERITNNn/99Reee+45jBkzBp06dYJOp0NiYmKVr8ekSZOgVqvx3Xff4ZtvvsHDDz+slBb89ddfGD9+PB588EF069YNrVu3xoULF8rdn4+PD2JiYpTfL1y4gOzsbOX3nj174sKFC/D19UXbtm1tfgwGg7Jdjx498Nprr2Hv3r3o3LkzvvvuuypfNyIiIiJqWo5eKnwvygwEqk0MIFCd+vXXX5GSkoIZM2agc+fONj933303li5dCgCYO3cu1qxZg7lz5+LMmTM4ceIEFi5cqOwnNDQUu3fvxo0bN5QAwJAhQ5CQkICFCxfi0qVL+OSTT/D777/bHL9t27ZYuXIlzpw5gwMHDuCBBx6oVraDi4sL7r33Xvz73/9GdHQ0pk2bZnOMbdu2Ye/evThz5gwef/xxxMbGlru/YcOG4eOPP8bRo0dx+PBhPPHEE9BoNMr5DzzwALy9vTF+/Hj89ddfiIyMxK5du/Cvf/0LUVFRiIyMxGuvvYZ9+/bh6tWr2Lp1K86fP88+CERERETNXF5BPk5cvaz8HpeaYsfVUFPDAALVqaVLl2LEiBE235rL7rrrLkRERODo0aMYMmQIfvzxR2zcuBHdu3fHsGHDcODAAWXb//znP7hy5QratGmjpPCHh4fj008/xSeffIJu3brh4MGDNs0MAUuzw5SUFPTo0QNTpkzBc889B19f32pdlxkzZiAlJQUjRoxAy5YtldNnz56Nnj17YvTo0RgyZAj8/f0xYcKEcvf1wQcfIDg4GLfccgsmT56MWbNmQa/XK+fr9Xrs3r0bLVu2xMSJExEeHo7p06cjJycHbm5u0Ov1OHv2LO666y60b98ejz32GJ555hk8/vjj1bpuRERERNRwGItl3lbFyWtXkG80wkGtBgDEpzGAQLVHEsULscmu0tPTYTAYkJaWBjc3N5vzcnNzERkZiVatWsHR0dFOKyQqxPskERERUe3ae/YU/r3qa7xwx924o8/AKl/+yy2/YPXuPzC4czfsOnkcALBp9jtwcax6Fi41H+V9Di2KGQhEREREREQNxJ4zJyCEwDc7tlYrE+HwpfMAgIEdOsOgt0wFYxkD1RYGEIiIiIiIiBqI64nxAIDEjDT8feZklS6bkZON89FRAIBebdrDz90DABDPAALVEgYQiIiIiIiIGohrCfHKv9cf2FOlyx67fAFCCIT4+MHbzQBfgyWAEMsAAtUSBhCIiIiIiIgagPTsLKRmZQIAVJKEY5cv4Ep8+dO9ijp80VK+0KttewAozEBgI0WqJQwgEBERERERNQDXrOULPgZ3DOjQGQCwYX/lsxCOXrYEEHq3CQNQGECITU2uzWVSM8YAAhERERERUQMgly+09PbFnf0GAQC2RBxCdl5uhZeNT03B9cQEqCQJ3Vq1AVAkAyE1tW4WTM0OAwhEREREREQNwLWEOABASx8/9GrTHi29fZGdl4ctxw5XeNkj1uyDDi1aKiMb/aw9EOJYwkC1hAEEIiIiIiKiBkCewBDi4wtJkjC+70AAwIYDeyCEKPeyRy7ali8AgJ+HJwAgKT2tWiMhiYpjAIGIiKiSzkdHcRQWERHVGbmEIdjbFwBwa88+cNJqcSU+FhGRF8u8nBACRy5dAAD0bNNOOd1d7wytgwPMQiAhPbXuFk7NBgMI1KTMmzcP3bt3V36fNm0aJkyYUO/ruHLlCiRJQkRERJ0eJzQ0FIsXL67TYxCRRWJ6Gp74bBFeXPGZvZdCRERNkNFkwo3kRACWEgYAcHF0wshuvQEAGw78XeZlT1+/iuTMdOg0GnRq2Uo5XaVSKaMc2QeBagMDCFTnpk2bBkmSIEkSNBoNWrdujVmzZiErK6vOj/2///0PK1asqNS29fWhHwC6dOmCRx55pNTz1qxZA41Gg7i4uDpfBxFV3pX4WJjMZlxLiEe+0Wjv5RARURNzIzkRJrMZTlotfNwMyukTrM0Ud586jnM3rpe4nBACn23+GQAwpHN3aB0cbM7nJAaqTQwgUL249dZbERMTg8uXL2P+/Pn49NNPMWvWrFK3LSgoqLXjGgwGuLu719r+asuMGTPwww8/IDs7u8R5y5Ytw9ixY+Hn52eHlRFRWeKKlC4kMg2UiIhq2fUi5QuSJCmnt/EPxLCuPWAWAu9vWFuil8GOE8dw4mokHDVaPDry9hL79TW4AwBL8KhWMIDQiAkI5MNslx+B8pu4FKfT6eDv74/g4GBMnjwZDzzwADZs2ACgsOxg2bJlaN26NXQ6HYQQSEtLw2OPPQZfX1+4ublh2LBhOH78uM1+//vf/8LPzw+urq6YMWMGcnNtR9wUL2Ewm81499130bZtW+h0OrRs2RJvv/02AKBVK0u6V48ePSBJEoYMGaJcbvny5QgPD4ejoyM6dOiATz/91OY4Bw8eRI8ePeDo6IjevXvj2LFj5d4eU6ZMQV5eHn788Ueb069du4YdO3ZgxowZuHTpEsaPHw8/Pz+4uLjgpptuwvbt28vcZ2kZFKmpqZAkCTt37lROO336NMaMGQMXFxf4+flhypQpSExMVM7/6aef0KVLFzg5OcHLywsjRoyol2wRooau6Dc38Wmp1d6P2WzGoQtnkZufXwurIiKipuJaYuEEhuKevX0iXJ30OB8dhf/bt1s5PTc/H59t3ggAeGDwCPhYgwVF+btbGinGMoBAtcCh4k2ooSqAwHzE2+XYb8AXWkgVb1gGJycnm0yDixcv4ocffsD//d//Qa1WAwBuv/12eHp64rfffoPBYMAXX3yB4cOH4/z58/D09MQPP/yAuXPn4pNPPsHNN9+MlStX4qOPPkLr1q3LPO5rr72Gr776Ch9++CEGDRqEmJgYnD17FoAlCNCnTx9s374dnTp1glarBQB89dVXmDt3Lj7++GP06NEDx44dw6OPPgpnZ2dMnToVWVlZGDt2LIYNG4ZVq1YhMjIS//rXv8q9/l5eXhg/fjyWL1+OqVOnKqcvX74cfn5+uO2223Dy5EmMGTMG8+fPh6OjI7755huMGzcO586dQ8uWLat1u8fExGDw4MF49NFHsWjRIuTk5OCVV17BpEmTsGPHDsTExOD+++/HwoULceeddyIjIwN//fVXhV1/iZqDot/cxNXgTdhvRw7gvQ1rMb7PQLww/p7aWBoRETUBV60ZCC2tDRSL8nRxxZO33oGF67/Hsu2/45aOXRHg6YXv/9qBhLRU+Lt74N5BQ0rdr6+1hCGeoxypFjCAQPXu4MGD+O677zB8+HDltPz8fKxcuRI+Pj4AgB07duDEiROIj4+HTqcDALz//vvYsGEDfvrpJzz22GNYvHgxpk+frvQSmD9/PrZv314iC0GWkZGB//3vf/j444+VD+1t2rTBoEGWujL52F5eXvD391cu99Zbb+GDDz7AxIkTAVgyFU6fPo0vvvgCU6dOxerVq2EymbBs2TLo9Xp06tQJUVFRePLJJ8u9HaZPn44xY8bg8uXLaN26NYQQWLFiBaZNmwa1Wo1u3bqhW7duyvbz58/H+vXrsXHjRjzzzDOVv8GL+Oyzz9CzZ08sWLBAOW3ZsmUIDg7G+fPnkZmZCaPRiIkTJyIkJASApV8DEdl+c1OTDAS5i/bOkxH417i7oFYxGZCIiApHOAb7lAwgAMCYXn2xNeIwIiIvYtHGHzFrwr347q8/AABP3DoeOo221MvJPRBqEvwmkjGA0IhpIOENlP4EUx/Hropff/0VLi4uMBqNKCgowPjx47FkyRLl/JCQEOUDPAAcOXIEmZmZ8PLystlPTk4OLl26BAA4c+YMnnjiCZvz+/fvjz///LPUNZw5cwZ5eXk2gYuKJCQk4Pr165gxYwYeffRR5XSj0QiDwaDst1u3btDr9TbrqMioUaPQokULLF++HG+99RZ27NiBK1eu4OGHHwYAZGVl4c0338Svv/6K6OhoGI1G5OTk4Nq1a5Vef3FHjhzBn3/+CRcXlxLnXbp0CaNGjcLw4cPRpUsXjB49GqNGjcLdd98NDw+Pah+TqKmIswkgVP9N2IWYGwCAtOwsnIm6is5FumUTEVHzJIRQRjiGlFLCAACSJGHWhEmYvmQhDl44ixeWfYq8ggJ0C22DIZ27lXoZwDaAIISw6a9AVFUMIDRiEqQalRHUp6FDh+Kzzz6DRqNBYGAgNBqNzfnOzs42v5vNZgQEBNjU7suq2xTRycmpypcxm80ALGUMffv2tTlPLrWobnq/SqXCtGnTsGLFCrz55ptYvnw5brnlFrRrZ5nd+9JLL2HLli14//330bZtWzg5OeHuu+9Gfhl10yrrt5hF11O8IaXZbMa4cePw7rvvlrh8QEAA1Go1tm3bhr1792Lr1q1YsmQJXn/9dRw4cEDpEUHUHJnMZpv52dUdhZWbn49rCYUTVvaePcUAAhERITUrExk52ZAkCS28vMvcLtjbFw8NGYWvt/+GqKQESJKEZ26/s9yggI+bOwAgtyAf6TnZMOidy9yWqCLMm6R64ezsjLZt2yIkJKRE8KA0PXv2RGxsLBwcHNC2bVubH29vy5NqeHg49u/fb3O54r8X1a5dOzg5OeGPP/4o9Xy554GpSGdbPz8/BAUF4fLlyyXWIX+g7tixI44fP46cnJxKraOohx9+GFFRUVi3bh3WrVuHGTNmKOf99ddfmDZtGu6880506dIF/v7+uHLlSpn7kjM4YmJilNOKj6Ts2bMnTp06hdDQ0BLXRw7iSJKEgQMH4s0338SxY8eg1Wqxfv36Sl0foqYqOSPdput1dTMQLsVGw1wkyLfv7Kkar42IiBq/a9byBT93jzJLEWT33TwMrfwCAAC39+qH9oEtyt1ep9HA08UNAMsYqOYYQKAGacSIEejfvz8mTJiALVu24MqVK9i7dy/eeOMNHD58GADwr3/9C8uWLcOyZctw/vx5zJ07F6dOlf1m3NHREa+88gpefvllfPvtt7h06RL279+PpUuXAgB8fX3h5OSEzZs3Iy4uDmlpaQAsUyLeeecd/O9//8P58+dx4sQJLF++HIsWLQIATJ48GSqVCjNmzMDp06fx22+/4f3336/U9WzVqhWGDRuGxx57DBqNBnfffbdyXtu2bbFu3TpERETg+PHjmDx5spIRURonJyf069cP//3vf3H69Gns3r0bb7zxhs02Tz/9NJKTk3H//ffj4MGDuHz5MrZu3Yrp06fDZDLhwIEDWLBgAQ4fPoxr165h3bp1SEhIQHh4eKWuD1FTJb/hUlm/4aluD4QLMVEAgI7BIVBJEi7HxSA2hXO5iYiaC5PZjN+OHEBMSpLN6dfKaaBYnMbBAe88+AgeGzUWT4+ZUKnj+lkzeONS+ZpDNcMAAjVIkiTht99+wy233ILp06ejffv2uO+++3DlyhX4+Vnqwu69917MmTMHr7zyCnr16oWrV69W2Lhw9uzZePHFFzFnzhyEh4fj3nvvRXy85QnbwcEBH330Eb744gsEBgZi/PjxAIBHHnkEX3/9NVasWIEuXbpg8ODBWLFihZKB4OLigl9++QWnT59Gjx498Prrr5daIlCWGTNmICUlBffdd59NH4UPP/wQHh4eGDBgAMaNG4fRo0ejZ8+e5e5r2bJlKCgoQO/evfGvf/0L8+fPtzk/MDAQf//9N0wmE0aPHo3OnTvjX//6FwwGA1QqFdzc3LB7926MGTMG7du3xxtvvIEPPvgAt912W6WvD1FTFGfNOGjjHwQAyMzNQXZe6Q1by3M+2hJA6Nm6PTqHWJ5D9p1jFgIRUXOx4cAevLtuDf698mubL4bk8ray+h8UF+DphQcGj4De2my8Ir5spEi1RBLNYD7b7t278d577+HIkSOIiYnB+vXrMWHCBOX8devW4YsvvsCRI0eQlJSEY8eOoXv37jb7yMvLw6xZs7BmzRrk5ORg+PDh+PTTT9GiRWHKUEpKCp577jls3GiZxXrHHXdgyZIlVarZT09Ph8FgQFpaGtzc3GzOy83NRWRkJFq1agVHR8cq3w5EtY33SWouvtu9HV9s+RWjuvfG3rMnkZmbi2/+9SpCff0rvnARj33yAc5FX8eb909DdHISvtjyC/q064D3pj1R8YWJiKhRM5nNeGDR20r2wX/ufxiDrc0PX/32S+w7dxovjr8Hd/QZWOvH/vT3n7F2z5+YNHBIpbMWqHkp73NoUc0iAyErKwvdunXDxx9/XOb5AwcOxH//+98y9zFz5kysX78e33//Pfbs2YPMzEyMHTvWpl5+8uTJiIiIwObNm7F582ZERERgypQptX59iIiofsWmWL6x8XP3gK+hevO0jSYTLsdFAwDaB7bAgA6dAADHLl9Adl5eLa6WiIgaor/PnLQpXfjmzy1KFoJcwhBciRKG6vA1uAMozKgjqq5mMYXhtttuKzcFW/6QX1aDurS0NCxduhQrV67EiBEjAACrVq1CcHAwtm/fjtGjR+PMmTPYvHkz9u/fr3Tr/+qrr9C/f3+cO3cOYWFhtXuliIio3sjBAj93T/gaPHA5LqbKkxiuxMeiwGSCi6MjAjwsI2oDPb0QnZyEI5fO4eaOXWt72URE1ID8uHcnAOCOmwZg+z9HcCk2GnvOnES/sI5KYKFlJUsYqkoe5RjPEgaqoWaRgVBTR44cQUFBAUaNGqWcFhgYiM6dO2Pv3r0AgH379sFgMNiM+uvXrx8MBoOyTWny8vKQnp5u80NERA1LrPUNl7+7R7W/xZEbKLYNaAFJkiBJEvqHWbIQ9nIaAxFRk3buxnX8c+Uy1CoVHho6ChP73QLAkoUQlZQAsxBwcXSEp4trnRzfz90TAHsgUM0xgFAJsbGx0Gq18PDwsDndz88PsbGxyja+viVTjnx9fZVtSvPOO+/AYDAoP8HBwbW7eCIiqhEhhNK12tfdQ2lEVdVJDHIDxXaBQcppchnD/nOny52yQkREjduPf+8EAAzr0gM+BndMGjQETlodLsbcwJrdlhHjwd6+kKzTfmqbnIGQnJmBvIKCOjkGNQ8MINSAEMLmQV7aA774NsW99tprSEtLU36uX79eqeMSNQS8L1JzYJm4YOlR4GcozEBIqGIA4UL0DQBAu4DC5rvdQttAr9MhOTMD525U/PxPRESNT0JaKnacOAYAuGfgEACAQe+Mif1vBgBsjbCMKK+r8gUAcHPSw0mrtawnPbXOjkNNHwMIleDv74/8/HykpNim/MTHxysjBf39/REXF1fisgkJCco2pdHpdHBzc7P5KYtGowEAZGdnV+dqENU6+b4o3zeJmiI53dPd2QWOWm1hCUMV0kDNZjMuxlgCCO0DCwMIGgcH3NSuAwBgL8c5EhE1SesP7IHJbEbX0NYICyrMNp40cIjyoR4AWvrUTQNFwPJFp9wEuLzXL5PZjKOXziOvIL/O1kKNW7NoolhTvXr1gkajwbZt2zBp0iQAQExMDE6ePImFCxcCAPr374+0tDQcPHgQffr0AQAcOHAAaWlpGDBgQK2sQ61Ww93dHfHxli6ter2+ztKciMojhEB2djbi4+Ph7u4OtVpt7yUR1Rn5jZaf9Y1X4RSG1AqzzGQ3khORk58HrYOmRIftAWGdsOvkcew9ewozRoyp5dUTEZE95eTnYeNBSz+0ewYMsTnP3dkFd/a7Gd9ZSxha1tEEBpmfuweuJsSVG0BYtXMblv3xOx4ZeTumDBlZp+uhxqlZBBAyMzNx8eJF5ffIyEhERETA09MTLVu2RHJyMq5du4boaMt4rXPnzgGwZBX4+/vDYDBgxowZePHFF+Hl5QVPT0/MmjULXbp0UaYyhIeH49Zbb8Wjjz6KL774AgDw2GOPYezYsbU6gcHf3zJzXA4iENmTu7u7cp8kaqqUAIK1D46PNQMh31iAtOwsuDu7VLiPC9FyA8VAOBQLuPUL6wgAuBhzA5m5OXBxdKqtpRMRkZ1tOXYIGTnZCPT0wsDwziXOv3fQUKzf/xdy8vPR2j+wTtci90GQ+/oUZzab8evhfQCgZM0RFdcsAgiHDx/G0KFDld9feOEFAMDUqVOxYsUKbNy4EQ8//LBy/n333QcAmDt3LubNmwcA+PDDD+Hg4IBJkyYhJycHw4cPx4oVK2y+eV29ejWee+45ZVrDHXfcgY8//rhWr4skSQgICICvry8K2ACF7Eij0TDzgJoF+Y2WnIGgdXCAp4srkjMzEJ+WahNAiElJwlOf/w9Du3THc2MnKqdfsL4RaxsQhOLcnV3grHNEVl4uEtPTGEAgImpCth8/CgCY2O9mqFUlq8fdnV2waPpTSMpIRwsvnzpdi18FJQwRkReVBsHsk0BlaRYBhCFDhpTb7G3atGmYNm1auftwdHTEkiVLsGTJkjK38fT0xKpVq6q7zCpRq9X88EZEVA/kEY7yNzeAJQshOTMD8akpNj0Ndp08juTMdPzfvt3o0botbu7YFUCRCQxFGigW5eXqhqy8XCRnpCPUl1k9RERNRWxKEgCgc0jrMrfpGBxaL2sJ8rYEKI5FXoTRZCqREbfl2CHl31VtFEzNB5soEhERlSM+TQ4geCqn+ZUxyvH4lUvKvz/Y8ANSszIhhFBKGIoGG4rydLU00E3KSK+1dRMRkX0ZTSbled3XzWDn1QADO3SCh7MLYlOSlakQspz8POw6dVz5PSkjHSaOF6ZSMIBARERUjtiUkhkI8iQGObgAWGpH/7lyGYBlPFdKViYW//ITEtJSkZadBbVKhVZ+AaUew4sBBCKiJic5MwNmIaBWqeDu4mrv5UCn0eLugYMBAKt3bYe5SIDgr9MnkJOfj0BPL6hVKpjMZqRkZthrqdSAMYBARERUhryCAiRnWj7U2wYQrHWkRQIIkfGxyMzNgZNWi/8+9CjUKhX+PBGBL7dtAgCE+vpDV8bIUzmAkMw3a0RETYZcBuDtZii1/4E9TOg7CM46R1yJj8Xes4Xjg+XyhdE9blKy4ljGQKVpGPdkIiKiBkhuIqXTaGDQOyunywGEom+u/rGWL3Ru2Qodg0PxwGDLlJ5tEYcBAO1KaaAoYwYCEVHTI7+G+Li523UdRbk4OmFCv0EAgFW7tkEIgYS0VBy5dB4AMLr7TfCxlluwkSKVhgEEIiKiMsQVaaAoSZJyemEJQ6pymtz/oGtoGwDAQ0NGoW2RkVztyuh/ADCAQETUFMlBZh+D/fsfFHXPgMHQOmhwJuoajl2+gG3HD0MIgW6hbRDg6aWMKy7e54cIYACBiIioTLEplhGO/kUaKAKFAYTE9DSYzGYIIXA80tL/oJs1gKBxcMBrdz+gpK2GBQWXeZzCAEJara6fiIjsJyHd8pzekDIQAMDDxRW39+4HAFi1azu2HLNkyo3ucRMAwNe6Xnn9REU1izGORERE1SE3SZRLFmSerm5Kk6mkjHTkW3slaNRqdGjRUtmubUAQ3po8HVcTYtG5ZasyjyPXmyYzA4GIqMkozEBwt+s6SnPfoKHYePBvpXRB66DB4M7dABSulz0QqDTMQCAiIipDrLWEwd/dNoCgVqmUGtH4tBSlfKFDi5ASjRIHhnfG5FtG2JRAFCdnIGTm5iKvIL/W1k9ERPYj9xDwbYABBH8PT4zs1kv5fVDHznBxdAIA9kCgcjGAQEREVAalB4KHZ4nzfKxZCfFpqUoDRbl8oapcHJ2gdbAkBbIPAhFR06BkIDSwEgbZ/bcMV4Lbo7vfpJxemIHAEgYqiSUMREREZYiXAwjFShiAIo0UU1Nw/Iq1/0Gr1tU6jiRJ8HR1Q2xKMpIy0hHo6V29BRMRUYNgNpsLeyA0wAwEwDJe+Nnb70R8agpuatdBOV0OeCSmp8JsNkPVQEZQUsPAAAIREVEpzGaz0gPBz71kAEE+7dT1K4hJSYJKktApuOw+BxXxsgYQkjMyqr0PIiJqGFKyMmEym6GSJHi6uNp7OWW6q/8tJU7zcnWDJEkoMJmQlp0Fjwa8fqp/DCcRERGVIjkzAwUmE1SSBG+3kiO45AyE/edOAwDaBbSAs6NjtY/HUY5ERE2HPALRy9UNDmq1fRdTRRoHB3g4W4IGbKRIxTGAQEREVAq5/4G3m6HUN3/yZIZ8oxEA0LWa5QsyLxcGEIiImoqGPIGhMnwMciNF9kEgWwwgEBERlSIuNRkA4OdesoEiULKrdteQ6jVQlBVmIPDNGhFRYydPMGioDRQrIq87nhkIVAwDCERERKWQRziW1v8AAHyLnd41tGYZCJ4sYSAiajIKMxBKlsA1BsokBo5ypGIYQCAiIipFXAUBBDcnPXQaDQBLJ2t3Z5caHU/OQEhmAIGIqNFTJjA00gwEX7mEgRkIVAwDCERERKW4lhAHAAj29in1fEmSlPGOXUNqln0AMAOBiKgpafQ9EJRRjiyrI1sMIBAREZXiWkI8AKClt1+Z27T2DwQA9GnfocxtKkvOQEjNzoLRZKrx/oiIyH4afQ8EljBQGRhAICIiKiYzNweJ1maGLX18y9zuubET8e5Dj2FQeJcaH9Pd2QUqSYIQAqlZmTXeHxFRbcgryMf/7duNlMwMey+l0RBCNP4eCNbAR0JaGoQQ9l0MNSgMIBARERUjly94urjB1Ulf5nZerm7oF9YRkiTV+JhqlQoeLpa52yxjIKKG4rcjB/DRr+vwyW8b7L2URiMtOwsFJhMkSYK3a+MMIHi7WdadW5CPzNwcO6+GGhIGEIiIiIqRyxdCfMsuX6gLXuyDQEQNTHRyEgDg0MVz/Ca6kuTRhx7OrtA4ONh3MdWk02hg0DsD4ChHssUAAhERUTFXrRkIIT4MIBBR85ZiLalKzcpEZHysnVfTODT28gWZ0geBAQQqggEEIiKiYuQShvL6H9SFwkkM7HpNRA1D0d4HRy+dt+NKLGJTkhGbkmzvZZSrsTdQlCl9EDiJgYpgAIGIiKgYZiAQEVmkFgkgHLt8wY4rAfIKCvD4Z4sw4+OFDbqpY0Ka5QN3Yx3hKJMzKJiBQEUxgEBERFREgdGo1PzaK4CQzAACETUQKUWmwkREXoTJbLbbWqKTE5GalYnM3Fz8uHeX3dZRETkDwbeRlzD4KhkIqXZdBzUsDCAQEREVcSM5ESazGXqdTulCXV88XawBhAb8zRoRNR9ms1kZK6tWqZCZm4sL0VF2W8+NpETl3xv270FGTrbd1lIepQdCYy9hYA8EKgUDCEREREVcjbf2P/D2q5XxjFXBEgYiakgycnOUjINebdoDAI7asYzhRnJhACErLxcbDvxtt7WUR+mB0OhLGNwBsAcC2WIAgYiIqAh7NVAEbEsYOC6NiOxN7jPg6qRH3/bhAOzbByEqKQEA0NLb8vz84987kZufb7f1lEYIUdgDobFnILixBwKVxAACERFREUoDRd/67X8AFE5hKDCZkN5AU3OJqPmQAwgezi7o0bodAOCfK5dRYDTaZT1yCcO9g4Yi0NMLadlZ+PXwvlrZ9+5T/2Dlzm01Dt5m5uYgt8AS1KjvMrja5m0NgGTl5SIrN9e+i6EGgwEEIiKiIq4lxAOo/waKAKB1cICbkx4AyxiIyP7kBoruLi5o5esPd2cX5Bbk40zUNbusRy5haOnjh/tvHg4A+P6vHTUOaAghsHD99/h62yZExsfWaF/x1m/rDXpn6DSaGu3L3vQ6HVwcnQCwkSIVYgCBiIjIymw241qiXMJQ/wEEgH0QiKjhUDIQXFyhUqnQo3VbAMDRy+frfS35RiPiU1MAAEFe3ri1Zx94uxqQkJ6GrRGHa7Tv5MwMpSGjfIzqUhooNvL+BzL2QaDiGEAgIiKySkhPQ05+PtQqFYI8ve2yBk8lgMA3a0RkX6mZlgwED2dXAEBPaxmDPfogxKYkwSwEnLQ6eLq4QuvggHtvHgoAWL17O4wmU7X3Lfe+AYDEGn5Qjm8iExhkpfVBMJnNOBN1DdcT45FX0LB6UFDdc7D3AoiIiBoK+U1kkJc3HNRqu6yhaCNFIiJ7Sskq7IEAAD1bWyYxnLp2Bbn5+XDUauttLXL/gyAvb2VCzrib+mPVzm24kZSIv8+cxODO3aq17+uJ8cq/E2sYvJVT/X2bWgaCNYCQlZuLl775HKeuXVG2Meid4efugQl9B+H23v3qf5FUr5iBQEREZKU0UPTxt9saCgMIGXZbAxERYFvCAFg+vPsY3FFgMuHktch6XYs8gSHIqzA7zEmrw5DO3QEA56Ojqr3va0UCCEnpNQveNrUSBl9rJkVCeioyc3Mwa8VnOHXtCrQOGjhZA0hp2Vk4Hx2FJZvWN7ipGFT7mIFARERkVRhAsE//A6BoCQMzEIjIvuQmih4ulgwESZLQs3U7bDl2CEcvX0DvtmH1thY5A6FFsfIy+YN6TTIH5Oa5QM1r/eXL+xga9wQGmXz7XomPw0srPsfp61fh6qTHooefRLvAFsjMzUFcagpeX70UsSnJ+PvsSQzv2tO+i6Y6xQwEIiIiK7mEoaWPr93WwCaKRNRQyD0Q3K09EAD79UGQJzAEefnYnO7tVvOyr6IlDDXtPyNnIPg2lR4I1kDIiauXcfr6Vbg56bFo+lNoHxQMSZLg6qRH24AgjOzWCwCwLeKIPZdL9YABBCIiIqur8fbPQGAAgYgaimRrCYOnS8kAwtmoa0iqx878RXsgFCU/Z1a3+WFeQQFiU5KV3xNrWsJg7YHQVEoYijaDNOid8eGMp9E+sEWJ7UZYAwgHL5xBqjVzhZomBhCIiIgApGdnKem69hrhCDCAQEQNQ25+PnLy8wAA7tYSBgDwdfdA55atYBYCGw78XS9rMZpMiE21fMgvPiHHy9XyDXl1nzNvJCfCLATUKsvHopSsjGpPdMjKzUV2nuU283ZrGiUMgZ5eMOid4e7sgkXTn0LbgKBStwv19Uf7wBYwmc3480RE/S6S6hUDCERERCisgfUxuEOv09ltHXIAISc/T3kjSkRU3+RvkTVqNZx1jjbn3TNwMADg54N/18sYv9jUZJjMZug0GuU5Uib/npadhQKjscr7vm597m8bEAS1SgUhhNI8sqri01IAAK5Oejhp7fc6Upt0Gi1Wv/A61rz4RpnBA5mchbD9OMsYmjIGEIiIiNAwGigCgF7nqHS25ihHIrKXohMY5LGJskHhXeDv7oG07CxsrYead7l8IdDTGyqV7ccXg95ZGbubXI0P/vIEhhAfP6WJbWI1n3vlSREBHp7VunxD5eqkh75YEKk0w7v2hCRJOHktEjHJSfWwMrIHBhCIiIjQMBooyjiJgYjsTZnAUKSBosxBrcbE/rcAAH7auwtCiDpdizKBoVgDRcAyGaImfRAKn/v94C0/91azn4ISiPa13yhge/J2Myg9MpiF0HQxgEBERISGk4EAFOmDkMkAAhHZh5yBULT/QVG39+4HJ60OV+JjcfjiuTpdy41kyzf7xRsoymrSO0aewNDS21fpp1DdkZBXrI14Q33t/zpiL3IZw7bjR+o8sET2wQACERERCnsgNKQAgjwOjIiovqVkFZYwlMbF0Qm39+4LAPjh7511uhZlAoNnWQGE6jVSFEIoAYRgH1+l8WFSNScxXI2PBQCE+jTPDAQAuKVTV2gdHHA1IQ4XYm7YezlUB5pFAGH37t0YN24cAgMDIUkSNmzYYHO+EALz5s1DYGAgnJycMGTIEJw6dcpmm7y8PDz77LPw9vaGs7Mz7rjjDkRFRdlsk5KSgilTpsBgMMBgMGDKlClITU2t42tHREQ1lW80IibFUq9pzwkMsjb+lkZVf53+p8xt9p09hbd/XMVGi0RUJ1Iz5RKG0jMQAOCu/rdAkiQcvHAWV6wfnutCYQlDRRkIVcscSM7MQGZuLlSShCBPb6WEQR7FWBVms7kwEN2MMxBcHJ3Qv0MnACxjaKqaRQAhKysL3bp1w8cff1zq+QsXLsSiRYvw8ccf49ChQ/D398fIkSORkVHYiGXmzJlYv349vv/+e+zZsweZmZkYO3YsTEXGvEyePBkRERHYvHkzNm/ejIiICEyZMqXOrx8REdVMtHWMl7PO0Wbeub2M6dkHapUKJ65G4mIp3+Bk5+VhwU+rsTXiMP48ccwOKySipk7pgVDOc2KgpzcGhXcBYOmFUBdMZjOirQHeoFJ6IAAo7F1QxQwEOfvA38PTMuHBrfojIePSUpBbkA+NWo0AD68qX74pGWktY/jj+FGYzGY7r4ZqW7MIINx2222YP38+Jk6cWOI8IQQWL16M119/HRMnTkTnzp3xzTffIDs7G9999x0AIC0tDUuXLsUHH3yAESNGoEePHli1ahVOnDiB7du3AwDOnDmDzZs34+uvv0b//v3Rv39/fPXVV/j1119x7lzZdWF5eXlIT0+3+SEiovolv4ls4eVTotu4PXi5GXBLp64AgPX795Q4/9fD+5Cekw0AuBjLFFEiqn1FpzCU554BlpGOW44dVkY/1qb4tBQYTSZoHRzgY/2AX5xnNZsoyhkDwd6W5rnebtVvxnjV2v8g2NtXmQrRXPVt3xGuTnokZqTh6OUL9l4O1bJmEUAoT2RkJGJjYzFq1CjlNJ1Oh8GDB2Pv3r0AgCNHjqCgoMBmm8DAQHTu3FnZZt++fTAYDOjbt6+yTb9+/WAwGJRtSvPOO+8oJQ8GgwHBwcG1fRWJiKgCUXJ6rHfp327Zw519bwZgSQHNsAYLAEu5xQ97/lR+vxwbXe9rI6KmTwkglFPCAABdQ1ujfWAL5BsL6iRlXX5+DvDwKjHCUSaXMFR19O21ROsEBiWA4A6gehkIhRMYmm/5gkzr4IARXXsCADYe/NvOq6Ha1uwDCLGxlnotPz/bB7ufn59yXmxsLLRaLTw8PMrdxte35OgvX19fZZvSvPbaa0hLS1N+rl+/XqPrQ0REVVc0A6Gh6BraGq38ApBbkI/NRw8qp2+LOIyE9DRoHTQAgIsx0ex0TUS1Ts4mcK8ggCBJEm7uaMmYOnej9t/H3kgqfwIDAKX5YWJVSxgSLPuWx/fKpRBp2VnINxqrtK8rbKBoY3zfgQCAv8+cZEPgJqbZBxBkxVNWhRAVprEW36a07Svaj06ng5ubm80PERHVL/kNanADykCQJAl39h0EANhw4G+YzWaYzGZ8t/sPAMDUYaOgVqmQmZvDN2dEVKtMZrMSQKhMX5hWfpYPzZFxtd9IUZnAUE4AQc5ASM3KhLFIf7KKKBMYrBkIrk56aB0cAFS9IaMcQAjxZQABAFr5BaBbaBuYzGb8enifvZdDtajZBxD8/S0P8uJZAvHx8UpWgr+/P/Lz85GSklLuNnFxcSX2n5CQUCK7gYiIGpbriZYAQkPKQACAkd17w1nniKikBBy5dB67Th1HVFIC3Jz0mNjvFmXk5EWWMRBRLcrIyYbZmtlkqCADAQBa+wUCAK4mxFbpA3xlFE5gKPv52aB3htpa3pCcmVHmdkXZTN+xBhAkSSocCVmFvmRCCFxjCUMJchbCr4f21/r9guyn2QcQWrVqBX9/f2zbtk05LT8/H7t27cKAAQMAAL169YJGo7HZJiYmBidPnlS26d+/P9LS0nDwYGGa6YEDB5CWlqZsQ0REDU92Xp5S79qQeiAAgF6nw+ieNwEA1u3/C6t3Wl6HJva/GXqdDm38LW/aLzGAQES1SO5/4Oakr1RDwAAPTzhqtMg3GhGdnFjt4+YV5JcIANxIljMQyn5+VqlUSiPFpEo2QLyRlFA4fce1MANYaaRYhQyEpIx0ZObmQq1SNbhAtD3d0rErPJxdkJiRhr1nT9p7OVRLmkUAITMzExEREYiIiABgaZwYERGBa9euQZIkzJw5EwsWLMD69etx8uRJTJs2DXq9HpMnTwYAGAwGzJgxAy+++CL++OMPHDt2DA8++CC6dOmCESNGAADCw8Nx66234tFHH8X+/fuxf/9+PProoxg7dizCwsLsddWJiKgCUdbyBXdnF7g66e28mpImWMsY9p49hYux0XDSajGx/y0AgDYBQQCAS5zEQES1qLITGGQqlQqh1tT9y3Ex1T7uC8s+w93vzsWav3bAbDbDbDYrAYkWnmWXMACAl0vVRjkWLV8oWm4sZyBUZRKDXL4Q5OmtlEAQoHFwwJje/QBYSvGoaWgWAYTDhw+jR48e6NGjBwDghRdeQI8ePTBnzhwAwMsvv4yZM2fiqaeeQu/evXHjxg1s3boVrq6FT5offvghJkyYgEmTJmHgwIHQ6/X45ZdfoC4SlV29ejW6dOmCUaNGYdSoUejatStWrlxZv1eWiIiqJKoBNlAsKsTHD73atFd+H3fTABj0zgCANv4BAJiBQES1K8Xa/8DDpeLyBVlr6/NRZDUDCFm5uTh5LRImsxmfb96IV1d+hYsxN5BvNMJBrYaPwb3cy1c1c+CqPMLRx7YJuryfqkxikCcwtPRh+UJx427qD0mScOTSeSVoQ41bswiRDRkypNwO1ZIkYd68eZg3b16Z2zg6OmLJkiVYsmRJmdt4enpi1apVNVkqERHVs4Y4wrG4CX0H4cil83BQqzFp4BDl9Db+lgyEqMQE5BXkQ6fR2mmFRNSUyBkI7s6Vy0AALE3zgOpnIFyMsWRS6XU6GE1mHDh/BhGRFwFYSiQqKqVQShiqmIEQ4m0bQJAzEBKqkYEQygaKJQR4eKFf+3DsO3caPx/8G8+MudPeS6IaahYZCERERGVpiCMcixsU3hmPjBiDN+6ZYvMtnKeLK9ydXWAWok66nxNR85SSKWcgVD6A0FoOIMRWL4BwPtoyArJn6/b4/MnnEeLjh7yCAgBAkGfFz8/eVWx+qJQwFMtA8HGT91P5AMLVeEsGQigbKJZqfB9LM8XNRw8hNz/fzquhmmIAgYiImrWoBjjCsTiVSoUpQ0dhaJfuNqdLksRGikRU61KyrD0QKjGBQSZnINxITkReQdU/JJ6PjgIAtA9sgTb+gfjiqRcwpldfAEDPNu0qvLxXFTIQik5NCC6egWANIFSliaJcwhDCEoZS9WkfDn8PT2TkZGPHiWP2Xg7VEAMIRETUrEU10BGOlcUAAhHVtsImipUPIHi6uMKgd4YQAlfiS442r0jRAAIAOGl1eGXi/fj1jQW4d9DQCi/vLWcOVCKAkJKViczcXEiSVOK531uZ5lC5TIbUrEykZmVCkiT2QCiDWqXC2N79AQC7Tx2382qophhAICKiZistOwvpOdkAgCCv8jt8N1QMIBBRbUvNqnoJgyRJaG19PqpqI8Wc/DwlI0AOIMgqOx2nsAdCxZkD8rH83T2h02hszpMDEVl5ucjOy6twX3L5gr+7Jxy17ENTlk7BIQAKs/6o8WIAgYiImi05+8DHzQAnrc7Oq6meogGE8hoGExFVltIDoQpNFAGglV/1Rjleio2GWQh4urgpJQRVJZcwpGRlwmgylbvtD3t2AgDCgoJLnKfXOSqvB8mVyGYobKDI7IPyBFrHcMakJMNkNtt5NVQTDCAQEVGzdT3J2kCxWA1sYxLi6w+1SoWMnOwqdQ0nIiqLMoWhCiUMANDazxLQvFzFjKgLxcoXqsPd2QVqlQpCCGX9pdl79hT+PnsSapUKDw+/tdRtqjISkv0PKsfH4A4HtRpGkwkJaan2Xg7VAAMIRETUbN1ItIxwDG6k/Q8AQOvgoNTdXrKOQaus1KxMfPLbBnyx5ZdqNT0joqYnJz8PudbnA88qlDAAhRkIVZ0KU7z/QXWoVSolY6KsPgh5Bfn46Nd1AIBJA4eUOXZRHuWYWImgrJyBEMIRjuVSq1QI8PAEAEQnJ9p5NVQTDCAQEVGzVZiB0HgDCECRMoa4yn3rZzSZ8H/7duOBRW/jh7934rvdf+CpzxcrJR1E1HylWssXtA6aKpd2yaMcEzPSkJ6dVenLyQGEdjUIIACAl1v5kxhW7/oDMSlJ8DG446Gho8vcT1UaMnKEY+UFeHgBAG4kJ9l5JVQTDCAQEVGzFWXNQGisExhkSgAhpuIAwtHLF/DIJ+/jo1/XITM3B239A+Hh7IKLsdF49NP3seskO2QTNWfJRSYwSJJUpcvqdY7wt37LXNkshHyjUWm6WJMMBKDoKMeSmQNRSQlY89cfAIBnxkyAXld2cEQOICSkp5Z7vMzcHKXMgRMYKhZk7YPADITGjQEEIiJqloQQiGpqGQgV1B3vOX0Czy/9BJFxMXBz0uPF8ffgy6dn4etnXkLX0NbIzsvDnDXLsWTTugqbkBFR06RMYKhiA0VZK19LFsLlSmZERcbFwGQ2w81JDz93j2odUyYHEBKLjWAUQuCjX9ch32jETW3DMLhTt3L3U9lRjnL2gY+bAS6OTtVddrMRaJ12dIMBhEaNAQQiImqWkjPSkZOfD5UkIdCaVtlYyQGE64nxyCsoKHO7jYf2AgAGd+qG1S+8jjv6DIRapYK3mwEfTn8a9988DADw097d+HHvrrpfOBE1OClFMhCqo7W/HECo3CSGouULVc14KM7btfTSg79On8CB82egUasxc9zdFR5HngRRURNF9j+oGiUDIYklDI0ZAwhERNSkGE0mfLV1E45evlDudtets6j9PTyhcXCoj6XVGS9XNxj0zjALobyhLS4rNxdHL50HAEwfcRvc9M425zuo1Xji1jvw7O13AgA2HvwbZo7aImp2lAkMztULILSy9kGIrHQA4TqAmpcvAICna8keCEIILP/jdwDAfTcPq1TGmRKIqCAD4RonMFRJoKclWB+dnMixw40YAwhERNSk7D17Cqt2bcO/V36NuNSUMre7bm0Y2Nj7HwCAJEkVljHsP38aBSYTgr19yn2ze3vvfnDWOSI6OanCIAwRNT0p1hKGqk5gkLUuEkCozIfE2hjhKCtsfliYOXAx5gYux8VA6+CAewcNreR+Csc4lncdOMKxauQAQlZeLtKq0GSTGhYGEIiIqEm5aB1lmJOfh/c3rC3zzV+UNQMh2Nu33tZWl9oEyAGE0kc5/nX6HwDALR27lpu+66TVYUS3XgCAXw/vq+VVElFDl5JlzUCoZgChpbcv1CoVMnNzkZCWWu62RpNJCXq2Dwyu1vGK8iolA2HLsUMAgIHhneHqpK/SfvIKCpCZm1PmdtcSLH10QjiBoVJ0Gq2S3cFGio0XAwhERNSkRMYXps0evHAWWyIOlbpdVKK1gWITyEAACvsgHI+8XCJokldQgP3nzgAAbu7YtcJ9jbupPwBL3bDcUI2ImoeUTLmJYvVKGDQODmhpDcxW1AfhakIc8o1G6HU65dvpmpA/+KdkZsBkNsNoMmH78SMAgNHdb6r0fnQarRJsKGuUY15BAWJSLLX8nMBQeYFeHOXY2DGAQERETYpcd9u7bRgA4ONNG0p9AxiVZPn2I7iRT2CQ9WvfETqNBhdionDE2utAduTSeeTk58HHzYCwoIq/5WsX2AIdglrCaDJh89GDdbVkImqAUpUmitXLQACAVpVspCiXL7QLaAGVquYfS9ydXaCSJJiFQGpmBg5dOIuUrEx4OLvgpnYdqrQvb2WiQ+mNFG8kJ8IsBFwcnaodbGmOApVGisxAaKwYQCAioiYjryAfN6xvSl658z60C2iBjJxs/O+X/7PZzmQ240ZS0+mBAFje7I/tbckcWLlzq815cvnCoPAulX6TPtaahfDr4X1sdkXUTJjNZsSmJgMo7CdQHa19KxdAOF+L/Q8ASzNYd+v4ycSMdCUDbUS3XnBQq6u0L+8KJjHIDRRb+vjWeHpEc6JMYkhhBkJjxQACERE1GVfj42AWAga9M3wM7nhl4n1Qq1TYdeo4dp6MULaLT0tBgckEjVoN3xrOHW9I7rt5GBzUakREXsKJq5cBWGqM/z5zEgBwS6eKyxdkw7v2gJNWh+uJCTh+5VKdrJeIGpaYlGTk5OdD6+BQo+Bqa2tJ1YXoqHIDkEVHONYWuQHi1YQ45blvdI/Kly/IlFGOZWQgyP0PWL5QNUUnMVDjxAACERE1GZet/Q9a+QVAkiS0C2yBybcMBwAsXPc9Xv7mCyz6+Ues2rkdgCWVUl0LabMNha/BHbf26AMAWLlzGwDg5LVIpGVnwc1Jj66hbSq9L73OEcO79gQA/HKIzRSJmgO5oWGor3+Vv7EvKjw4BBq1GlfiY/HT3l2lbmM2m3ExpnYzEIDCPgg/7d2FfKMRrf0C0DYgqMr7kZv9xaemlnp+4QjHptGIt74oGQhJzEBorJrOuyYiImr2IuNiARTOIQeAh4aORruAFsjKy8WB82fw88G/lekCTaX/QVGTbxkOlSThwPkzOHfjulK+MKBDpyp/IJCbKe46GcGRW0TNwGVrAEHOIKguTxdXPD1mAgDg8y2/4EzUtRLbXE9KQE5+PnQaTa1Ow/G0BhDO3bgOwJJ9UJ0SA3mywuW40kfjKhkI3sxAqIpAL0sAITEjDXkF+XZeDVUHAwhERNRkKG9+/fyV07QODvj0iZl4/+En8dKEezFlyEiM7NYLfduH476bh9lrqXUmyMsbw61jGFfu3Ia/Tp8AULnpC8WFBQWjXUALFJhM2Hqs9GkWRNR0XLJ+WG5TwwACAEzoOwiDO3eD0WTCvO9XICMnWzkvOjkR89asAGAZ31iTbIfi5MwBAFBJEkZanw+rSm44ez46CkaTyeY8IQSuJRb2QKDKc3PSw8XREQAQzUkMjZKDvRdARERUWyLjLRkIrf1s3/xqHRxwk3UqQ3Pw4OAR2BZxWMk+cNRocVO7ql9/SZIw9qZ++HDjT9h89CDuGTiklldKRA2JXMJQGwEESZLw8p334fyNKMSkJGHh+u/xn/sfxpFL5zHv+2+QkZMNTxc3PHv7nTU+VlFyCQNgmcbjVc1mkMFePtDrdMjOy8PVhDib2yQhPQ05+flQq1TKVAGqHEmSEOjpjfPRUYhOTrLJGKTGgRkIRETUJGTkZCMhLRUAEFokA6E5CvX1t2mY2Ld9OHQabbX21bd9OABLQzKz2Vwr6yOihic7L0/5Rrg2AggA4OLohHn3TYWDWo3dp/7BG6uX4qUVnyMjJxvhLVriy6deqNRo2aooOj2iOs0TZSqVCu0DLWuTyyFkcv+DIC/vWs2eaC7koMsNNlJslBhAICKiJkHuf+BrcIeLo5OdV2N/UwaPVP59c8cu1d6Pj5s7VJKEApMJKdb58ETU9FyJj4EQAp4ubnB3dqm1/XZo0RJP3noHAGDPmZMwC4Fbe/bB/x55Fj4G91o7jszfwxMAoNfpMCi8+s99ANDBGtw4W6yHA/sf1EyQPIkhiQGExoglDERE1CREWueNFy9faK7aBwXj3kFDcTHmBgbVIIDgoFbDy82AhLRUxKWlVDsdmIgatkuxlufQNv61n1J+V/9bcDbqGnadOo7HR4/DXf1vqVZjw8po4x+IF8ffg2BvXzhqq5d5JZOzI8rKQOAEhuphBkLjxgACERE1CXIAoVUzL18o6qnbxtfKfvzdPZCQlorY1BR0DA6tlX0SUcNSm/0PipMkCa/f8yBenng/tA51//Hjjj4Da2U/YUEtAQCXYm+gwGiExrr2a4nWDAQfZiBUhzyJgU0UGyeWMBARUZNwWQkgsCFTbfM1eAAA4lNT7LwSIqortTXCsSySJNVL8KA2BXp6wdVJjwKTSXmNAYCr8ZzAUBNB1gyE2NRkmNhbp9FhAIGIiBo9IUSREgYGEGqbn7slgBCXxgACUVMkhKjTDITGSpKkImUMlj4IWbm5SMxIAwAEezOAUB3ebgZo1GoYTSbE83Wl0WEAgYiIGr3kjHSk52RDJUlMKa0DSgAhhW/0iJqihLRUZObmQK1S8Tm0GDmAcNbaB0EuX/B0cYOrk95u62rM1CoVAjysjRRroYwhJjkJ2Xl5Nd4PVQ4DCERE1OhdjrdMYGjh5QOdRmPn1TQ9fgZmIBA1ZXL2QUsfv0ZXZlDXOlj7IJyzTmKQGyiyfKFmlEaKNZzE8NfpfzB50XzMXbO8NpZFlcAAAhERNXpy7W6rOugeToCfdSxaHHsgEDVJl+JYvlAWeZRjZHws8gryC0c4MoBQI4FecgZC9QMIUUkJeOen72AWAievRUIIUVvLo3IwgEBERI2e0v/AlwGEuiBnIGTkZCM7L9fOqyGi2lbY/4DPocX5GNzh4ewCk9mMizHRuJYoj3BkqUdNyI0UyythMJpMeGHZp3j12y+RlJ5mc15eQT7mfrccWdbXpOy8PKRmZdbdgknBAAIRETV6kXGWEgZOYKgbzo6OcHF0AgDEp6XadzFEVOsux8pNaJmBUJylkaKljOHsjWvMQKglSglDORkI56Ov48il89h37jQe+eQDHL9ySTlv8S//h4ux0XB3doFB72zZVw3LIahyGEAgIqJGzWw244q1B0JrfntWZ+RGirEpyXZeCRHVpryCAly3NgZkCUPpOrSwlDGcvn4VUUkJAICW3sxAqIlAz8IShrJKD05fv6r8OzkzHc8v/QRr9/yJTYf347cjB6CSJMy59yHlfhuVnFD3CycGEIiIqHGLSUlGbkE+tA4OyjcaVPt8rWUMHLlF1LRcTYiDyWyGm5Me3m4Gey+nQZIzEPaePQmjyQSdRgNfg7t9F9XIBXh4QZKkcksPzlgbVz5wy3CM7NYLJrMZn/7+Mxau/x4AMH34bejVpj2CvKzlEEk1n+hAFWMAgYiIGjW5/0GIjz/UKr6s1RV/OQOBjRSJmhS5CW1r/0BIkmTn1TRMYYEtAEAZFRjs7QsVX29qRKfRINjLB4BtpkFRZ6yn92jdDq/f8yBmjrsLDmo1AKBf+454YPAIAECQdT/llUNQ7eGcFiIiatQuyw0UWb5Qp3ytAYR4BhCImpTCBoosXyiLl5sBPm4GJFgb+bH/Qe3o3qotriXG41jkBQwM72xzXmpWphIQ6NCiJSRJwp39bkZ4ixAcungOd/YbpARxgpSRkCxhqA8MnRERUaMmZyCwgWLdkjMQ4ljCQNSkMIBQOXIZAwCEsP9Brejeui0AIOLypRLnydkHLb194eqkV07v0KIlpgwZqTT2BaCUMLCJYv1gAIGIiBo1eSpAoIeXfRfSxMkZCHHMQCBqUoqWMFDZOgQFK/9mBkLt6B7aBgBwMfYGMnKybc47HWUJIIQHh1S4H7khY3pONtKzs2p5lVQcAwhERNSopWRlAAA8XFztvJKmzc/aRDExPQ1Gk8nOqyGi2pCcmYGUrExIkoRWvv72Xk6DFtaiaACBGQi1wcvNgJbevhBC4J8rl23OkzMQOlYigOCk1cHL1Q0AcCOZjRTrGgMIRETUqKVmWro3e7i42HklTZuXqxsc1GqYzGYkZaTbezlEVAvkD2ktvLzhqNXaeTUNW4egltA6aOCk1aGFtWkf1Vz3VpYyhmORF5TTzGazMoGhY4uKAwhA0TIG9kGoawwgEBFRo5VvNCIrLxcA4O7MAEJdUqlU8HFzB8AyBqKm4ueDfwMA+rQLt/NKGj43vTM+ePhJfPDwkwy21CK5D8LxyMI+CNeTEpCZmwOtg6bSpTWFjRTZB6GuMYBglZGRgZkzZyIkJAROTk4YMGAADh06pJwvhMC8efMQGBgIJycnDBkyBKdOnbLZR15eHp599ll4e3vD2dkZd9xxB6Kiour7qhARNRvy7Gi1SmXTUInqhh8bKRI1GVfiY3Hg/BlIkoS7B9xi7+U0Cl1DW6NTy1B7L6NJkfsgXIgp7IMgZ8aEBbVQxjZWhKMc6w8DCFaPPPIItm3bhpUrV+LEiRMYNWoURowYgRs3bgAAFi5ciEWLFuHjjz/GoUOH4O/vj5EjRyIjI0PZx8yZM7F+/Xp8//332LNnDzIzMzF27FiYWCtKRFQnUjOt/Q+cXTm/vB4oAYTUZDuvhIhq6oe/dwIAbu7YBYHWb2+J6puXmwHB3j42fRBOWwMI4ZUsXwA4iaE+MYAAICcnB//3f/+HhQsX4pZbbkHbtm0xb948tGrVCp999hmEEFi8eDFef/11TJw4EZ07d8Y333yD7OxsfPfddwCAtLQ0LF26FB988AFGjBiBHj16YNWqVThx4gS2b99e5rHz8vKQnp5u80NERJWTYs1AcGf/g3ohN1JkCQNR45aSmYFtEYcBAJMGDrHvYqjZk/sgREReBACcqcIEBlkLT/ZAqC8MIAAwGo0wmUxwdHS0Od3JyQl79uxBZGQkYmNjMWrUKOU8nU6HwYMHY+/evQCAI0eOoKCgwGabwMBAdO7cWdmmNO+88w4MBoPyExwcXOa2RERkSy5hYP+D+uHHUY5ETcLPB/5GvtGI8BYt0bllK3svh5q5ogGE3Px8XLKOFu0UHFrpfQRaMxBSsjKRlZtb62ukQgwgAHB1dUX//v3x1ltvITo6GiaTCatWrcKBAwcQExOD2NhYAICfn+3IFj8/P+W82NhYaLVaeHh4lLlNaV577TWkpaUpP9evX6/la0dE1HTJAQQPBhDqhRxAiGcAgajRyivIx/oDewAAkwYNZfkX2Z0cQLgQcwNHL1+AyWyGp4sbfA3uld6Hi6OT8mUC+yDULQYQrFauXAkhBIKCgqDT6fDRRx9h8uTJUBdp3FH8CVYIUeGTbkXb6HQ6uLm52fwQEVHlpFh7ILCEoX7IAYTY1BQIIey8GiKqjm0RR5CalQk/dw/c0rGrvZdDBO8ifRDW7tkBAOgY3LLKwS32QagfDCBYtWnTBrt27UJmZiauX7+OgwcPoqCgAK1atYK/vz8AlMgkiI+PV7IS/P39kZ+fj5SUlDK3ISKi2pWiZCC42nklzYOvtQdCTn4eMnNz7LwaIqoqIYTSPPGu/rdUusM9UV0rLGOwjHOsSv8DmTLKMZl9EOoSAwjFODs7IyAgACkpKdiyZQvGjx+vBBG2bdumbJefn49du3ZhwIABAIBevXpBo9HYbBMTE4OTJ08q2xARUe1KYw+EeuWo1cKgdwbAPghEjdHBC2dxNSEOep0OY3v3t/dyiBTdrAEEWccqTGCQMQOhfjjYewENxZYtWyCEQFhYGC5evIiXXnoJYWFhePjhhyFJEmbOnIkFCxagXbt2aNeuHRYsWAC9Xo/JkycDAAwGA2bMmIEXX3wRXl5e8PT0xKxZs9ClSxeMGDHCzteOiKhpSslkAKG++bt7Ii07C3GpKWgbEGTv5RBRFazd8ycAYGzv/nAu1jycyJ66h7ZR/i1JEsKCWlZ5H0FePgAYQKhrDCBYpaWl4bXXXkNUVBQ8PT1x11134e2334ZGowEAvPzyy8jJycFTTz2FlJQU9O3bF1u3boWra2Ha7IcffggHBwdMmjQJOTk5GD58OFasWGHTR4GIiGpPapalB4IHeyDUG193D5yLvs4MBKJG5lJsNI5cOg+VJOGu/rfYezlENnwM7mjh5YOopASE+vpXK8BVOMqRAYS6xACC1aRJkzBp0qQyz5ckCfPmzcO8efPK3MbR0RFLlizBkiVL6mCFRERUHHsg1D9/eZRjGgMIRI2J3PtgcOdu8PfwtO9iiErRo3VbRCUloGM1+h8AhSUMiRlpyMnPg5NWV5vLIysGEIiIqFHKyc9DXkEBAMDAEoZ64ysHEFKT7bwSIqqspPQ0bD9+BABw78Chdl4NUemmDh0NlaTCA4OrV/7tpneGq5MeGTnZiE5OQhv/wFpeIQFsokhERI1UqrX/gU6jgZNWa+fVNB9+BjmAwAwEosZi/YE9MJpM6BLSqlrd7Ynqg4/BHS+Mv0cZGVwdQSxjqHMMIBARUaOUIvc/cHap8qxoqj4/dwYQiBqT3Px8/HzgbwDApIFD7LsYojqmTGJIZgChrjCAQEREjVLhBAb2P6hPcgAhKSMd+UajnVdDRBXZcuwQ0nOyEejphYHhXey9HKI6VTjKMcHOK2m6GEAgIqJGKTWLIxztwd3ZBVoHy4SixPRU+y6GiMplNpvx496dAIC7BwyGWsW3/tS0FQYQmIFQV/gsQkREjZISQOAIx3olSRL83N0BALEsYyBq0PadO43riQlwcXTEbT372ns5RHWuhacPAJYw1CUGEIiIqFEq2gOB6pe/u2UEXExykp1XQkTlkUc3jrtpAPQ6jrSjpk/OQIhPS1UmNVHtYgCBiIgaJXkKg4cLeyDUtxZelm94olhjStRgxaYkIyLyItQqFSb2v8XeyyGqF+7OLtDrdBBCICaFQe66wAACERE1SnIJg8HZ2c4raX5aeDOAQNTQxaVZSowCPLzga3C372KI6okkSQj08AJgCaJR7WMAgYiIGqUUawDBg1MY6p2SgZDIAAJRQ5WSaS3zYpYWNTOerm4AgGTrY4BqFwMIRETUKCklDOyBUO/kAMKN5ESYzWY7r4aISpOilHnxOZKaFzmAkJSRbueVNE0MIBARUaMjhEBqtjyFgd+u1Td/D0+oVSrkFRQgkW/QiBqkVGujWY66pebGS8lA4OtTXWAAgYiIGp3M3BwYTSYAfHNsDw5qNQKsNaZRifF2Xg0RlUZO32aZFzU3ntYvFpIzWMJQFxhAICKiRkduoOisc4TWwcHOq2meOImBqGGTnyfZA4GaG09mINQpBhCIiKjRkWt73VnbazctvC2ztqOSEu28EiIqDXsgUHPl5cIeCHWJAQQiImp05NpepubaDycxEDVsfJ6k5krpgcAShjrBAAIRETU6SgaCs7OdV9J8sYSBqGGTxzgyU4uaG09XS9AsJz8P2Xl5dl5N08MAAhERNTpyba87v1mzGzmAEJ2cCBNHORI1KPlGIzJzcwEUNpQjai6ctDo4arQACgNpVHsYQCAiokYnJYu1vfbm6+4BjVqNApMJ8Wkp9l4OERUhB1nVKhVcHJ3svBqi+iVJklLGwD4ItY8BBCIianQ439z+1CoVAjytoxwr0UgxNz8fW44dUj7YEFHdSS0ywlGSJDuvhqj+yWUMnMRQ+xhAICKiRqewBwIDCPZUlUaKP/69Ewt+Wo1HP3kfF6Kj6nppRM1aMvsfUDPn6cJGinWFAQQiImp00jjfvEEobKQYX+G2f505AQCIT0vFM19+hL9O/1OnayNqzuRMH/Y/oOZKvu8zA6H2MYBARESNTkoWMxAagmBvOQOh/BKGpIx0nLtxHQDQLbQNcgvy8cbqZVi1axuEEHW+TqLmhs+R1NyxB0LdYQCBiIgaFZPZjLTsLADMQLC3yo5yPHjhDAAgLDAYi6Y/hTv73QwA+GrrJiza+GPdLpKoGVJ6IPA5kpopT1eWMNQVBhCIiKhRSc/OUr61dnPS23k1zZscQIhJSYLRZCpzu33nTgMA+oV1hINajZnj7sLzd9wNSZKw8eBexKVyigNRbVJ6IDADgZopljDUHQYQiIioUZFrew16Zzio1XZeTfPm7WaA1kEDk9mM2NTkUrcxmkw4fOEcAKB/WEfl9Al9B6FjcAgA4PDFc3W/WKJmhD0QqLnzYgZCnWEAgYiIGhXW9jYcKpUKQV7eAMqexHDi6mVk5eXC3dkFYUHBNuf1bhMGADh8iQEEotrESTXU3MklDClZGTCZzXZeTdPCAAIRETUqhbW9fGPcEFTUB2G/tXyhb/twqFS2bzt6tW0PADhy8TzMfINHVGtSs9gDgZo3d2cXSJIEk9mMdGvfpKrIK8jHk59/iDe//6YOVte4MYBARESNipyBYOA3aw1CCzkDIan0SQxF+x8U1yk4FE5aHdKys3AxNrruFknUjAghlOdJDz5PUjPloFbDoHcGUNgTpCoOXzyP09evYseJY8jNz6/t5TVqDCAQEVGjkqq8MeY3aw2BnIFwo5QMhJjkJFxNiINapcJNbcNKnO+gVqN7q7YAgCOXztftQomaiczcHKWpqTszEKgZKxzlmFbly+49e0r5d1k9fporBhCIiKhRSc3kN2sNSQtvSwDheik9EPaft2QfdG7ZCq5lTMzobS1jYCNFotqRYv221cXREVoHBzuvhsh+lEkMVWykKIRQyu8AIDaFAYSiGEAgIqJGRWmiyB4IDUKwNQMhLjUZBUajzXnllS/IelszE/65chl5BQV1tEqi5qOw0SyzD6h5kxspVnWU44WYG0gskrUQwwCCDQYQiIioUZGbg7G7eMPg6eoGJ60OZiEQnZKknJ6bn49jly8CsB3fWFyIjx+8XQ3INxbgxNXLdb5eoqYuhY1miQBUPwNhX5HyBQCILfLaRgwgEBFRI8MeCA2LJEmljnI8dvkC8o0F8HP3QKivf7mXl8sY2AeBqObkEY6cwEDNXWEPhKplIOw7ZwkgtPYLAMAMhOIYQCAiokZFmW/Ob9cajOKjHE1mM3af/gcA0K99R0iSVO7l5TIG9kEgqjlmaRFZVKeEITkzA2eirgEA7uw3CAB7IBTHzipERNRoFBiNyMzNAcAmig2JHED47cgB7D71Dy7G3EBugWXsVXnlC7KebSwZCBdibiA1K5MffIhqQMlAYJYWNXPVKWE4YG3+GxYYjE4tWwEAYljCYIMZCERE1GjIzcHUKhVcHJ3svBqStfTxBQBciY/FyWuRyC3Ih5NWi5s7dlWyC8rj5eqG1n4BEELg6OULdb1coiYtJUvugcAAAjVvXtXIQNh31hJA6N+hIwI8PAEA6TnZyMrNrf0FNlLMQCAiokbj0IWzAICW3r5QqRgDbyiGdO6GM1HXoFGr0T4oGO0DW6CFlw/UVfgb9W4bhstxMTh88RyGdelRh6slatoKeyAwk4eaN7mEITM3F3kF+dBptOVuX2A04qD1fUb/sE7Q6xxh0DsjLTsLsanJaOMfWOdrbgz47ouImqUVOzZjyuIFSkM+ahw2HzsIABjVo7edV0JF6TRazBx3F54eMwEju/VCiI9flYIHQGEfhCMXz0EIURfLJGoW5B4ILGGg5s5Z5witgwZA5coYjl+5hJz8PHi6uKF9YAsAgL+7JQshJpllDDIGEIioWfr9yAFcS4jHP1c4Nq6xiEpKwD9XLkMlSRjZjQGEpqZraGto1GrEpqbgRlKivZdD1GjJYxzZaJaaO0mS4OlqCaQlVaKMYf85S/lCv7BwJcvR39MSQIhNZSNFGQMIRNTsGE0mxKelAgAzEBqRLUcPAbB8U+1jcLfvYqjWOWl1SsMqjnMkqp58oxGZ1lptT/ZAICrsg1BBBoIQAnvPWsY39g/rpJweIGcgsJGiggEEImp24lJTYLamSKdlZ9l5NVQZZrNZKV+4rWcfO6+G6kpnawDhQkyUnVdC1DilstEskQ1PF0sAISmj/AyE64nxuJGcCI1ajd5t2yun+3t4AQBikpmBIGMAwcpoNOKNN95Aq1at4OTkhNatW+M///kPzGazso0QAvPmzUNgYCCcnJwwZMgQnDp1ymY/eXl5ePbZZ+Ht7Q1nZ2fccccdiIriGyGihqRoFDmNGQiNwrHIi4hPS4WLoyMGhnex93KojrQJsDSouhQbbeeVEDUsWbm5+Oz3n3EtIa7c7VIzC/sfSJJUH0sjatCUUY4VlDDss5YvdG/VFnqdo3K6PImBJQyFGECwevfdd/H555/j448/xpkzZ7Bw4UK89957WLJkibLNwoULsWjRInz88cc4dOgQ/P39MXLkSGQUSYmZOXMm1q9fj++//x579uxBZmYmxo4dC5PJZI+rRUSliEkpfBFgCUPj8PtRS/bBsK49odNo7LwaqittrR2uL8fGwFQkgE/U3P18cA++3/Mnvt7+W7nbJbP/AZGNypYwnL1xDQDQvXVbm9P9PQpLGNjg14IBBKt9+/Zh/PjxuP322xEaGoq7774bo0aNwuHDhwFYsg8WL16M119/HRMnTkTnzp3xzTffIDs7G9999x0AIC0tDUuXLsUHH3yAESNGoEePHli1ahVOnDiB7du32/PqEVERRTMQGEBo+LJyc7H71HEALF9o6oK8fKDTaJBbkI/oZDZSJJJdio0BAFyMuVHudvJrGvsfEFnIoxwrKmG4Gm/J7mnlG2BzupyBkJ2Xh4yc7DpYYePDAILVoEGD8Mcff+D8eUvjpuPHj2PPnj0YM2YMACAyMhKxsbEYNWqUchmdTofBgwdj7969AIAjR46goKDAZpvAwEB07txZ2aa4vLw8pKen2/wQUd2yDSCwB0JDt/NkBPIKCtDSxxfhLULsvRyqQ2qVCq39LG/eLsawjIFIdiXOEkCITk5CTn5emdulWAMI7s7MQCACKlfCYDSZlPKgVn7+NufpNFqlj0LRDNbmjAEEq1deeQX3338/OnToAI1Ggx49emDmzJm4//77AQCxsbEAAD8/P5vL+fn5KefFxsZCq9XCw8OjzG2Ke+edd2AwGJSf4ODg2r5qRFRMbNEShmxmIDR0cvnCbT37sKa3GWjjHwQAuBRb/jetRM2FyWzGtcR4AJaM2Ctxpb+nBIr0QGAGAhGAwgwEubynNNHJiSgwmaDTaOBvnbpQlL/1sx0nMVgwgGC1du1arFq1Ct999x2OHj2Kb775Bu+//z6++eYbm+2Kv3kVQlT4hra8bV577TWkpaUpP9evX6/ZFSGiCsUk2zZRZE1bwxWVlIATVy9DJUkY2a23vZdD9aCttZEiMxCILGKSk5BvNCq/l9dkVOmBwAwEIgCFPRBSMjNsmuMXdcVavhDi4weVquTH4wDrJIZYZiAAABzsvYCG4qWXXsKrr76K++67DwDQpUsXXL16Fe+88w6mTp0Kf39LOktsbCwCAgprY+Lj45WsBH9/f+Tn5yMlJcUmCyE+Ph4DBgwo9bg6nQ46na6urhYRFZOTn6ekeAKWmdk5+Xk2HXepdvxz5TICPDzhY3Cv9j62HD0EAOjdNqxG+6HGo7W/PImBGQhEABAZH2Pz++W4mDK2ZA8EouI8rME0o8mE9JzsUoNrV+ItWT2hvv4lzgOKNlJkAAFgAEGRnZ1dIuKkVquVSFWrVq3g7++Pbdu2oUePHgCA/Px87Nq1C++++y4AoFevXtBoNNi2bRsmTZoEAIiJicHJkyexcOHCerw2RFQWOXrs4uiIfKMJ+cYCpGZlMoBQy/46/Q/eWL0Mep0Ob9wzBQPDO1d5H2azGZuPFZYv1KZcmLEbWXCGCkHQIAAO0NViUp6AQApMiIYRMShABgon8UiQoALgBQcEwAGB0MCpjGNnw4w4GBGPAsTDCC1UCIQDAqCBJ9RQoWR2mxkCiTAhBgWIQQEyYYYWEjSQoIUEHVTwgBreUMMTDtCUsg8AKIBAHAoQAyPiYIQWEgKhQRAc4A41pHIulwYTkmFCJkzIg1B+jBAwQA0fqOFj3Y8KEswQyIFADszwCLAE5ePTUpGenQU3vXMVb32ipkUuWdBpNMgrKCg3AyElkz0QiIrSODjAoHdGWnYWkjMzSn1syEG64v0PZMxAsMUAgtW4cePw9ttvo2XLlujUqROOHTuGRYsWYfr06QAspQszZ87EggUL0K5dO7Rr1w4LFiyAXq/H5MmTAQAGgwEzZszAiy++CC8vL3h6emLWrFno0qULRowYYc+rR0RWcvTY38ML6dlZiE9LRWpWJgI9ve28sqZDCIEVO7YAsHQt/veqr/Hw8Fvx0JBRpaYGluVY5EXEp6XCxdEJA8O71Ooa9yILe1DYQFMClA+0ACCs/5WLW4RyWtH/i1JOA8wAEmFEHipfGuMBNVyhggmAEQImCORCIBNljzLUQoKX9QO4vBIzgCQYUVDJ40oA3KGGM1Q21ysfAskwlXl0J0jwhgNUKLxtBIB0mJABc6WvuYP1euQUuS2hA3pOvRf//PAzLsVGo0frdpXcG1HjcCU+Fn+dPoH7Bg2FxqHit+KR1m9HB3TohD9PROBybHSZ5bGpWeyBQFScp4urJYCQka406i1KnsAQ6lvyPKBwEgN7IFgwgGC1ZMkSzJ49G0899RTi4+MRGBiIxx9/HHPmzFG2efnll5GTk4OnnnoKKSkp6Nu3L7Zu3QpX18In6Q8//BAODg6YNGkScnJyMHz4cKxYsQJqtdoeV4uIipGf/AM8vKCSJGsAgZMYatO+c6dxMeYGnLQ6DO/aE78e3oflf2zGhegb+PfdD8DZsXLZHnLzxOFde0Kn0dTqGs/B0sU8CBpkwIR0mBEPI+JhrOCSlecAwNeaYeBh/cZe/phsBBCPAkTDiBSYlJ/SuEMFX2jgBwfkwmzNCChAPgRiylivFhL8rZkK7lCjwBoUyIdALsxIhgmJMCLXmilR1rGdoVL2kwszolGAOBiRA4Hr5YQptJDgATXcoIIOKuggQQcJakhIgQkJMCIRRhhhCZjIHCEhHwKu7Vuh1zMP45/rKehRqVubqHEoMBrx2sqvEJ2chAAPT4zo1qvCy1y1BhAGd+qOXSePIz0nG0kZ6fB2M9hsJ4RQSvQ8mIFApPB0dUNkfGypjRSLTmAI9fUrcT5QWMIQm5pcqf53TR0DCFaurq5YvHgxFi9eXOY2kiRh3rx5mDdvXpnbODo6YsmSJViyZEntL5KIaqwwgOCJvIJ8AIU1o1RzQgis3LkVADCh70A8cesd6NQyFIt+/gF7zpzA01/+D188+Tx0Gm25+8nKzcXuU8cB1H75QjpMiIEREoAH4A4XqJEBE26gAFkwK4n5kvW/kvJv2/8XPd/2NEtGgQ8coC4jzb+oHOsH81wIqAE4WD9oyxkGjqWUN5ggkAQjkq0f/CXrSiTrscsqbyhKQCALZiTChFxrroF8CTUk+MIBrlCVKFUwQiDeGvgofpu4QAVPOECvrKZsJgikwgQjBJyhghNUUENCNArwdfYNOLobcMnghj+RicFwrvD6EDUGvx7eh2hrI9/Y1IrToYtOYAgLaoEW3j64lhCPS7HRJQIImbk5MJosj0t3ZiAQKeRJDEkZJUc5yhMYHDXaUicwAICfwQOSJCGvoAApWZnNvscIAwhE1KzEJFvesAV4eCnf1KRl2zcD4Up8LOatWYH7bh6GW2v5w3J9O3LpPE5fvwqdRoNJg4YCAMb06otWvv545dsvERkXgyOXLmBAh07l7mfnyQjkFRQgxMcPHVq0rNU1ni+SfeBiLVlwhRodYJ9MMSeo0AZVa6Zr+YCvgS+qn5khQYIL1MptUFkO1l4IgTU4NmC5Dl6lvA0JhAaDrqbj+5wL8O/ZBX8iE0eRjVBolR/PcnowEAGFBUjC5rTS/132eSX3IVmDe9WRnZeHb//cqvxe2oeZ4qKTE5FvNCrj5dr4B+JaQjwux8Wgb/twm21TrN+uujg6QluJ0ghq3IwQSIcJLlBB20QG6xmtwXG5fE5+pOkgwRVqOFTzsedl/cCfXMpjTmmg2CIYSSoznGEp0yv6GqNxcIC3mwEp+bm4nJrEAIK9F0CN07dIRob1mzoJUL6jsvy78JswFQq/GVOV8ntplwdgk25bYH0bUPxbvuLfDsoNwuRmYWprunDR+tzitcu2PwJmWJ68CiCU1NribzIkWN5AayDBwfpvSdlvSWWdZrQ2FbNcTzOMxa6bfJuUdZsV/cbR9jaxVfQ6yT9mlKznLv5v+ZtQ+bqqil2m6G0on2Yqcgz59lMVuy6qIveF0v6thoSb4Yxw1E1Tw9giGQjRKYkA7J+BsGrXdkTGx2L1ru2NJoDwy6F9cHZ0xNDO3W1S+eTsg3E39bd5gQ0PDsFN7Tpg+/EjiIyLqTCAIJcv3NqzT62nCsrlC2FV/NBO9SfMNxDnFi1DxuWr6HzXOKRJZhxHLo4jF4DlzWRpb5erck+pbACiavus3e1qvs/KnypK/LfiD9+2p9XNB/bKXa7019q6MgquGISqN/f8v727bFKoKxNAkD/cyOPlWvsF4s8TEaU2UpSD4u7OzfvDTVORBhPyizyyLD1uTLiOfEShANEoUIrYnCDBDWoYoIaj8t7K8n8HSHCBCq5QWYPGKqhh+x4439pzJ9Paxybb2sum6PtNcynvJQ1Qwx1qeFiPLWDJqsu2/pisa3OyZpk5QVL69sjHToMJUSjAdWvj39IL6gqz3AzW8jgXa/8eF6jgDJX1vX/h9ZbXkgMBERaCEN0gxAf64RekwQjLZ41smHG9lTsGzX0Raq0GS2B5X6iBBANUcLNep3SYEP7CI5AcHLARwGkkYwhc0BLlZ1M2VQwgULUkwoTUMh/iRIUsUeSqvc3bjAx0gK7Wv2EUQihNFAM8veAeZ6kRLSuAsAFpSIMJk+FRZqf6mkrLzsKukxEAgGuJ8biRlIggr4bd0DEuNQXvb1gLAPir6z+YNf5eODs64viVS4iIvASNWo17Bw0rcTm5u3FkOSPIACAqKQEnrl6GSpIwqnvvWl17AQQuM4DQ4AV4eMJJq0P0sZP4zy1jIfl64CryccX6xrkqDSrLVp8fOakp2Yss9Ie+UiVKsrTsLKz5awcA4JZOXbH71D+lfhtanDyBQR4v18Y65jSytABCptxAkf0PGrtjyMZ6VHz/UAMwAdYpNpaJOY2do/WLK5kcCDAByIAZGeU0Fy5Ta3+EtvaHAHAIObbn6XVKHp4OEvKsAZJEmJBYdIKSnNUjBC5K+biIZLSGFkPggtBmFkhgAIGq5W4YbL7JFjb/towRK/x34bfVpW1f/HwANpkERb/9Lt4RvWjncfkbfTl7wQxR4ht6oOxv7uXT5MwCOYuh+Ldc8rGKZioUV9pbiuI11A5FMiZ01m/6i99mZd2mRa+/KLZNyWPLt6PldpXrq0tbU9F/mwDr9SuMNBe/vVDsNHWRYxVmgVjWZbZer/L+bQLwA1KRYo1GB9fyE3JGTjay8izfYAZ4eMJdb3mTlVZKAOEGCnDU+iJzCrnoDqdaXYts67FD/9/efYc3dZ5tAL+PZEnee4MNGMzeI2wIBBJICNmE7NmkmU2TfBltmtAkzWqz0zZNmk0J2XtCBhvCXmYZDBjjgfe2bOn5/pDOseQ9ZGv4/l2Xr2DpSH7vYHSOHr3v88JcV/9btPFgGi6aPKNLfpar5JUUaX/+edd2HMw6gSWLr8F79qm588dORGxYeKPH9bN3N26tgPDDts0AgAmpgxut8e2sDJhRCyAUOsTxFOixdDod+scnYs/xDBzLzsKc2HgMsBd8aiFNFrCbLwc0fU97ygfedqzt+MaPaO056s8JzueItvxZcbilLY9r/T6ljcc192elTce1/BzOfxIIXkA+ymHFYZgxsB1FyGWrVqKiphoDEnrh4ikzsXrvLuSXtv4GUd2BQS3Aqh3kj57KRZ3FAj+HJt3qFo7cgcG7CQRrUQkA9uaz9b/PIdChNwxIghFJMCAKetTAtnVuCawotc9acLzGss0usNhnGNi+1NcC9frND4p9hkL9J/vqtbd6/am3X0Ma7dd5AFACK4rtjXiLYYEOQKB9tkGg/fhq+yf9lbCiyqHfjpop0J7Jlqu+6bAjq/05SmBFCSwohQUV9iwV9i/1WtXicM2qznowWYGft/4Gc1U1zh49AfGhYTBAgT90ePXTD5GRkYGHFlyC6YOGoRa2pSHq/1MdbDMtfli3Bu//8C3mT52BQWedjh2owhGYcQSF2syIcOgRDh2CmlgaGAV9l82u7W68eqIO6alTdqjrDYYJu1CNXah2eQFBnX0QGRwKk8Go7QXc1AyELfaTt/rnriggiAi+2rwBgO3TpaN5Odh4wPMLCIVltk+54iMiYbVacaLgFG559XnUWizQ63S4fMYZTT4uJd524XusiQtfldVqxffb65cvuNpBh9kHXEPv2dQCwuGck06d6g1QEMPLF3ILBSPgj42oxA5UtbmAkFdSjE83rgEA3HTmAsTYC6MFZaWtdnTX1mfbC7Bx4REINJlQWVOD4/l5TlvSqVs4NrXPPXmP46jFKdTBAAX3IKbJRrqO/O1vhJveP8A36FDfs6dXR/rv6IA9h05i9d5dKDObcMmc+QBsOzCk79iFWosFA2JsRToDbP15GvboSQ4IhlgsyDt5EvcjDDMRhDWowHZUaYWZrBZ2JxoKk88UEHyj4wYR+YyR9jfqe1ANi4unGGs7METauuzWFxCcmyhWw4rd9rXWgO1k3nB7v+yiAvzruy9wzmMP4o7XX4JI+8e6+1gGjp3Khb/BiPsuWAwA2JGRjipzTbufqzsVlts+NRuY2Btv3P5/mDJ4GGrtnb/njhqHhMioJh8XFxaBAKMJtRYLThScavKY7RnpyCspRrB/AKYOHu7ScQsEB+x/r+355JDcQ52qnZ6d5eaRENUbYz9H7UO19mlqa97+6XuY6+owul9/nJY6GFH2jvDmulqUV1c1+7g6iwWZ9h0Y1O3ldDod+tmLBkcaLGNIz7Z9HxUc2o5E5GnUDzBGwL/V4gG1nXpNsX7/Xu02xx0Y4sIjWny8ukODei0ZAT8sRBjuRyx+jygsRjjmIQSTEYhR8MfoBl/9fOjDV5bwicij9IcRgVBQASsyYNamLbuC1v8gwvYGNyzI1gSr4QyEXaiGGYIY6BEFP+xHDbaiEvMRij3HMvDh+l+xZu8uWO1Fg11Hj+DYqVxtjWpbfbV5PQDgjJFjMTSpD+IjIpFTVIhthw9h6hDXvnl2JbUJWGRwKEIDg/DElTfi041rsP1IOm6ce06zj7Nd+MYjLfMYMnJzmvz/pTZPPGPkWJgMnevy31Ae6lACKwwAUlhA8Hj9E2wFhKaaxRG5SwIMiIMfclGHPajGBAS2eHxheRm+27YJAPC7MxdAURSYDEYE+/ujvLoaBWWlCAlo+jmyiwpgrqtrtL1c/7hE7D1+1FZAsM/OySrIx/r9ewAAM4aPckVUcoNKWLHXXuhu7XeL2mfSoKHQKQoOZZ9AXnERYsMjGjUpbYl67ZhbXASr1aod7w8dEqHr9M5E3oRlLSLyKHooGG7/hGdXw0Y3nZRdWL8DA1A/A6HKXIOaWtu0M4Fgs736PwGBGG8/ge9AFb7Zvgm3vfYiVu3ZCasIxvUfqH1KuvnQ/naNpbSyAr/amyeeO2EyFEXB5IFDAQAbD6R1ImXXU5cwqI26FEXBRZNn4PErrkdME70PHLXUB8FcV4c1e3cBAOaNneDCEduouy/0g6nLmmKS66TEJUJRFBSUlbp9pxQiR+qStu1tOEcdy8uBVQS9oqIxPLmfdru6L31LjRQzcpt+c6MuBzvi8Dr60bpfYRXBxIFDnJY1kHfZjirUAUiAHxL5Oa9LhQcFY5j93+A6+ywE9d9Y37jWPwCKDg2DXqdDncWCfPu/29ziIqzasxO5xUWtPNq3sIBARB5npH2NWBpqUOvCZQzaEgZ7FTnYPwB6+0WZ2kgxE7XIRR38AIxCAAbAiDDoUAXBb9UlAIDTUgfjzTvuw3PX34q59l0CtqQfbNdYftyxBea6OgyIT8Tg3skAbNVxwNZIsSNLIrpLkcMMhOZUwIoNqMAWVCIHtVrLpqYufFX7ThxDda0ZkcEhGNK7j8vHze0bvUugyYRE+3IYLmMgTzLKPrH8hH2tektyip1nvqmiQmx9EPJbKCBon47GOq9uT4l3np1TXFGOb+2zHBZPm9XGFORpBIKt9g8wxiOQfXq6gDq7U52tc/SU8y4nLfHT6xEbZlvm8NwXH+Ly5x7Hor//FQ+//xb++sE7XTRiz8TSFhF5nCQYEA49imHBAdRguIuaztQXEGwzEBRFQVhgMArLbZ9wxoZHOKw9DECAvcY6FoH4BeWoSooFAFw0eYY282DCgEF4FbbeBea6Ohj9Wn9ZdWyeuGDCFK2B1piUATD6GZBXUowjudnaz/A0ag+EyCY6fVfAinWowG+ohNmh+GOEgl4wQBnaF32rp6PIz4DfUAkjFG2P6C05J+AXGIARAwcjX7Fo3ZVrYUW8fdqwroMXVBWw4oS9uRH7H3iPAfG9kFWQj8M5JzF+wCB3D4cIABAMPQbAhIOowQ5UYS6a3/Ugu1AtIEQ63R5tn4FQ0KCAIBBUQ1AOKzKkBjEjBiNszFCsQBkqYIUZgsqkMIy8/jLojQa8Ys1DiaUcQ2+4DP4GA7bGRWE7CprZccq2s5QBCmLhhwT4IR4GhELHN6se4CjMyIcFRijaBynkWlMHD8Or33+JbUcOoaK6utE2qa1JjIxCdlEBNthniuoUBVYR7D9xHFXmGgQYe8b1BQsIRORxFHun6zWowC5UuaSAYLVakVPU+JOg8KAgWwGhshyVsGKPfe3heIddF8YiAL9KOfx7xyMgOtLpjX1KXAIigoJRVFGOvcczMCYltdWx7DmegaN5OfA3GDF3dH13eZPBiLEpqdh4MA2bDqZ5bAGh2FyNqMEDUBQfju2ogg626WwnUYfNDoWDBPghADqcQC3MEGTADISb0Gf2VADA1w33uJ40CFMn2d4kvoz8Rj/XBAXJMKAPjPCDgkJYUIA6FMKCKlgRbu9ZEQW9/cvWRTkQCtJRAwEQDz+ENbG9Enmm/vGJWLV3J2cgkMcZgwCtgHAGgpstbqozEOIjImGxFwZKYEFgal/0DtbjaO8ILEcRSmDVttrTNimdPQFDMQF5APLg0OxXD0T0t83SyoMVCA1EaKhtuV1mC13gmxMIBaHQa938/e3b71lg2xJP3RYvBHpEQo8I+38j4dfly8FOoQ6H7K/ffrBtN1j/Zfve4LS9YP0W2fomxiYQVGrbHlq0/9fqkWqBxfF5TPb/L35dnHWLfUnMSPjDxEniXSI5Jg69o2JwouAUNh5M05qU9mtjAeFS+wyflPgEjE0ZiFF9++OqF55AQVkpDp3Mwsi+KV02dk/CAgIReaRR9gLCIdSgClZtNkBHFZSVatsMOq7TV/sglFRUYId97WE8/NDboRlOGPRIrLEiy1+HPpPGI9q+BRdgaww4fsAgrNi5FVvSD7ZaQLBarVi+5mcAwOyRYxDs77w95KRBQ7HxYBo2HEjD5TPmdCpzR1ghqIGgzmEXeYFtZ4p0mHFQajDgtmug89NjM4DNKGn0HInww+kI1rZKtEJwCnXIRC0KpA6fb90Ii07BhCHDYAzwRxWsqBQr8muq4Odvq94HQEEgdAiCDnooOIla1EBwCGYcgrnJseegDjlNTCf2t3/qBnD2gbcZkNALAHCIBQTyMINgQgAUlMGKIw4Nf8tgwQnUotj+BrV0TCpGTxiEYwkJeAy59fs2jElF/zGpqIJtuV5DJlFQXFCAmrJyjEvsg2hTAILsb+4NUPDJ6p+x/9hRJIRF4GRRASKCQ3DP+ZdC0esggP1LHP5se30XAFUQ5KAWOahDPupQCUFlK0sxmqKHralkEgxIhhGJ8IPJXkqxFZZtr72K/c9tpRbzt6OqxW3x2jI+x6ICAJTA2uGlkQbAXmDRacWWAIf/BkCHQPufDVCggwI9bNkNUBBqf2xTymFBGpsndoupQ4bjg7W/4KN1v7Z5BwbVxIFDMHHgEKfbhvROxtp9e7A/6zgLCERE7hTr0Ok6DdUYZz+h1kGQjzpUwIoqCKpgRRWs8IcOCfBDHAzahYIjdQeGmLBw+OnrP4FWCwhFFeXY18Law5CsAqB/DGLGDINFcX7xHD9gEFbu2Y6tOccxH2bUQBACPcKgc/oUwVxXh799/j625mUhrG8Sxs2cjm2odMpROjYVI6MvhSEgAP+05iFcZ5teGgI9gqBDlX2v4XL7p1V6+ydHIdAh1H6MeqFotf+3CoIK+/EVsKLafhFp1f4L1EBQDStqHAoHTVIAnZ8elfmFGBkZB+gU7TmMUDAeARhoLxyodFAQBwPiYAAU4Ludh7D9yCFceFEY5o09DQCQduIobnn1BYQGBePTB/4Kg855loAVglzU4SjMOI5aAIJI+2yDSPghAAqKYEEBLChEHfLt/y2x51UN5bRQrzI0qQ8URUFGbjZyi4vafJFH1NX8oGAEAvAbKrEK5diHamTYp6A7MvZPhhHQSgQ6AKHQwVpRhfT0wwhTdLhg5ASEQY9gh9f67Pw8XPXCa/A3GPHCw09B1+CN59Yqwbr96Siwf3/FORdgmL79bzxr7QVe27nBaj8X2IrIetgaG+thmxlYAguK7K+thbCgGoITqMUJ1GKD/fzZHLWooBYTdNr39X9Wby92mBmgA5ACI4KgQx0EtbBdB9R/wX677ctsP/cBgAWwn18bn9WCoUMY9I3eCFns/08cn6/G/vhaALWwoqyN23c2xQQFYfbrgzDoEQo9wqDHSdTCAqAXDEjoQd383WHqYFsBYd+J4wDatgNDSwb3shUQ9p045qohejwWEIjIY42EP1agHJtQiRzU4QRqkWM/yTZHARADP8TBD0aHaY7H/GuRMm8W4mJi8BGKUQ1BDazA2dMw8axJ2BscBGlh7WHhwcOoiTbBFBaKfyIfOigQ+4VK5ehkzBh7HwDgNRQ6PS7AfrFgtlpRYK2BcvFcnGa/bzUANJzGbwQiBti6BOfCitwmPpnqDuqaWfXPeihIggHR5Wa8/Np/oK+owj/+8lSHnrtfXDy2HznktBPDzqNHAAAjk/s2Kh4AtgvLBPuF1eRmnjeuiYuuWggKUYcCWGCC0qO2WfIFEcEhGNGnH3YdPYI1abtw8ZSZ7h4SkWaMvYBwDLU4Zv+kXAEQZy9uBlsVLPv+G1QXl+LR8y9DUmAIgqGDDgq25x7CVx9+id5RMZg08vRGz300LxdA829uUhyWuAX7B+DscZM6lMHQwddFgaAYFhxHLTJRi+MwIw91zb61FsDh3C0N7mksHn4YjQCMhD+C27nsrM7+xl8tAKhfAtHetLdn6YU6M6/KXpCutv+3yuG/VQ4falTCijo4F/LVwkwNBHmoQ14zP8tx+SR1jWHJfREaEIjSKlvRqy07MLRkcJJtOdF+e0GiJ2ABgYg81ggEYAXKG01ND4CCEOi1KYMB0KEcVmSjFuWw2k/ODaZjxochKX4iAGC3fZogACA0CP6ov4Q5DYFNTjE8kn0SpzbVoN+ZM1HQsIRhP9xaZ0GAFQg1mlBm/3TGdkFRB+gAxWi7SPOzCkJ1ftpURzWDOm1/3c7tWLtjG8YOGIR5U6ejFBaU2S9KAuzT+oPtXxZAu78UFlTC2uATHluTwiCHx/nbP8tSj1Ng+1QkwGFaZnNrPXecSkdVQRGSomPa8DfYNHUrR8edGHZmHAYAjOzbv8PP2xSD4+wH8kozh43CrqNHsHovCwjkWRLhh7EIQDZq0QdG9IMRfWHUltydKDqFZ9ZthslgwNCAMKeZWepSuIZNFFXqDgzNvblxLCCcN3EqAk3duzxLgYII+CECfhhlf9OrLpmw2r9EewPtPOPN6nB7w2OsAIKgQ3Qn3qKoPRJcRT2PdnYpZQ2sKLX3wKj/qv8+DHqMYAGhy/np9Zg0aCh+3LEFQNsbKDZncK8kAMDJwgIUV5RrM1t9GQsIROSxwqHHTAQhA2YkwoDe9q8I6JvsGC0QlNkLCadgcZrmuCn9AI5mn8So3n0wsV8qTFBggg5b9+3Fh7+uxKheffDAwksQ0swnHUdyTqLoyCHcOHoKesfGOr359oeCD1Z8j09W/YRzxk3CHRcsBmDrG3CsohRPf/8Z8ouK4F9nxSMLL8WwxKQWcxtD4vDlwSPYkpWHP0+e26mpda6m7lne0haOrVH3KM+wXyBbrFbsPmYrIIxycQGBvN/0oSPx8jefYdexIygsL2ty9w8id1Cg4HyENXu/2rg3PjxS221HFWXfhaHKXIPKmppGBYCMPFuBtW+DLRxVydGxiAoJRbXZjIsmTe9wBldSd33QOdxC9UzQIQY6xPDtl9tNHTJcKyC0tYFic0ICApEUHYPM/FM4kJXZqEeCL+JvMBF5tDNa2B6rIcXeDyAUejTc8O27XzfiSMZhXH7JlZiMIO32UxY9yk5ko0Tv32zxoLC8DEUV5VAUBRPD4+APY6NjTkvuj0/kJ2xJPwARgaIoMFqB1z58H4fTDyAxMgr/uPYW9IqKbjXHyD4p8DcYUVxRjhMFp5Ac0/QFpDsUlpcBACJDOv4mrp+9gHCqpBhlVZXIKSpEeXU1Ak0mrWkekSouPAKDeyVjf9ZxrE3bjYWnTXH3kIjaRO29E99gC0cACDT5I8BoRJXZjMKyUgSanGd1HbMvYehrn7HVkJ9ej//ccjcsViuiQpsvYhBRY6elDobRz4BaS51Ldrwa3LsPMvNPYd+JYz2igOA5H2sREXWh7Ca2cATqmygWV5Q3+9jDOScBAL2jouFvbFw8AIBR/frDoNcjt7gIJwpOAQA+WPcrtqQfgMlgwJNX/a5NxQPAdmHY275EIDP/VJse013UAkJEJz4FDvL315rhZeTmYOdR2+yD4cn9nBpcEqlmDBsJAFiTtsvNIyFqu6a2DnYUaZ+FkF/mvJtNncWC46dsBYSWPh2NCQtvsjhBRC0LNPnj6WtuwqOXXYdYFzTnVZcx9JQ+CCwgEJHPq7NYcKqkGACQ0OBiKyzQNhuhuKKi4cM0R+wFhJQWqtQBRhOG97Ft37Ml/QD2nTiO13/8GgBwxzkXtnuNndpjQC1GeApXLGEA6vsgZORmawWE0f0GdG5w5LPUAsLWwwdRVtVyt3ciT5FdZNsjobk3+eoyhoZ9EE4W5rd7ezkiap+xKanauaWzhvS2NVLcd+I4RDq2Tag3YQGBiHxebnERrCIw+hm0T3xU6gyEsqpK1Fma3t8h3b4Hff+4lqe5jR8wEACweu8uPPbBu7BYrZg5fBQWjG9/d+ykqFgAwAkPm4FQVG6bqdHZdej97I3BjuRmaw0U2f+AmpMUHYt+cQmwWK1Yv3+vu4dD1CY5xeoMhKYLCNEhTTdSVBsodnZ7OSLqHgMSekGv06G4ohy5xUXuHk6X46sSEfk89VP8xMioRo2sQgODtNtKKpuehaDOQGhtndyEAYMBANuOHEJWYT7iwiPwf+df2uhntoW2hMHTZiCUqzMQOldAUGdzrEnbhZLKCpgMBgzq1XJzSerZZgy1fVK0eu9ON4+EqG2yC+ubKDaluRkI6haOnd1ejoi6h8lgwIB4Ww+nfU0sY/C1WQksIBCRzzucY5tBoHb/d6TX6RAaEAig6T4IdRYLjtrXorZWQEhN6KUtidApCh665CqE2J+7vbQlDPnN7RbtHkVaE8XOLmGwXRirF87DkvrC4Me+vtS8mcNHAQB+O3QAlTU1LR7bUz4FIs9VU2vWCq4JkS33QGhYQKjfgYEFBCJvMai32gfhmNPteSXFuO7lZ7A2bbfPFBJYQCAin5eebZ9BkNB0ASAsyPamv6SJAsLx/DzUWSwINJlaXYuq0+kwbcgIAMA1s8/CyL4pHR5z7yhbAeFUaUmrb5a6i9VqdUkTRQBIjomDzmFmBpcvUGtS4hLQKzIa5rpabDq4r9njLFYr7nj9JVzz4pON3pgRdZccewEr0GTSitQNaTMQSp2bKB7NtS1h6Oz2ckTUfRz7IDj613efIyM3G++v+dkdw+oSLCAQkc9Td1FQp5c1pO3E0MQSBvWxKXGJbVqLeseCC/Dq7/+Ia2ad1dHhArAtrVBnM2R5yDKG0qpKWKxWAECE/f9ZR5kMBq1IAth2sSBqiaIoWsOr1WnNL2PYdvggjp/KQ5XZjL3Hj3bT6IicZRfaGyiGRza7jC06tHEPhDqLBZn2mWecgUDkPYb0TgYAHDyZqV0rbUk/gF9274BOUXDXuRd1aEmrJ2IBgYh8Wk1trXYx1twSBLWA0NQMhPodGJrei7uhAKMJQ5L6uOQkkRRta6ToKX0Q1OULoQGBLllu0M/+/9RPr8fQpD6dfj7yfWoBYcP+NNTU1jZ5zA/bN2t/VhugEnW3+gaKTS9fAJrugcAdGIi8U3JMHAKMJlSZzTh2Khfmujq88NXHAIALJk1HamJvN4/QdVhAICKfdjQvBxarFWGBQdqnPQ2FB9pnIDRRQDjcxgaKXaG31gfBMwoIhS7qf6BKsW/lOKR3MkwGo0uek3zb4F7JiAkLR5W5Buv27W50f0V1NVan7dK+P5R9ojuHR6TJLrI3UGxmBwagvoBQXl2FmlozAIcdGGK5AwORN9HrdFoz6H2Zx/Dhul+QmX8KkcGhuH7OfDePzrX4ykREPk3bgjE+sdlZAdoShorGSxiOtLL8oSupjRQzPaSRolZA6GT/A9XZ4yZiXP+BnV7uQT2HTqfDOeMmAgCWrloJq32aqOrXPTtQU1sLo58BAGcgkPvkFLW8hSMABPsHwGifzVVYZnt9zbD3P+DyBSLvM9i+jGHV3p1495cfAQC3zl+IYP8Adw7L5VhAICKfps0gaKaBIlDfRLHhDISSygqcsje36tfEDg5dLSnKtoThhIcsYSi0T7PtbANFVWx4BJ67/lZMSB3skuejnuHiKTMRaDLhcM5JrNu/x+k+dfnCJVNmALB1v25ue1airpRdZO+B0EIBQVEUbUZXfpntXKPOQGABgcj7qH0QNh3ch5raWozu1x9zRo1z86hcjwUEIvJp6haOLc0gqJ+B4FxAUGcfJEREIcjfv4tG2Dx1CcPxU3kesfVP/RIG1xQQiDoiJCAQF06yFQje/eVH7d9GdmEBdh49DEVRcP6k6Ui0b53HWQjkDvUzEJrvgQAA0SHOjRTVAgJ3YCDyPupODIBtScNd517sM40THbGAQEQ+S0Tqt3BsoYdBc00U6/sfdP/sAwDoHRUNwLY+1hM+RS3SljC4pgcCUUddMnUmAoxGHDx5AhsPpAGon30wNiUVsWHhSE2wNaw6dJJ9EKh7VdZUa6/ZLc1AAJwbKTrtwBDHAgKRt4kNC9eWeV4yZaZbZq92BxYQiMhn5ZUUo7y6CnqdDn1a+DSn+RkI2QCAFDc0UAQAk0MXbk9opKguYXBVDwSijgoPCsZ5E6cBAN755QdYrVb8sMNWQJg39jQAwIAE26wjzkCg7qY2UAwJCGx17XOkQwEhy3EHhjDuwEDkbRRFwR3nXICFE6bgmtnz3D2cLsMCAhH5LPWNQ5+YOK1RVVPCAm09EEqrKp2asrlzBwZV7yh7I8UC9zdSLOISBvIgl06bBZPBgH0njuOtn77HycICBBhNmD50BAAg1V5AOMQCAnUzdflCfHjLsw8A5xkIx7gDA5HXmz1yLO45fxECTSZ3D6XL8NWJiHxWWwsAYfYZCBarFWXVVQBse3Gnt6F/QldLirY1Usz0hBkI9gJCRBALCOR+kcEhWDhhCgDg3V9t3a5nDh+FAKPtok2dgXD8VK62RR5Rd1AbKCZEtqOAUFqi7cDA/gdE5MlYQCAin6UWAPontFwAMPr5Ichka5KoLmP49/dfos5iwbj+A9HL3ovAHdStHN29hMFitWr/b9Qpt0Tutnj6bKfZRfPGTND+HB0ahvCgYFhFtOVIRN0hp7htDRQBIDq0fgbCUW0GAgsIROS5WEAgIp912N5AcUAbliA49kHYfuQQVu/dBZ2i4Lazz3drB11tCUO+e5cwlFRWwCoCnaJo/6+I3C06NAznjJsEAIgPj8Covv21+xRF0WYhcBkDdafswvYsYajfhSGDOzAQkRdoflEwEZEXqzLXIKswH0DrMxAAICwoCFmF+SgqL8N7v9imQ587YYpb+x8A9UsYThTkw2q1um1drNpAMSwwCHquzSUPcu0Z81BprsEZI8c2+veRmtALW9IP4FA2d2Kg7pOjLmFoZQcGoH4JQ0llBSpqqgFwBwYi8mwsIBCRT8rIzYaIIDI4pE27Bqifqi9f8zPSc04i2D8A18+Z39XDbFVceAT89HqY62pxqrRE25Whu9U3UOTyBfIs4UHB+NPFVzR5H3diIHdQlzC0toUjAIQGBEKv08FitaLOYkGAkTswEJFn48dIROST0rPbt4OCWkDYd+I4AOC6M+Z5xFR9P70eiZG2dbQdWcZQXl2FOoul0+MoKLfNQIjgFo7kRVITewOwbclqcdhhhairlFVVorzaNpOgLQUEnU7nVJhNjuEODETk2fgKRUQ+SduBoQ3LFwA4FQuSY2Jxvn2PeU+QFNWxnRgO55zExU8/gsc/eq/TYygss89AYAGBvEjvqBj4G4yorjXjRIH7dzIh35dt38IxPChY2xGkNdEOBQT2PyAiT8cCAhH5pMPaFoztm4EAALfNPx9+en2XjKsjtJ0YCto3A2HZ6p9QZTZj9d5dqKyp6dQYuISBvJFep0NKfAIALmOg7tGe/geqKIfX1b5xCS4fExGRK7GAQEQ+x2q1tnsGgrpWetqQ4Zg0aGiXja0jeke3fwZCXnERftm9HYBtC8adGemdGkNhOWcgkHfSdmI4yUaK1PXUGQhtWb6gcizM9o2Jc/mYiIhciU0Uicjn5BQXorKmBga9Hsn2N9+tGZuSirfvvF/b9cCTaDMQ2lFA+GTjGqc131sOH8DkwcM6PIYiFhDIS6Um2PogcAYCdYdjebkAgMSIqDY/xnkGApcwEJFn4wwEu759+0JRlEZft912GwBARLBkyRIkJiYiICAAp59+Ovbu3ev0HDU1NbjjjjsQHR2NoKAgLFy4ECdO8BMPou6mNlDsG5vQ5qUIiqKgX1zbj+9OSVG2AkJ2UQFq6+paPb6yphpfb14PAJg3ZgIAYEv6wU6NQd3GkU0UydukqjMQsrMgIm4eDfkyi9WKDQds14ZjUlLb/LjokDAA4A4MROQVWECw27x5M7Kzs7WvFStWAAAuueQSAMAzzzyD5557Dq+88go2b96M+Ph4zJ07F2X2xmIAcNddd+Gzzz7D8uXLsXbtWpSXl2PBggWwuKADOhG1ndr/oH9C2/ofeLrIkFAEGE2wiuCkfX1tS77dugnl1dVIjo7FLfPPg6IoOJqXg1MlxR0eQyF7IJCXSolPgE5RUFxRjgJ7IYyoK6RlHkVheRmC/f0xut+ANj+ut32W2cDEJO7AQEQej69SdjExMYiPj9e+vv76a/Tv3x8zZ86EiOCFF17An//8Z1x44YUYPnw43nnnHVRWVmLZsmUAgJKSErzxxht49tlnMWfOHIwZMwZLly7F7t27sXLlSjenI/IMeSXFqDJ3rplfa347tA8frvsVADAoMalLf1Z3URSlzcsYLFYrPlq/CgBwydSZCA8KxkD7VnZbj3RsFkKdxYKSygoAXMJA3sdkMCLZvq6cfRCoK61J2w0AmDxoGAx+bV8lPKpvfzyy+Bo8cNFlXTU0IiKXYQGhCWazGUuXLsX1118PRVGQkZGBnJwcnHnmmdoxJpMJM2fOxPr1tmnCW7duRW1trdMxiYmJGD58uHZMU2pqalBaWur0ReSLcouLcPmzj+G2/7wIcxum4XfE15s34IF3X0dlTQ1G9xuA+eNO65Kf4w7qJ1THTuW2eNyatF3IKSpEWGAQzhxtW74wfsAgAB1fxqD2P9DrdAgNCOzQcxC5k+MyBqKuICJYk7YLADB96Mh2PVZRFMweMQaJkdFdMTQiIpdiAaEJn3/+OYqLi3HttdcCAHJycgAAcXHOnXHj4uK0+3JycmA0GhEREdHsMU158sknERYWpn0lJfnGJ6ZEDR3IykStxYLDOSexbFXbZ+UUlJZgX+Yx1LWwFMhqteL1H7/B3z//ABarFXNHj8ffr/19m/fg9gbqbIoft2+G1aE5YkPq7IvzJk6Fv9EIoL6AsDX9YIfWgKvLFyKCQji9lryS2pjuREHbG5EStceR3GycLCyA0c+A0wYOdvdwiIi6DHdhaMIbb7yB+fPnIzHRef20oihO34tIo9saau2YBx98EHfffbf2fWlpKYsI5JNyiwu1Py9dtQKnjxiNvrEtd5uurKnGTf96DvllJQgwmjCqb3+M7Z+KEX36oaK6GtlFBcguKsS+E8ex/cghAMA1s87CdWfMa/Xfprc5Z/wkvPfrj8jIy8GatN2YOXxUo2P2HM/A3uNHYdDrcf7Eadrtw5P7wWQwoLC8FEdys9E/vn29IdQZCGygSN4qJjQcAJBfWuLegZDPWrPXNvtgwoBBPlW8JiJqiAWEBo4dO4aVK1fi008/1W6Lj7e9ycnJyUFCQoJ2e15enjYrIT4+HmazGUVFRU6zEPLy8jBlypRmf57JZILJxBMN+b7c4iIAtkJcrcWCZ7/4EC/ecHuLn2i/v+Zn5JfZLvirzDXYeDANGw+mNXmsXqfD/11wKeaPnej6wXuAkIBAXDR5Jt755Qe888sPmD50hNP/O6vVijdXfgcAmDt6vNO2YEY/P4zq2x+/HdqPLekH2l1AUBvPRYawgEDeKSbU1uX+VGmxewdCPktbvjBshJtHQkTUtTgXtYG33noLsbGxOOecc7Tb+vXrh/j4eG1nBsDWJ2HVqlVacWDcuHEwGAxOx2RnZ2PPnj0tFhC81cPvv4XrX34G2YWtd4QnAoAcewHh0mmzEGA0YtfRI/h266Zmj88vLcGHa38FADx62XV44/b/w63zz8PEgUMQHhSMvrHxmDxoKC6YNB23zj8Pr992r88WD1SXTJ2JQJMJh3NOYu2+PU73fbpxDbYePgiTwYArZsxp9FhtGcPh9vdBKKqw78DAGQjkpaLtBQTOQKCukF1YgPSck9DrdJgyeLi7h0NE1KU4A8GB1WrFW2+9hWuuuQZ+Dt1zFUXBXXfdhSeeeAKpqalITU3FE088gcDAQFx++eUAgLCwMNxwww245557EBUVhcjISNx7770YMWIE5sxpfDHv7Q5nn8SJglPILSlCQmSUu4dDXkBdwjCyTwqiQkLxz28/x7+//xKTBw9z+rRc9ebK71Bda8aIPv0wY9hIKIqCAQm9cOm0Wd09dI9hm4UwA+/9ukKbhaAoCjJys/GfH74CANwy7zyt4aIjtYCwM+MwzHV1MLajQ/jxU3kA6t+EEXmbaPsShsqaGlTWVCPQ5O/eAZFPWW2ffTCyb3+EBQa5eTRERF2LMxAcrFy5EsePH8f111/f6L777rsPd911F2699VaMHz8eWVlZ+PHHHxHiMKX3+eefx/nnn49FixZh6tSpCAwMxFdffQW9Xt+dMbpFtDYdlJ/mUNvkFNkKCPERkbhw0nQMSkxCeXUVXvnms0bHHsnNxnfbbLMTfj9voc/1M+iMS6aejgCjCenZWVi/fy9q6+rw+EdLYa6rw8SBQ3D+xKlNPi4lLgGRwSGorjVj7/GMNv+82ro6rLPPdlCLEETeJtBkQpC9aMDzFrmaun3j9KFcvkBEvo8FBAdnnnkmRAQDBw5sdJ+iKFiyZAmys7NRXV2NVatWYfhw52lq/v7+ePnll1FQUIDKykp89dVXPtsQMYbTQakdKmtqUFpVCQCIC4+An16Pe89fBJ2i4Ofd2/H0p++jvLpKO/7V77+EVQQzh43C8OR+7hq2RwoLDMKFk6cDAN7++Xu8sfJbpGdnISwwCPdfeFmzxRZFUTCuv+21rT3bOW49fBDl1VWIDA7BiD4pnQ9A5CZcxkBdobC8DHvsRdnpQ1hAICLfxwICdUj9hVixewdCXkFdvhDsH4Bg/wAAwMBeSbjprHOhKAq+3boJ1730NLakH8DWwwex6eA+6HU63HTmAncO22Mtmno6AoxGHDx5Au+v+RkA8H8XXNrkUhBH6gyCLekH2vyzft2zAwAwY9go6LmFI3mxaDZSpC6wbt8eiAgG90pGbHhE6w8gIvJyvBqkDokJCwfAqaDUNuoODPENLq4umz4bL954O3pFRiOvpBj3vPVv/HX5OwCA8yZObXItPwHhQcFO2zSePW4ipg8d2erj1BkIB05mIruo9QaodRaL1qzx9Ca2jSTyJpw5R12Buy8QUU/DAgJ1iLYlVkmxewdCXiHHPgMhLjyy0X2j+vbHG3f8Hy6YZJuWX1JZgSCTP66ZdVa3jtHbLJ4+G5HBoegXG487zrmgTY+JCQvHwMTeEBHc+Mrf8e3WTRCRZo/fevggyqoqERkcgpF9+7tq6ERuoTZSzC9hAYFco7auDtvsO9tM4/IFIuohuAsDdQjXklJ7qDMQ4iKant4ZYDThrnMvwoxhI/H+6p+wYPxkhAcFd+cQvU54UDCW3/sQFEXXrh0VHll8Df720VKkZR7D05++j1V7duLe8xdps4ocqcsXpg8dyeUL5PW4hIFcLbuoALUWCwKMRvSJiXP3cIiIugWvCKlD1E9yCspKYbVa3TsY8njaDgxNzEBwNDYlFX+/9veYyenybWIyGNtVPACA3lExePl3d+Lms86FQa/HxoNpuPalp7DxQJrTcXUWi9ZZ/PQRo101ZCK3ieHuQeRimfmnAAC9o2K5WxAR9RgsIFCHRAaHQKcosFitKKood/dwyMOpSxhaKyBQ9/DT63H5jDPw39v/D4N7JaO8uhpLlr+NwzkntWPU5QsRQcEYxeUL5APUWTacOUeucqLAVkBIYr8eIupBWECgDvHT6xERHAKAF2PUOm0JAztUe5S+sfH4581/wLj+A1FlNuOh/72B0soKANx9gXyPuoShqLwMdRaLm0dDvuD4qTwAYMNfIupReFVIHcY+CNQW5ro6FJSVAgDiIzgDwdP46fV4ZPE1iI+IxMnCAvz1g3dRU1uLtVy+QD4mIigYep0OVhEUlpe5ezjkA04U2AoIydGxbh4JEVH3YQGBOiyGDamoDfJKbLMPTAYDwgKD3DwaakpYYBD+dsUN8DcYsSX9AO5751WUcvkC+RidToeokFAAQD7PW+QCWg8EFhCIqAdhAYE6TNsSizMQqAWOyxfYZMpzDUjohfsvugwAsCPjMABg+jDuvkC+hTPnyFUqa6q12XW9o6LdPBoiou7DK0PqsGh2tKY2aOsODOR+s0eMwRUzztC+nzV8tPsGQ9QFYuyFb563qLNO2GcfRAQFIyQg0M2jISLqPu3b/4vIQQw/yaE2UHdgYANF73DD3HNQXl2NKnMNRvUb4O7hELkUZyCQqxzPt/U/SIrh8gUi6llYQKAO64oLsVMlxdh34jimDx3B6e4+Ql3CwAaK3kGv0+Hu8y5x9zCIugRnzpGrqDMQkqJYQCCinoVLGKjD6gsIxS57zhe//hR/WfYmft2z02XPSe6Vq81AYAGBiNyLM+fIVTIL1AaK3MKRiHoWFhCow9S1pOp0Z1dIz84CAGw6mOaS5yP3y1FnIHAJAxG5WVcUvqlnylSXMLCAQEQ9DAsI1GFB/v4IMJoAuObTnDqLRdvyb/uRQ51+PnK/OosFp0qKAXAGAhG5X4zD7kEi4t7BkNcSEYcCApcwEFHPwgICdUqMC9eTniothsVqBWD71Dq7sKDTz0nuVVBWCovVCr3D/utERO6izkCoMptRUVPt5tGQtyosL0NlTQ10ioLESG7hSEQ9CwsI1ClaQyr7p8ydkW3f7k+1jbMQvJ66A0NsWAT0Or7cEJF7+RuNCPYPAMA+CNRxagPF+IhIGP3Yj5yIehZe0VOnxISFA3DNhVjDGQdcxuD91B0YuIUjEXkKV86co55JXb7QO4r9D4io52EBgTrFlVti5dhnICTb1xNuO3KIa1S9XK7975RbOBKRp3DlzDnqmdQdGNj/gIh6IhYQqFNcuSVWdpFtBsIZI8fC6OeHgrJSHLdX+ck7cQcGIvI07Zk5V2exwGrvzUOkyjzFBopE1HOxgECd4sotsdQeCMmxcRiW3A8AlzF4u1x7DwTuwEBEnqJ+5lxxi8cVlJbggif/gkc/fLcbRkXeJLOAWzgSUc/FAgJ1SrTDllidpc5ASIiIwtiUVABspOjt1CaKnIFARJ6irTPnthw+iNKqSqzbtwd1Fkt3DI28QJ3FgpP2nk2cgUBEPRELCNQp6oVYYXmZtgVjR9TUmlFQVgoASIiI1AoIO46kc/qolxIR5BYXA+AMBCLyHG0tfB/IygQAmOvqcLIwv6uHRW52Iv8UFjz+Jzz7+YctHpdbXIQ6iwUmg0G7BiIi6klYQKBOiQgOgV6ng8VqRVF5WYefR10rH2gyISwwCIN7JyPAaERJZQUy8nJcNVzqRkUV5TDX1UJRFMTa1xwTEblbdBtnIKgFBADIyOV5yNd9tmkNyqoq8c3WjSho4XfDcQcGHbcnJqIeiK981Cl6nQ6RwSEAOrcTg7qFY0JEFBRFgZ9ejxF9UgAA2w4f7PxAqdupOzBEh4TCwH2yichDqJ8aF1WUN7s0oc5iwaHsE9r3GbnZ3TI2cg9zXR1+3L4FAGCxWvHDji3NHqsVENj/gIh6KBYQqNNc0UhRbaCY4LDd39j+AwGwD4K3UmeVcPkCEXmSsMAg+On1EBFt6VxDx07loqa2Vvv+CAsIPm3tvt0orarUvv9u26Zmt5HOzLdv4RjF/gdE1DOxgECd5opGijkODRRVY/oNAADszDjMBlZeqH4HBjZQJCLPodPpEB0SCqD5nRjU5QtGPwMAzkDwdd9t3QQAuHDydPgbjDh+Kg97M482eeyJAnsBgTMQiKiHYgGBOq1+S6xOLGGwz0CId5iBkJrYG8H+/qioqcah7KzODZK6XU4Rd2AgIs/UWuFbLSDMGDYSgO1No+OMBPIducVF2Jx+AABw8eSZOH34KADAt/aiQkPH89UtHDkDgYh6JhYQqNPauiVWS7KbmIGg1+kw2j4LYfsR9kHwNiftf6fxDn+nRESeoLVGigeyjgMApgwehtCAQFhFcPxUbreNj7qPulxhdL8B6BUVjfnjJgIAftm9HVXmGqdjq8w1OFVSDIAzEIio52IBgTqtrR2tW6L1QIh0frM5xr6d4/Yj6R1+bnKPE/mc5klEnimmhZlztXV1OJxzEgAwuFcy+sUlAGAfBF9ktVrx3bbfAADnjJ8EABjVtz96RUajsqYGq/budDo+q8C2nWdYYBBCA4O6d7BERB6CBQTqtPoLseIOPb68ugpl9uZF8Q0a7g1N6gMA2sUceYfaujptVgmneRKRp2mp8J2RlwNzXR2C/QOQGBmlFRDYB8H3bM9IR05RIYJM/pgx1LZcRVEUzBt7GoD63giqPcczAHAHBiLq2VhAoE7TeiCUdGwGgrqFY3hQMAJNJqf7+sbGAwAKykq1IgN5vpNFBbCKIMBoQpS9WRkRkadoafcgtf/BoF5JUBQF/eJs56GM3JxuGx91j2+2bAQAnDFqLPyNRu32eWMmQFEU7Mg4jKyCfFisVrz98/d44atPAEDbZpqIqCfi5uzUaWozqipzDSqqqxHk79+uxze1haMq0OSPuPAI5BYXISM3ByP78qTtDTJPqU2mYqAoiptHQ0TkLMZ+3mpqCYPa/2BQryQAQEpcIgAgI48zEHxJWVUl1qTtAgCcM26S032x4RGYMGAQfju0Hx+s/QUnC/O1RovnjJ+E68+Y1+3jJSLyFJyBQJ0WaDIhyGQrGnRkGUNTDRQdqbMQjvLizWtk2re54jRPIvJEjjPnGm4T7DgDAYA2AyG3uAjl1VXdOErqSit2bIW5rg794xO1v2tH8+3LGL74bR02px+Av8GIBy++HPddsBgmg7HR8UREPQULCOQSMWHhADrWSLGlGQgA0M9eQMjI4/RRb5GpbnMVxf4HROR54sIjEBEUDHNdLX7Yvlm73VxXpzVLVN9UhgQEar1+jnIZg89Yu283AGDe2NOanCk3dcgIhAQEAgCSY2Lx6i1/xLwxp3XrGImIPBELCOQSndmJIaeV7f76cv2p1+EODETkyfz0elw+cw4A4N1ffkBtXR0A4EjOSdRZLAgLDHJq6sudGHyLiCA9OwuAbdeFppgMBvztyhtwy7yF+M8t92i/A0REPR0LCOQS0S1sidWa5rZwVPWNtZ20j/LCzWtkagUEzkAgIs903mlTEBkcipziIny3zdZtv2EDRVWKuhMDl9L5hPzSEpRUVkCv02nLJJsyqm9/LJ4+u1GDZyKinowFBHIJdXpnXnFRux4nIg49EJpewtAnJg4AUFRRjuKK8k6MkrpDRXU1CstLAbAHAhF5LpPBiCtPt89C+HUFzHV1jfofqOq3cuRMOF+gzj5Ijo6FyWBw82iIiLwLCwjkEv3jewEAVu7a2q5lDIXlZaiprYWiKIgLi2jymECTCfH24sJR9kHweGr/g8jgEAT7B7h5NEREzVswfjJiQsNwqqQY32zZ0GgHBpW2hCHnJESk28dJrpWecxIA0D+hl5tHQkTkfVhAIJeYOWwkhib1QWVNDV759rM2P06dfRATGgaDX/O7imqNFPnpj1vU1Naipra2TcdyBwYi8hYmgwFXnj4XAPDeryu0Zr2DeiU7Hdc3Ng6KoqCksgJFnAnn9dQZCANYQCAiajcWEMgldDod7jlvEfQ6HX7ZvQObDu5r0+Pqd2Bouv+Bqn4rRxYQusOJglP4fttveP7Lj3HTP5/F/EfvxyXPLGnTEpUT6g4M7H9ARF7g7HGTEBcegYKyUlisVkQGh2jL8lQmgxG9IqMBABnsx+P1DufYCwjxiW4eCRGR92EBwUFWVhauvPJKREVFITAwEKNHj8bWrVu1+0UES5YsQWJiIgICAnD66adj7969Ts9RU1ODO+64A9HR0QgKCsLChQtx4sSJ7o7iFgMSeuGiyTMAAC989TFqas2tPiansOX+Byp1J4ajbGDVpQpKS/D4h+/hiuf+hic/WYbPN63FgZOZsFitKKmswGs/ft3qc7CBIhF5E6OfH646/Uzt+4GJSU1u61ffB4HnIW9WZa7BiYJ8AFzCQETUESwg2BUVFWHq1KkwGAz47rvvkJaWhmeffRbh4eHaMc888wyee+45vPLKK9i8eTPi4+Mxd+5clJWVacfcdddd+Oyzz7B8+XKsXbsW5eXlWLBgASwWixtSdb/rzpiHmLBwnCwswNJfV7Z6fFtnIPSLZQOrrlRnseCDtb/gyheewIqdW6EoCkb0ScGl02bhkcXX4KmrfgdFUbBi51akZR5t8bnUHghJUVzCQETeYf7Y07TzUMP+B6p+9kL2kRwWELzZkZxsiAgig0MRGRzi7uEQEXmd5hed9zBPP/00kpKS8NZbb2m39e3bV/uziOCFF17An//8Z1x44YUAgHfeeQdxcXFYtmwZbr75ZpSUlOCNN97Ae++9hzlzbJ2dly5diqSkJKxcuRJnnXVWt2Zyh0CTP+4850L8ZdmbWLbmJ8wZPU7bRaEpag+E+MiWZyD0iXFYf1pehgie9F3m0MkTePyjpdrykCG9k3HXuRdjcG/nNcBnjZmA77f9hpe/+Qz/uvmuJj+hExFtBgJ7IBCRt/DT6/HnS67Ax+tX47zTpjR5TEqcbbo7t3L0bvX9D7h8gYioIzgDwe7LL7/E+PHjcckllyA2NhZjxozB66+/rt2fkZGBnJwcnHlm/TRHk8mEmTNnYv369QCArVu3ora21umYxMREDB8+XDumoZqaGpSWljp9ebvpQ0dg8qBhqLNY8PyXH7fYsbqtMxD8jUZtmUMG+yC41FOfLMPRvByEBQbhvgsW418339WoeAAAv5t7DgKMRqRlHsNPu7Y1+VyFZaWoMtdApyhItK8XJiLyBiP6pOCvl12LqAb9D1TqDISM3BxYrdbuHBp1QGF5WZPXH+k5bKBIRNQZLCDYHTlyBP/+97+RmpqKH374Ab///e9x55134t133wUA5OTY3rTGxTl/mh4XF6fdl5OTA6PRiIiIiGaPaejJJ59EWFiY9pWU1PTUSW+iKAr+cO6F8NPrsf3IIeTYiwQN1VksyCuxNeVrrYAAODRS5DIGl8ktLkJ6zknoFAVv3nEfzhk/CTpd0y8L0aFhuGKGbWbNf374CtXmxj0u1B0YEiKiYGxhVw0iIm/TOyoGBr0eVeYa5Ja03lCW3KPOYsFTnyzDBU/+BV9v2djofu7AQETUOSwg2FmtVowdOxZPPPEExowZg5tvvhm/+93v8O9//9vpuIbTtkWkyancbT3mwQcfRElJifaVmZnZuSAeIiEiCv3t3Y332ffVbuhUSTEsVisMej2iQ0JbfU5tK0dOH3WZDQdsTUCHJfdFdDOfujlaNO10xIVHIK+kGB+u+7XR/Vy+QES+yk+vRx/7eWj13l1uHg01pc5iweMfvYfvtv0GAPh84xqn+y1Wq9YEsz93YCAi6hAWEOwSEhIwdOhQp9uGDBmC48dtb37j420XDQ1nEuTl5WmzEuLj42E2m1FUVNTsMQ2ZTCaEhoY6ffmKwfZ9tA+caLqAcOCkrVjSJza+2U+9HfW1d8DmVo6us/FAGgBg0qChrRxpYzIYcfNZ5wIA/rdqJfJLS5zu1xoosoBARD7owknTAQBv//w9Csq8f8mhL6mprcVflr2JX3bvgJ9eD71Oh/Sck067ZpwszEeV2QyTwcCdgoiIOogFBLupU6fiwIEDTrcdPHgQffr0AQD069cP8fHxWLFihXa/2WzGqlWrMGWKreHSuHHjYDAYnI7Jzs7Gnj17tGN6EnUd/f5mZiDsPX4UADAsqW+bns9xCUNLfRWobWpqzdh25BAAYPKgYW1+3OwRYzAsuS+qa81466fvne5TCwi9o3hhRkS+Z/7Y0zC4VzIqa2rwnx++cvdwyK7abMaflv4X6/fvhdHPgL9dcQMm2wvjK3bWb8ednn0SgG1nJ30bPrggIqLG+Opp98c//hEbN27EE088gfT0dCxbtgyvvfYabrvtNgC2pQt33XUXnnjiCXz22WfYs2cPrr32WgQGBuLyyy8HAISFheGGG27APffcg59++gnbt2/HlVdeiREjRmi7MvQkagHhQNaJJhtO7bVvBzgsuW+bnq9PTCx0ioLSqkoUlpe1/gBq0fYj6aiprUVsWDhS7LM72kJRFNwybyEA4PvtvyGvuH7GzQn7EobkGBYQiMj36HQ63HXuRQCAH7Zvxu5jR9w8IgKAR95/G1vSDyDAaMQz19yESYOGYs6o8QCAlTu3atcg7H9ARNR5LCDYTZgwAZ999hnef/99DB8+HI899hheeOEFXHHFFdox9913H+666y7ceuutGD9+PLKysvDjjz8iJKR+S8Hnn38e559/PhYtWoSpU6ciMDAQX331FfR6vTtiuVVydCz8DUZUmWtw3P7JtMpcV4eDWbYlDG0tIJgMRiRE2potchlD563fb+t/MGnQ0Fb7eDQ0ok8KRvcbgDqLBe+v/RmAbe1pVmE+ACApiksYiMg3DUnqg3PGTQIAvPDVJ7BwRwa3Kiovw8aDaVAUBf+47haMSUkFAEwZPBSBJhNyi4uw+3gGAOAwd2AgIuo0FhAcLFiwALt370Z1dTX27duH3/3ud073K4qCJUuWIDs7G9XV1Vi1ahWGDx/udIy/vz9efvllFBQUoLKyEl999ZVP7KzQEX56PVITewNovIzh4MlM1FosCAsMQq92bPenNVLMZSPFzhARbDxo63/QnuULjq6ZZduu9OvNG1FQVoqc4kJYrFaYDIY2NWQkIvJWN521AMH+AUjPzsJXm5veppm6x6HsEwBshevhyf20200GI2YMGwUAWLnDtoyhfgYCGygSEXUUCwjUpQb3thVP9p9w3l1C63+Q3Lddn373jWUjRVfIyMtBbnERjH4GjLV/WtNeY1JSMSy5L8x1tfhw7S/a8oXeUTFtaopJROStwoOCccOcswEA/13xLYoryt08op7r4ElbAUH9wMLR3FHjAAC/7tmB/NISnLI3/uUODEREHcerfOpS2k4MDWYgtLf/gapvnL2RIgsIOJqXg9tfewk7Mw63+7Eb7ds3jkkZAH+jsUM/X1EUXH26bRbCF7+tw+5jtimi3MKRiHqChadNQf/4RJRVVeKvy9/hrgxucjDLVkAY2EQBYUxKKqJCQlFaVYllq38CAPSKjEagyb9bx0hE5EtYQKAupTZSTM/OQm1dnXZ7Wjt3YFDVL2HgTgwfrVuF3ceO4L1ff2z3Yzcc6NzyBdXEgUMwMLE3qsxmfLjuVwC23hdERL7OT6/H3eddAqOfH7YdOYTrXnoaq/fucvewehx1BkJTBQS9ToczRo4FYCt0A+x/QETUWSwgUJfqFRmNkIBAmOvqtL4FecVFOFVaAr1OpxUY2iop2rYTQ3l1VY//tGfbkYMAgJ1Hj6CmtrbNjyutrMAe+2wBdZurjlIUBVfZZyGY62xj4AwEIuophif3w39uvQcD4hNRUlmBvyx7E099sgyVNdUtPu7Nld/hI3vRlTqurKoS2UUFAJpewgDUL2Oos1gAcPkCEVFnsYBAXUpRFAzqZe+DYF/GsMe+fCElLhEBRlO7ns9kMKCPfRbC9iOHXDdQL5NdVICThbaLJnNdbbu2Evvt0H5YRdAvNh7xEZGdHsu0IcO1mSEAkBTFGQhE1HOkxCXg37fcjStmnAFFUfDdtt9w639ehNlh1p2j3OIivPPLD/jXd1+gptbczaP1LYfssw8SI6MQEhDY5DGpib2dthbmDAQios5hAYG6nFZAsDdSTHNooNgR04eMAACs6sFTRbcfSXf6fkv6gTY/dqN9+cKkTs4+UOl0Olx5+lzt+yTOQCCiHsbo54ebzjoXL954OwJNJmTkZuNwzskmj1W3u7WKILuosDuH6XNaaqCoUhQFc0eN175nAYGIqHNYQKAupzZSVGcgdLSBomrGsJEAgN8O7UOVuabT4/NG2+yzL3pF2bbA3JJ+sE2Ps1it+O3QfgCd73/gaNaIMZg/9jRcOm0WQgODXPa8RETeZFTf/ugfb3uDmm0vFDSUbZ89BgBZBU0fQ21z4KTtg4mm+h84mjt6HIx+BiRGRiE2LLwbRkZE5LtYQKAup/Y5OJqXg7KqSu0Tg/Y2UFQNSOiFxMgo1NTWYtPBfa4aptcQEWw/bCsgXH/GfAC2fbCLystafWxa5lGUVFYg2D+gwwWcpuh1Ojxw0eW4df55LntOIiJvlBgZBQA4WVTQ5P05DrMOspopMlDbHGqhgaKjhIgo/Pf2e/HijXe0a+toIiJqjAUE6nIxoWGIDA6FxWrFt1s3oc5iQXhQsHaR1V6KomDGsFEAgFV7d7pyqF7heH4e8stKYPTzw/ShIzDA3hBq6+HWZyGs27cHgG35gp9e36XjJCLqiRIj7AWEwqYLCI6FhZNeOgMhr7gIj3+0tEPbCLtKRXU1MvNPAQBSE1ouIABAn5g4zj4gInIBFhCoyymKgsG9bX0QPt24BoBt9kFnPgWYaV/GsGF/Wrt2IPAF2+yzD4Yn94PJYMT4AYMAtK0Pwrr9tgLC1MGuW75ARET1EuzF8exmCgjZDgUEb5yBUGexYMkH72DFji1486fv3DaO9JwsAEBMWDgigkPcNg4iop6GBQTqFmofBHXqZmenzw/ulYyYsHBUmWva1UDQF6i7T4xNSQUAjE8dDADYcvggRKTZx2Xm5+H4qTz46fU4beCQrh8oEVEPpC1haEMPhOZmKXiyd3/5EXvtzZDTs0+0eN5xhU0H9+GNld+itsGuFuryhUGtLF8gIiLXYgGBuoXaB0HV2QKCTqfTZiG4chmD1Wp12XN1BavVqhUQxvS3FRBG9ukHo58fTpUU49ip3GYfu37/XgDA6H4DEOwf0PWDJSLqgRIjbc1t80qKG73prTabUejQryanuBB1Fku3jq8zdh49jPd+/RGAbXZheXW104wKV7NarXjy4//h3V9+xNdbNjrddyDL1kCxpR0YiIjI9VhAoG6hbuUI2BruOX7fUWofhHX79jS6SOuIV779DOf+7U84YV9T6YkO55xEaVUlAowmbVaHyWDEiD4pAFpexrB2324AwNTBw7t+oEREPVRkcAhMBgOsIsgtKXK6L6fYNgsvyOQPo58f6iwWnCop7tDP2X3sCG79zwtYsWNLZ4fcJmVVlfjbR0thFcFZYyZgoL3vgNoYuSscys5CUUU5AGD5mp+cii31DRQ7fz1BRERtxwICdYvwoGDER0QCAPrHJyLAaOr0cw5P7ofI4BCUV1dhe8ahTj3Xjox0fLRuFcqrq7HxYFqnx9ZV1O0bR/Xt79QEsb4PQtONFIsryrHnWAYAYAr7HxARdRlFUbRGig37IKhLFhIio7RzYkf6IOzMOIz/e/tV7D1+FM9+8RGK7W+yu4qI4LkvPkJucRESI6Nw17kXYUCibbvKQyezuuznOu60lFNchJ92bQNgm8mhzrhrbQcGIiJyLRYQqNuon5h3dPvGhvQ6HaYNHQEAWLVnV4efp85iwQtffqx939IyAHdTGyiOtS9fUE2wFxB2ZBxqcjbGxoNpsIpgQHyidtFKRERdIyGy6Z0Y1On+iZFR6GVf6tBcr4TmbD9yCPe98x9Umc3QKQqqzDVYumqFC0bdvB92bMbPu7dDr9PhL4uuQqDJX3vjfvBkZpf9XLWA0C82HgDwv1UrYbVacTjnJKwiiAwOQVRIaJf9fCIiaowFBOo2V50+FzOHjcKl02e57Dln2pcxrEnb1eF1pB+vX4WMvBzt++MeWkCos1iw86htyyy1gaKqf3wiwoOCUWU2Iy3zWKPHrt9n638wZQiXLxARdTWtkWJR0wWEhIgorVdCVjsaKW47fBD3v/saqmvNmDBgEB67/HoAwBeb1iGvuKiVR3fcB2t+AQBcM+ssDLV/CKAWEA6d7JpGimVVlUjLPAoAeHjxNQgy+ePYqVys279HWzYxMDGpUzs6ERFR+7GAQN1mQEIvPHr5dUiwT+10hdH9BiA0IBAllRXYdexIux+fV1KMt3/+HgBwwcRpAICjeZ5ZQNifdRxV5hqEBgSif3yi0306nQ7j+g8E0LgPQk1tLX47ZPsUh/0PiIi6XkIzSxjU7xMiIlvdraGh7UcO4f53X0dNbS0mDhyCv115I6YOGY7R/frDXFeHt3/5wYUJ6omIVviYPXKMdntKXCJ0ioKiinIUlJW6/OduTj8Aqwj6xsYjJS4BF0yaDgBY+utKbdYDly8QEXU/FhDIq/np9Zhq/1R99Z7278bwz28/R5XZjOHJ/XDTWQsA2PoFlFRWuHScrrDdvnxhTEoqdLrG/3TVPgi/HdrvdPuOjHRUmc2IDglzSfNKIiJqWaK2PKHhDARbE8WECIclDAVtKyD854evYK6rxeRBQ/H4FTfAZDBAURT87kzbuev7bb8hMz/PVRE0ZVWVqDKbAQCxYeHa7f5GI/rExAHomkaK6vKFifZthy+eMgMmgwH7s47jl907AHAHBiIid2ABgbze9KG27RzXH9jbrmmUmw/tx697dkCnKPjjwosRaPJHXHgEAOBYN89CsFqtrRYtNttnFjTsf6AaP2AQFEXB/qzjeO6Lj7ReCOruC1OGDONUTyKibuA4u0A9L4mIUxPFXlH1Sxjacu46YS803HzWuTD6+Wm3D0/uhymDh8FiteKNld+6NAdgm6kH2JohmwxGp/tSHZYxuJKI4LeDtmL4aamDAQARwSFYMH4yAKDKXAOAMxCIiNyBBQTyeuP6D4TRz4Dc4iIcyc1u02PqLBa8+PUnAIALJ0/HgARbN2n105TubKRYWVONO//7Ci548i/4btumJo/5bONa7Dx6GIqiYMKAwU0eExsWjpvPOheKouCL39bhj2/+EwWlJVr/Ay5fICLqHgn2ZrUVNdUoraoEAJRUVmhvfOPDIxEfEQXF3gSxqJVdFKrMNSizP09sWESj+2+cew4URcEvu3fgYJZrmxrm2nsrxDXxc1MTu2Yrx/TsLBSWlyLAaMTIvv212y+dNgt6+wy80IBArehPRETdhwUE8nr+RqO2/n/9/r1teszezKPIzD+F0IBAXHfGfO32+gJCTnMPdalqsxkPvvc6dh87AovVimc+XY6f7dtUqTYd3IeXv/kUAHDj3LO1T62actn02XjiyhsRZPLH7mMZuOalp5FfVoIAoxFjUpqeuUBERK5lMhgRHRIGoH4Zg7p8ITokDCaDAUY/P21JQGvLGNRZAIEmE4L8/Rvd3z8+EWeMHAsAeH3FN66I4PCzbQWE2CberGuNFLM7VkD4aN2vuPbFp7D3+FGn2zfZ+/aMSUl1mm0RFx6BM0ePB2ArXnBWHRFR92MBgXzClMHDAADr9+9p0/HqJzQj+6Yg2D9Au72Pfauo7ljCYK6rw0P/ewM7Mg4jyOSPGcNGwiqCxz9ainX7bDmO5GZjyfK3YbFaMW/sabhixpxWn3fK4GH4z613o09MnPaJ1YTUwTAZDF2ah4iI6qlbOWbbmySq/02IrN9Kt34nhrYVEJqafaC6/oz50Ot0+O3QfhzNc10RXJ2B4Nj/QKXO3sstLmp376D1+/filW8/R0ZeDh55/y0UO8zCUPsfnJY6pNHjfnfmAswbexqunzO/0X1ERNT1WEAgnzB50FAAwL4Tx1FUXtbq8ep0y4YNmLprCUOdxYIl77+NzekH4G8w4ulrbsKSxddi7qhxsFiteOT9t7Bi51Y8+O5rqKypweh+/XHveYva/GlLUnQsXr3lj5g5bBQURcHZYyd2aR4iInLWcCtHdQZCvMNORG3dieGUVkAIb/aYXlHRDrPx2lZMb4tc+wyEppYLBPsHaM0g29MH4WRhPv720VIAgEGvx6nSEvzto6WwWq0or67SZiRMHNh4yV5USCgevOhyDE/u194oRETkAiwgkE+ICQvHwMTeEBFsPJjW6vHqhc6gROddCfrE2goIucVFqKypcf1AYWsO9bePlmLd/j0w+vnhyatuxIg+KdDrdHjgossxfehI1FosePzD95BTXITeUTF49PLrYXCYxtkWgSZ/PHr5dfju4acw2T5Dg4iIukdihFocUAsIBU63A9DefGc12K2hIXUZQUwLBQQA2q5Ea/e5roBwqpXZD+3tg1BTW4uHl72N8uoqDE3qg3/efBeMfgb8dmg/3l/zM7amH4TFakVSdIw2Q4OIiDwHCwjkM+qXMbTcB6HKXKPNMGjYwTksMAjhQcEA0CXbYQHA7mMZ+Hn3dvjp9Xjs8usx1v6JEWDblvLhS6/Wuk6HBATiqat/h7DAoA7/vACjqdNjJiKi9qlfwmArDtTvwFC/hEHtadPaDIS8NsxAAIAp9ma5aZnHUNiG2XhtoTVRDG/6Z7e3D8KLX3+CQ9knEBYYhL8uvhaDeiXhrnMvAgC8sfJbLFv9E4D67RuJiMizsIBAPkO9cNp86ADM9i0Mm3I45ySsIogMDkVUaFij+7t6GcPmdNvWVDOGjcQk+9ILR0Y/Pzx2+fW469yL8MpNdyIpOrZLxkFERF2n4RKGHPsShsSIaIdj7DMQWmmi2NosAFVsWDgGJSZBRLChjU2FW1JnsSC/tKTFn52aaOuD0NoSBhHB15s34JstG6EoCv5y6dVaY8azx03E3NHjYbFasT/rOAAWEIiIPFX75kQTebDUhF6ICglFQVkpdmQcarL5EuCwfKFX0/tH94mNw86jh7uskeKW9AMAgPH9BzV7jL/RiAsmTe+Sn09ERF1PLQ7kFRehprYWOcW2AoK6xSNQv4ShuKIclTXVCDQ13mEBaPsMBACYMmQYDpzMxPr9e3DO+EmdSAAUlJXCKgI/vR6RwSFNHpOaYDuXnijIb5ShtLICWw8fwpb0A9iSvh859tkM182ehwkD6s+BiqLg7oWX4EDWcRw/lQejnwGjHLZvJCIiz8EZCOQzdDodJg9SlzE03wehuQaKKnUGgiu7WKvKqiqx/4Tt0xXHiyciIvItkcEhMBkMsIpg7/EMWKxW+On1TjPfgvz9tSVqLc1C0LZSbEMBYao6Gy/9AKrN5k4kcOi9EBoOna7pS8aI4BDEhIVDRJCefRKAbbbB/1atxPlP/gVLlr+Nr7dsQE5xEQx6Pc6dMBlXnT630fMEmkz462XXIS48AudNnAKTwdipsRMRUddgAYF8itoHYcP+PRCRJo9Rt3Bs2P9ApW7leLwNSxhOlRTjhS8/RkZudpvGt/3IIVhFkBwd2+Se2kRE5BsURdEaJm45fBAAEB8eCX2DN+L1fRCabqRYXl2lNfVtrYkiYNtaMS48AjW1tdhq/7kd1Vr/A1WqfTvHgyczISL413df4LUfv4bFakXf2HhcMmUmnr76Jnz10BO49/xLmy1GpMQl4MP/ewS3n31Bp8ZNRERdhwUE8inj+g+E0c+AnOIiHGniTX1NbS0y7DMLGu7AoFJnIGQV5qO2hV4KVqsVj3/0Hj7btBbPfLa82YKFo83q8oVUzj4gIvJ1aiPFrem2N/KOyxdUWh+EZhopqssXQgIC29QUV1EUrSfQuk5u51g/86HlgrdakN+flYmnP30fH677FQBw29nn450/PIDbz7kAkwYNZVNfIiIfwAIC+RR/oxHj+qcCaHo3hozcbFisVoQFBjX7SU5MaBgCTSZYrNZmL+gA4MvN67Ej4zAAW8frHRnprY5PvYhsqf8BERH5BrWR4sGTtplvCQ5bODY8prmdGPKK2758QaVu57hh/15YrdY2P66h3OJi+89urYBgK8iv2LEF3237DTpFwQMXXYZFU0/v8M8mIiLPxAIC+RxtGcOBxgUE9SJuYGJvKIrS5OMVRUFytH0nhmYaKeYUFeLV778CUH/xp2491ZzswgJkFeZDr9NhTMqANiQhIiJvphYMrPYZauqMBEetLWFoTwNF1ei+/RFk8kdheRn22fvudER7lzAAtp2EHr38OswfO7HDP5eIiDwXCwjkc9RGimmZx5Bd5HxBpjZQHNir6eULqr6xzW/lKCL4++cfoMpcgxF9UvCPa2+BXqfDb4f2a8/fFHX5wtCkvs122iYiIt+hLk9QNTUDoZe2leOpJp9D3cKxLf0PVAY/P20bxM4sYzjVxiUMMWHhSIlLQJDJH09fczOmDx3Z4Z9JRESejQUE8jkxYeEYP2AQRASfbVzrdJ9WQGimgaKqT2zzOzF8u3UTtqQfgNHPgPsvXIxeUdGYNWIMAGDZ6pXNPueWw/b+BwMGtj0MERF5rcQGMw5a6oGQV1LcZN+dtvYhaGiKfRnD+n0dLyDk2osXca00/VUUBf+59R58fP8SjE1J7fDPIyIiz8cCAvmkiyfPAAB8s2WD1r26zmLBkRzbFlOtFhBibDsxNJyBcKqkGP/67nMAwA1z5iMpOhYAcPmMMwAAq/bsxIn8xp8iWaxWbDt8CAAwnts3EhH1CA0LBg0LCoBtu8cAoxFWEeQUFza6/1RpCYD2LWEAgEkDh0Cv0yEjL6fFLSKbU1lTjbKqSvvPbr14YfTz4+w6IqIegAUE8kkTBw5Br6holFdX44ftmwHYGijWWiwI9g9ochqpI3Unhsz8PK0BVW1dHZ769H2UV1djSO9kXOLQHKp/fCImDxoKqwiWr/250fMdPHkCZVWVCPb3x+BeyS5KSUREnsxkMCI6JAwAEGTyR0hAYKNjFEXRzklNvdGvn4EQ3q6fHRIQiFF9+wMAVuzc0q7H2n5uMQAg2N8fQf4sDBARkQ0LCOSTdDodLpw0HQDw6YbVsFqtTssXmmugqIqPiIRBr0dNbS1yi4tgrqvDw++/5bB04bJGe3lfPmMOAOD7bb+hwP6JkWqLvf/B6H6p8NPrXZKRiIg8n9o4MSEistlzT6+oGAC2orUjEXFooti+JQwAcNaYCQCA935dgb3Hj7brsR1dOkFERL6NBQTyWfPHTkSgyYTj+XnYcvgADrWx/wEA+On16G1fnnAo+wQeXvYm1u/fC6OfAU9cdSP6xSU0eszIvikY0acfai0WfLh+ldN9agGByxeIiHoWddlCQoOGio4G2c9LaSeOOd1eWlWJmtpaAEB0aFi7f/ZZYybg9OGjUWex4JHlb6O4orzNj1W3cGyt/wEREfUsLCCQzwry98fZ42zbSH28fjUO2LdwTG1DAQGo34nh6U+XY8OBNJgMBjx19e8woYUigDoL4cO1v+DRD95FenYWqsw12HM8AwBafCwREfketWjdUvF6aHJfALbdgxzl2bdRDA8KhslgaPfPVhQF912wGEnRMThVUozHPnwPFvuyvNaoP7s9uz8QEZHvYwGBfNoFk6ZDURRsOrhPW8IwqJUtHFVqH4Ty6ipb8eCq32Fc/5Z3UJg0cAjmjh4Pqwh+2rUNN7zyd9z+2kuos1gQHx6h7fdNREQ9w/kTp+GVm+7E4umzmz1mcK9kKIqCnKJCFJSVarfXL18I7/DPD/L3x6OXXw9/gxFb0g/g7Z+/b9Pjcu1LGDgDgYiIHLGAQD6td1QMJg0cCsC2C0OA0aTtud2a/vG9AAD+BiOevvomjG2leADYei88dMmVeP22ezF75BjoFAXp2VkAgPEDBrfae4GIiHyLn16PEX1SYPTza/aYIH9/9I217f6zz2EWgisKCACQEpeAe85fBAB495cfsfFAWquPUX92HHsgEBGRAxYQyOddPGWG9ufUxF7Q6dr2az9l8DDcfvb5eOWmOzGmnftaD0zsjUcuvQZL//hnLDxtCgYk9MKFk6e36zmIiKjnGJbUFwCwN/OodtupEnUZQeffxJ85ejwWnjYFAPDMZ8shIi0ery5hiOUMBCIictB8OZzIR4zrPxD9YuORkZeDQYltW74A2D41ctyqsSN6RUXjnvMWdeo5iIjI9w1N6oOvt2xAmkMBwVUzEFS3n30Bvt26CQVlpcgpLmx2S2Or1artwsAZCERE5IgzEOyWLFkCRVGcvuLj47X7RQRLlixBYmIiAgICcPrpp2Pv3r1Oz1FTU4M77rgD0dHRCAoKwsKFC3HixInujkINKIqCuxZejNH9+uNc+6cvREREnmSYvZHi/hOZqLNYALi+gGAyGJBs32HoSE52s8cVVZSj1mKBoigd2v2BiIh8FwsIDoYNG4bs7Gzta/fu3dp9zzzzDJ577jm88sor2Lx5M+Lj4zF37lyUlZVpx9x111347LPPsHz5cqxduxbl5eVYsGABLPYLAXKf0f0G4MUb79AaIxIREXmS5OhYBJn8UV1rRkau7c19fQHBdbMAUuITAQBHcpsvIKjLF6JDQuGn17vsZxMRkfdjAcGBn58f4uPjta+YmBgAttkHL7zwAv785z/jwgsvxPDhw/HOO++gsrISy5YtAwCUlJTgjTfewLPPPos5c+ZgzJgxWLp0KXbv3o2VK1c2+zNrampQWlrq9EVEREQ9i06nw5CkPgBsfRCsVitOlRYDcN0MBMDWUBEAjuSebPYYrXDB/gdERNQACwgODh06hMTERPTr1w+LFy/GkSNHAAAZGRnIycnBmWeeqR1rMpkwc+ZMrF+/HgCwdetW1NbWOh2TmJiI4cOHa8c05cknn0RYWJj2lZTU9jX6RERE5DvURoppmcdQXFmBui5YRqAWEDJaWMKQy/4HRETUDBYQ7CZOnIh3330XP/zwA15//XXk5ORgypQpKCgoQE5ODgAgLs55+ntcXJx2X05ODoxGIyIiIpo9pikPPvggSkpKtK/MzEwXJyMiIiJvMNQ+AyEt86i2jCAyOMSlywjUJQzH8/NQW1fX5DHaDgwunPlARES+gbsw2M2fP1/784gRIzB58mT0798f77zzDiZNmgTA1ozPkYg0uq2h1o4xmUwwmUydGDkRERH5AnUJQ2b+KRzOsS0xcPWb+NiwcAT7+6O8uhrH8/PQ315QcKTOQOASBiIiaogzEJoRFBSEESNG4NChQ9puDA1nEuTl5WmzEuLj42E2m1FUVNTsMURERETNCQsMQlK0rf/Sr3t2AHBtA0XA9mFIP7UPQk7TfRDyiosBcAkDERE1xgJCM2pqarBv3z4kJCSgX79+iI+Px4oVK7T7zWYzVq1ahSlTbNsCjhs3DgaDwemY7Oxs7NmzRzuGiIiIqCVqH4Sthw8C6JplBFoBoZmdGPI4A4GIiJrBJQx29957L84991wkJycjLy8Pjz/+OEpLS3HNNddAURTcddddeOKJJ5CamorU1FQ88cQTCAwMxOWXXw4ACAsLww033IB77rkHUVFRiIyMxL333osRI0Zgzpw5bk5HRERE3mBoUl98v30zLFYrACCmCwoIKXH2rRybaKRYU1uLwnLbFtVxLCAQEVEDLCDYnThxApdddhny8/MRExODSZMmYePGjejTx7Ye8b777kNVVRVuvfVWFBUVYeLEifjxxx8REhKiPcfzzz8PPz8/LFq0CFVVVTjjjDPw9ttvQ889lImIiKgN1EaKKlcvYQCAlPjmt3JUt440GQwIDQh0+c8mIiLvxgKC3fLly1u8X1EULFmyBEuWLGn2GH9/f7z88st4+eWXXTw6IiIi6gn6xSXA32BEda0ZQNcsYVC3cswrKUZZVSVCHAoFR3PtO0+FR7TaKJqIiHoe9kAgIiIi8hB+ej0G907Svu+KAkJIQKC2NCIj17lB9Oq0XQCACQMGu/znEhGR92MBgYiIiMiDqI0U9TodIkNCu+RnpMQ1XsZQW1eHdft2AwBmDh/VJT+XiIi8GwsIRERERB5kqL2AEB0aBr2uay7VtAKCQyPFrYcPory6GpHBoRie3K9Lfi4REXk39kAgIiIi8iATBw7B/LGnYWz/gV32M1Li7TsxOGzluGrvTgDAzGEju6xwQURE3o0FBCIiIiIPYvDzwwMXXd6lP0OdgZCRexIiAovVirVpXL5AREQtYwGBiIiIqIdJjomDXqdDeXU1TpUU41h+HkqrKhEeFIyRffu7e3hEROShOD+NiIiIqIcx+vmhd1QMANsyhlV7dgAAZgzl8gUiImoezxBEREREPVBKvG0Zw6HsLKzea9u+kcsXiIioJSwgEBEREfVAKXG2Ropfb16PksoKhAUGYXS/AW4eFREReTIWEIiIiIh6ILWRYk5xEQBg2tAR8NPr3TkkIiLycCwgEBEREfVA6hIG1elcvkBERK1gAYGIiIioB4oPj0SA0QgACAkIxNiUgW4eEREReToWEIiIiIh6IJ1Oh372ZQxThwzn8gUiImoVCwhEREREPdS8MachKiQUF02e4e6hEBGRF1BERNw9CKpXWlqKsLAwlJSUIDQ01N3DISIiIiIiIh/X1vehnIFARERERERERK1iAYGIiIiIiIiIWsUCAhERERERERG1igUEIiIiIiIiImoVCwhERERERERE1CoWEIiIiIiIiIioVSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErWIBgYiIiIiIiIhaxQICEREREREREbWKBQQiIiIiIiIiahULCERERERERETUKhYQiIiIiIiIiKhVLCAQERERERERUatYQCAiIiIiIiKiVvm5ewDkTEQAAKWlpW4eCREREREREfUE6vtP9f1oc1hA8DBlZWUAgKSkJDePhIiIiIiIiHqSsrIyhIWFNXu/Iq2VGKhbWa1WnDx5EiEhIVAUxeXPX1paiqSkJGRmZiI0NNTlz+8uvpiLmbwDM3kHZvIOvpgJ8M1czOQdmMk7MJN38PVMISEhKCsrQ2JiInS65jsdcAaCh9HpdOjdu3eX/5zQ0FCf+cV35Iu5mMk7MJN3YCbv4IuZAN/MxUzegZm8AzN5B1/O1NLMAxWbKBIRERERERFRq1hAICIiIiIiIqJWsYDQw5hMJjzyyCMwmUzuHopL+WIuZvIOzOQdmMk7+GImwDdzMZN3YCbvwEzegZls2ESRiIiIiIiIiFrFGQhERERERERE1CoWEIiIiIiIiIioVSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErfJz9wDIdfbu3Yv169dj+PDhGDx4MCIiImC1WqHTeW+diJm8AzN5B2byDszkPXwxFzN5B2byDszkHZipnYS8Xm1trdx2223i7+8v06ZNk7CwMJk3b57k5ua6e2gdxkzegZm8AzN5B2byHr6Yi5m8AzN5B2byDszUMSwg+IB169bJoEGDZNWqVWKxWOTbb7+VyZMny4wZM6SiosLdw+sQZvIOzOQdmMk7MJP38MVczOQdmMk7MJN3YKaOYQHBC1mtVqfv//CHP8ioUaOcbktLS5OAgAB55plnunFkHcdMzOQuzMRM7sJM3pFJxDdzMRMzuQszMZO7MJNrMnnvwo4eqqioCDU1NU639enTB6WlpRARAIDFYsGQIUPw4IMP4h//+Adyc3PdMdQ2YyZmchdmYiZ3YSbvyAT4Zi5mYiZ3YSZmchdmcl0mFhC8hMViwU033YQpU6bgzDPPxJ/+9CftFyY+Ph5RUVH48MMPAUBrjnHnnXcCAJYvXw4AsFqtbhh585iJmdyFmZjJXZjJOzIBvpmLmZjJXZiJmdyFmVyfiQUEL1BdXY0LL7wQu3btwvPPP49x48bhww8/xIUXXoja2lrMmTMHISEh+Oabb5CXlwdFUWC1WhEWFoZzzz0Xa9asAQCP6iTKTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLszURZlcshCCutSePXskJSVFfvjhB+223bt3i8lkkkcffVRERF577TUZN26cPPXUU06PnTp1qtx2220i0niNjDsxEzO5CzMxk7swk3dkEvHNXMzETO7CTMzkLszUNZlYQPACa9euFZ1OJ2VlZSIiYjabRUTksccek+joaNm5c6fU1tbKH/7wB0lKSpJXX31Vjh07JmvWrJFhw4bJ8uXL3Tn8JjETM7kLMzGTuzCTd2QS8c1czMRM7sJMzOQuzNQ1mVhA8FAWi0X7c3p6uqSkpMhLL70kIrb9PVW9evWSP/7xjyIicuzYMXnsscckODhYhg4dKoGBgXL33Xd378BbwEzM5C7MxEzuwkzekUnEN3MxEzO5CzMxk7swU9dnYgHBC+Tk5Mg111wjc+fOlfz8fBERqaqqEhGRZ599VuLj452OP3r0qPz888+SlZXV7WNtK2byzEwNpzP5QqaGmMlzMu3Zs6fZ+7w1U0uYyTsyifhmLl/IxHMUM3UnnqOYyRN5QibP6QjRQx04cACbN29GVlaW0+2ZmZm4/PLLkZ+fj7i4OMyaNQslJSV49dVXAQAmkwkAEBMTg5CQEBw5ckR7bJ8+fTBr1iwkJiZ2XxAHR48eRXZ2NioqKgBA20bEmzOtX78ew4cPx2+//eZ0uzdn2rlzJ/773/9i06ZNKC4uBgAoiuLVmUpKSprsKuvNmbZv346//OUvOHr0KID6rrnenGnDhg2YMmUKbrjhBuTl5Wm3e3Om/fv3Y8+ePcjPz3e63Zsz+eL5CeA5ylsy8RzlHZl4jvKOTDxHeUcmrzk/uawUQe1SWFgoixYtkri4OBkzZozExsbKt99+q1XXv/rqK0lISJBnn31WRETKysrkj3/8o/Tv319Wr16tPc/9998v8+fPd0uGhgoLC2Xx4sWSkpIio0aNkgkTJsjRo0e1+7/88kuvy5Sfny8LFy4Ug8Egd9xxh7bOSOWNf0+lpaVy6aWXSlhYmEyfPl3Cw8PljjvukJqaGhHxzr+n4uJiufzyy+X000+XQ4cONbrfG/+eRERyc3Nl0KBBEhcXJ88995zTfd6YKT8/X8477zwxmUwyduxYiY6Odvo35Y2ZysrK5JJLLpHQ0FAZPny4JCcnyxdffKFNKfz888+9LpMvnp9EeI4S8Y5MPEd5RyYRnqO8IRPPUd6TyZvOTywguMEPP/wgAwYMkPPOO092794tx44dk7lz58qZZ56prXGprKyUDRs2OK1rSU9Pl2uuuUb8/f3l0ksvlcsuu0yCg4PlzTffFBH3dgj9+eefZdiwYbJgwQLZsmWLfPnllzJ06FC58MILtXF5W6ZPPvlEFEWRhQsXSkZGhtN96rgqKiq8KlNtba3cdNNNMn/+fNm/f79UV1fLY489JhMnTtQuarzt72n37t0ya9YsGT9+vCiKIs8995x2oemt/55U+fn5MmDAAJk9e7YsWLBANm/erN3nbZnuv/9+MRgMcu6550pGRoakpaVJQkKCrFy5UjvG2zKJiDz88MMybdo02bFjh6SlpcnixYtl9OjR2sV0aWmpV2XyxfOTCM9R3pKJ5yjvyKTiOcqzM4nwHKXy5EzeeH5iAcEN3n77bXnppZektLRU+2X/17/+JQsWLJC6urpWH//KK6/IH/7wB7niiitk7969XT3cNrnzzjvlxhtvlJKSEu22n376SUJCQpxua44nZnrmmWekd+/esn79ehER+fbbb+W5556TDz74QAoLC1t9vCdmysvLk9TUVHnllVe021atWiUzZsyQ6urqVh/viZlWr14tt912mxw/flz+/Oc/S1xcnOzcubPNj/fETKoNGzbIVVddJRs2bJDRo0fLgw8+qK1za+nE4ImZFi9eLCtWrNC+37p1q8TExMi3334rIq2f6DwxU3V1tQwbNkweeOAB7bbCwkK5++67JTU1Vfbv39/i4z0xky+en0R4jmqKJ2biOaoxT8yk4jmqnidm4jmqMU/M5I3nJxYQukHDF528vDynk/uuXbtk0KBBct1118nzzz8vOTk5TsdnZWW162TTHdTquWrVqlWyZcsWp9u++OILGTJkiOTn5zt1DxXxjkzp6ely1VVXyahRo2Tu3LmSmpoqM2bMkKCgIBk7dqx8+eWXTsd7Q6a0tDSZNGmS3HHHHVJXVye7d++WoUOHyrRp0+TWW2/VTpQqT8ykUn+nioqKnBrDxMXFya233qptb9OQJ2dq6LfffpPZs2eLiMhdd90lM2fOlG3btklubq7TcZ6cqeGUaqvVqr0mJiUlyd/+9jcREa94jWj4Wp6dnS2TJ0+WF154wen2TZs2yYwZM+Tqq692ut0bMvnC+UmE5yieo9yP56h6npyJ56h63pDJF85RvnB+YgGhC1VUVMgDDzwgf/zjH+XJJ5+U8vLyRse89957oiiKXHTRRfLAAw9Iv379ZP78+bJ161YRsVUKb7rpJunVq1d3D79JFRUVctNNN8nFF18st912W5PVS/XF+MUXX5RRo0Y1+sdfXFzsNZmWLVsmo0ePlquuukqOHz8uRUVFUlxcLLNnz5aFCxfKwYMHRcR2geAtmZ566ikZM2aMzJkzRxRFkauuukreffddWbBggbY2TsQ2NdGTMlVWVso///lP+e2335q8X/29W7ZsmRgMBqdphypP+91rLdO//vUvOe+880TE1mF34sSJMmjQIFEURTt5eFsmVVlZmVxwwQVy1VVXNTo5elqmll7Lp0+fLhdddJFUVlZqt9XV1cnTTz8tY8eOlR07doiIZ75G+Nr5SYTnKJ6j3IfnKJ6j3IXnKO84R/nS+YkFhC7y1ltvSXR0tMydO1duvPFGCQgIkEsvvVQyMzOdjjt+/LhTFWnz5s0yevRoeeONN7Tb3nvvPXnooYfEbDa7dY3OgQMHZMCAATJz5kx56qmnpG/fvjJx4kT573//KyL1+5CqL7Tnn3++PPjggyLSuIL47rvvenSm//znPyJiaxD00UcfaY1M1Gxff/219OrVS9atW6c9l6f/Pb366qsiYjvJl5eXy+LFi2XJkiXa44qLi2Xx4sVy2WWXabd5SqZPPvlEkpOTRVEUefjhh7VPbpob04QJE+Sss86SvLy8Rve98847Hp9JHdfbb7+t/R29+OKLYjQaJTw8XO677z6n5/LWv6dFixbJvHnzRKTxpzuekqm51/IjR46IiG3auF6vd2piJCKybt06GTBggNPtnp7Jm89PIjxHifAc5S48R/Ec5S48R3nHOcrXzk8sIHSBFStWyOmnny7//Oc/tdu2bdsmgYGBWsWz4V+4+guTl5cnAQEB8tprrzW6z91eeOEFmTRpklYFzMnJkdtvv13i4uK06XnqWMvKymTo0KHy008/aY9fs2aNHD9+XESkTeuUukNLmU6cOCEi4lS1VfMdOHBAFEVx+gTBm/6e8vPzZdq0afLRRx9pj6utrZXJkyfL73//e+330xMyZWZmyqJFi+Qvf/mL3HnnnTJy5EindYqO1Bfg7du3i6IosmzZMsnPz5e3335bfvnlFxHxjN+9tma69dZbZcyYMTJ48GDp06ePvP766zJ//ny57LLLnCrX3vb3pI73v//9r0RFRTlN5/Ok3722vJaLiMyaNUtmzJghJ0+e1G7Lz88XvV4v3333nXabt2TyxvOTCM9RIjxHuQPPUTxHuQvPUTbecI7ytfOTznUbQpKqrq4Ow4YNw2WXXaZ9P2bMGERHR2PPnj0AbHsZO9LpbH8VX3zxBSZNmoSzzjqr0X3ulpmZCavViqCgIABAXFwcbrvtNiQlJeGWW25xOnbr1q2orKzEuHHjsGbNGgwZMgRXX301amtrdTW/tgAAHSNJREFUAQB6vb7bx9+UljLdeuutAAB/f3/tePXvYtmyZZgzZw6mTJnS6D53a8vfk16vx4EDB3D06FGcPHkSAPDzzz+jqqoKZ5xxhvb76QmZwsLCcPXVV+Omm27C888/D6vVio8++gg5OTkA6vfIBQA/Pz9YrVaMHj0aV155Je666y6MHDkSDz74oLZHrif87rWWyWKxAAAmTZqE/Px8XHTRRfjtt99w44034vrrr8fq1avx66+/as/nbX9P6nj9/f2dXhcBeNTvXlteywHg9ddfx5YtW/Dkk09i586dAIBPP/0U48ePx+jRo7XjvCWTN56fAJ6jAJ6j3IHnKJ6j3IXnKBtvOEf53PnJvfWLnuPYsWOSmJgoaWlpje7buHGjbN26VS666CKJjY3VpvF5mnvvvVfmzJkjhw8f1m6zWCzyv//9T0JDQ2Xjxo3a7X//+99l4MCBctlll4lOp5N77rnHHUNuVVsz1dXVyfr162Xz5s1y4YUXSmJioixdutRdw25Ra5nWrl0rIiJ/+9vfJD4+XkaNGiULFiyQwMBAeeyxx9w17DZ75513pE+fPvL+++83eb/FYpHdu3fL7NmzxWAwyMMPP9zNI2y/5jKdOnXK6RMD1VdffdVdQ+uwlv6e1E8P0tLSRFEU2bZtW3cPr8MavparnwS89957Mm3aNAkPD5eZM2eKv79/o33RPZUvnJ9EeI7iOcoz8BzFc5Q78RzlmecoXzs/sYDQhRynzaxevVqGDRsmxcXFjabT3HbbbTJo0CC58MILJTs7u7uH2Sp1vD/99JOEh4fLJ5984jR96ODBgzJr1iynNW+zZ88WRVHkkksuceo+7Ck6kumGG26QPn36yPnnn+/Vf0/33nuvdts333wjTz31lDzyyCONOtd6Gsd/N2eccYYsXLiwyQY0OTk5MnbsWJk2bVqjTtCepq2ZmjreU7UnU3Z2tjz44INSWlraXcPrkJZeyx3/jWVnZ8vHH38sL774oke+RjjylfOTCM9RKp6j3IvnKJ6j3IXnKM89R/ni+UmEBYQOOXDggOTl5Wl73bZErfw9/PDDMmPGDKdfmuLiYhEROXz4sBw4cKBrBttG+/fvl6ysLKe1lE05/fTTZebMmVpzFtW0adPk/vvv177/9ddfGzVs6W6uzpSent5k9bM7uTqTJ2hrJpH6f0/r1q2TXr16yUsvvSQWi0XMZrMcO3ZMRGz7Hrv7JOKqTOp6N0+4KHN1Jk/QkUxNvZZ70sWlqzJ50vlJRNp0vhXxrnOUqzN5wjnK1Zk8QVsziXjPOcpVmTzpHOXqTJ6gI5k8/RzlqkyedI7yxfNTa1hAaIe8vDw555xzJCEhQSZNmiRTpkyRPXv2aPe31AnztNNOk1deeUVEbPvmzps3z6lBiLvk5+fLOeecI9HR0TJs2DCZMGGC7Nq1S7tfzaT+I96/f7+Eh4c7VWTNZrNMmTJFnnjiie4P0ARm8q1MDam333jjjTJt2jT5xz/+IePGjZPLL7+8W8bdEmaSRrf7UiYR738tb4qnZhKxnXcXLlwoV111VaO9sx1502sfM/lWpoY8+bWPmer5YiYRz30978mZvOl1r61YQGij/Px8mTt3rixevFj27t0rGzZskKlTp8r48ePlhx9+EJHmK7DHjx+XiRMnyqpVq+Taa68VvV4v1157rdu3vDKbzXL11VfL/PnzZceOHfLrr7/KxIkTZdq0afLll1+KiHMm9c//+Mc/ZMyYMTJhwgR555135NJLL5WkpCSni1V3YSbfzORIvf2XX34RRVFEURSnrtzuwkzOfDGTr7yWO/LUTCIia9eulYkTJ8rgwYNFURT5/vvvWzzeG177mMk3Mzny1Nc+ZnLmi5k89fWcmbzjda89WEBoo5UrV8rAgQOdGqns379f/Pz85Mwzz5RTp06JSNMXaV988YX24jR16lRJT0/vtnG3JDc3V3r16qXtQSpimwp0/vnny1lnnaWtzVMzqf9YrVarbNiwQc477zyZNWuWzJ8/v9F0HHdhJt/M1NDTTz8tiqLIueee6zHTDZmpMV/L5Cuv5Y48NZOIyP/+9z+544475MCBA3LppZfKmDFjWpyK6w2vfczkm5ka8sTXPmZqzNcyeerrOTN5x+tee7CA0EZvvvmmxMTEiEj9L8H+/fslNTVVhg8fLk8++WSzj/30009l+PDh8uuvv3bLWJtjNpudvt+2bZskJydr++Cqud5//3057bTTWp1OY7VapaSkpGsG20bM1DMzffnll/LZZ591yVjbipl6XiZffC33lEwijXNlZmbKiRMnRETk6NGjEhAQIC+//HKbn88TX/uYqTFfzOSJr33M1JivZfKU13NfzNSwAO8Lr3udwQJCA0VFRfLQQw/Jo48+Km+88YZ2+8mTJyU0NFQeeughOXnypFRVVcnChQtl0aJFct5558mll16qNfTwNEVFRXL77bfLDTfcIPfff79T19/k5GT505/+JCL1a3TKy8vluuuuk4ULFza5PY8nYCZmchdmYiZ38cVMIi3nEqkviDz00EMSGxsrmZmZ7hhmuzATM7kLMzGTu/hqpptuukluuukmefzxx6W8vNzpfm/M5AosIDh46aWXJDQ0VM4++2xZsGCB6HQ6ue+++7SLsbfffltCQ0MlNTVV/Pz8ZM6cOSIi8u9//1v69u3bqOKmcuc6neeee07CwsLk7LPPlj/96U8SEhIiV1xxhRQUFIiIba/R0NBQyc/PF5H6C8+lS5dK7969PXL7EGZiJndhpp6dyRdfy929jrS5XE0V5MvKyiQ5OVnuvPNON4y07ZiJmdyFmXp2Jk88R3lzpvXr10tcXJzMnTtX/vCHP0hwcLDMnz9fm+2nnmdFvOd3z1VYQLB77733ZPLkybJ06VLttg8//FACAgK0CzIR236dn3zyiezevVu77c0335TU1FQpKirqziG3avny5TJ79mx5//33tds++ugjMZlM2rSZzMxMSU1Nleuuu87psXv27BGdTue0y4QnYCZmchdmYiZ38cVMIm3L1dDSpUvFaDTKjh07pLCwUD744AO3b+HliJlsmKn7MZMNM3U/X8wkIvLHP/5RzjvvPO37PXv2yLnnnitTp06VsrIyEXFe2uANmVyFBQS7t956S2655RZtL0+LxSKZmZkSHx/f4rqbmpoaOffcc+Xuu+/urqG22Z49e+Tnn3922lrkv//9r9x2222Sk5Oj3aY2KHnppZe0JjKPPPKInHnmme3eaqWrMRMzuQszMZO7+GImkZZz5eXlNfu4GTNmyJAhQyQ+Pl4GDhwo+/fv747htgkz1WOm7sVM9Zipe/liJrPZLAsXLpSrr77a6favv/5aRo0aJffff7+INO6N4MmZXKnHFxBamhqzadMmSUxMbHL6zb59+2T16tVy9tlnS0pKiqxfv74rh9lp1dXVctlll4miKDJmzBiJiYmRp556SlsX+8gjj0hqaqr0799fZs2aJUFBQfL222+7edQtYyZmchdmYiZ38cVMIs3nys7OFpH6i7RNmzbJiBEjJDAwUB5//HF3DrlVzMRM7sJMzOQuvpRp3rx5cs011zj1PSgvL5eHHnpIhg8fLocPHxYR78rkKn7o4RRFAQCICBRFgdVqhU6nAwDs3LkT/fv3R1hYGOrq6uDnV/+/a926dfjnP/+J/v37Y/PmzYiMjHTL+Ntq27ZtKCwsxM8//4yUlBR8/PHHeO+99wAA999/P5YsWYKLLroI69atQ2FhIT7++GNmcgNmYiZ3YSZmcqemci1duhR6vR733nsvdDoddu7ciUWLFmHo0KFYvXo1wsPD3T3sFjETM7kLMzGTu/hCJovFAr1ej0svvRS333477rvvPgwdOhQAEBQUhJkzZ+Lbb7/FmjVrkJKS4hWZXM7dFYzu4tjowpHVam10nzoF59JLL5Xrr7/e6T51iUNOTo62fYe7tCdTU/t/jxkzRh588EHtMZ6AmZjJXZiJmdzFFzOJuDaXiEhhYaEcO3bMtYNsJ2ZiJndhJmZyF1/M1Byr1Sq1tbXa94MGDZJrrrlGe/+nSkxMlDfffFP73pMzdQWfn4Fw9OhR/PWvf4W/vz9iY2Nx++23IyYmBgC0WQV6vR65ubmoqqpC3759YTQaUV1djY0bN+K1114DAKxZswZ///vfcccdd2Du3LmIi4vzikyVlZXo169fo+c4ceIELBYLkpOTAdTPxHAXZmImd2EmZnIXX8wEdE0uAIiIiEBERES35XDETMzETK7DTMzkrkyZmZl48803cfbZZ2PChAnaDHSgfuaBn58fsrOzodfr8dJLL2HevHmYNWsWrrrqKuh0OuTm5iIkJAQBAQEekckddO4eQFd68sknMXr0aFRXVyMwMBAvvPAC/u///g/Hjh0DAPj5+UFE8Ic//AH9+/fH3r17tcfu3LkTsbGxSEpKwqJFizBr1iwkJiZi7ty57ooDoP2Z0tLSAEBblgEAx44dwz333IOIiAgsWLDALTkcMRMzuQszMZO7+GImwDdzMRMzuQszMZO7+GKmf//73xgzZgwef/xxfPbZZ6itrYWiKBARAIBer9cypaamYuPGjTjzzDNx00034R//+AcWLVqE77//HjfffDMMBgNmzJjh5kRu1L0THrqH1WqVL7/8UmbPni3Lly/Xbv/mm2+kX79+sm3bNhERKSgokMmTJ8uYMWPk559/dnqOZ555RhRFEYPBILNmzZLMzMxuzdBQZzNZLBZ59tln5eabb5bw8HA599xznbp3uwMzMZO7MBMzuYsvZhLxzVzMxEzuwkzM5C6+mElE5NixYzJv3jz5+9//LrfddptMnz5dvvnmGxGpX/rXXKaqqip57733ZNq0aTJu3Dg555xzJCsryy05PIVPLmFQFAWVlZU488wznSpes2fPRmFhIXJycgAAwcHB+O9//4tBgwZBr9cDqG+mqNfr0bt3b3z44YeYNGmSW3I46mwmnU6HIUOG4MCBA/jqq68wbdo0t+RwxEzM5C7MxEzu4ouZAN/MxUzM5C7MxEzu4ouZACA+Ph5/+MMfMG3aNJSVleGSSy7B559/jtNOOw3R0dEAms/k7++PK6+8EosWLUJpaal2fI/W3RWLrlBUVCQZGRkiYtu3U6Tphh87d+6UpKSkFptceEoDKmZiJndhJmZyF2byjkwivpmLmZjJXZiJmdzFFzPl5ubKa6+9JitXrpTc3FwRaTy2F198UcaNGydvvfWWG0bo/by+B8I//vEPJCcn44EHHgAAGAwGiIhT5UiVk5ODuLi4FitHjts6uktXZXInZmImd2EmZnIXX8wE+GYuZmImd2EmZnIXX8z03HPPoU+fPnjnnXdw4YUX4qKLLsKGDRu0sdXV1QEAbr75ZsTFxeHrr7/GwYMHAbj3vZ+38doCgtlsxr333osPPvgA06dPR1ZWFj7++GMAzr8Ajs0xPvvsM/Tp0weBgYHa/eXl5Y0eoz6uu3V1JndgJmZyF2ZiJnfxxUyAb+ZiJmZyF2ZiJnfxxUyAbceHd955B//617+wdu1afPXVV1oz/JMnTwKwNX+0WCwwmUz43e9+hyNHjuDzzz8HABQXFyM3NxcAYLVa3RXDK3htAcFoNCIlJQU33HADnn76aURHR2PZsmUoLi6GTqdr9A+goqICK1aswJVXXgkA+OKLLzBx4kT873//045xN2ZiJndhJmZyF2byjkyAb+ZiJmZyF2ZiJnfxxUwAsHLlSmRmZmLx4sUAgBkzZuDll1+G0WjEQw89BLPZDKB+p4jzzz8fY8aMwU8//YQHHngAQ4cOxZIlS5yOoWY0v7rB86lrdURE3njjDZk4caI8//zzTR67f/9+mThxonz//fcyf/58MRgMsmTJkm4aadsxEzO5CzMxk7swk3dkEvHNXMzETO7CTMzkLr6USe1vsGLFCgkLC5OjR4+KiEhtba2IiHz++efi5+cnW7Zs0Y63WCwiIvL666+LoigSFBQkTzzxhBtG7528uoDgqKSkRK677jqZPXu27Nu3T0RE++UQEVm2bJkoiiKKosiiRYukrKzMXUNtM2ZiJndhJmZyF2byjkwivpmLmZjJXZiJmdzFVzKtXbtWJk+eLE8//bR2m1pcmDRpklx55ZUiUp/txhtvFEVR5Oabb5aKioruH7AX85r5GeIwncZqtTb6PjQ0FJdccgnMZjPefPNNALbpJxaLBQBQUlKC888/H2lpafjggw8QHBzcvQGawEzM5C7MxEzuwkzekQnwzVzMxEzuwkzM5C6+kqmmpqbJ29VxTpo0CcnJyfj111+xe/duAPW9DC655BLs3bsXZWVl2vKEefPmYdOmTXj11VedejtQ6xRx/C3yEIcOHcI777yDPn36IDU1FaeffjqsVit0Oh3q6urg5+cHwNa8Izg42Om2++67Dxs2bMAjjzyCkpISfPPNN3jzzTe1xzMTMzETMzETMzGTM1/MxUzMxEzMxEzenUlEkJeXh8WLF2PcuHF45plnnMbiOH4A2LBhA26//XbMmDEDzz//vHb7TTfdhPT0dKxYsQIAtJ0mqIO6dH5DO9XW1sptt90mgYGBcu6558rYsWPF399f0tLSRKR+GkpNTY3ccsstct5550lNTY3Tfdu3b5fTTjtNAgICxGAwyJ133ul0f3djJmZiJtdhJmZiJtfyxVzMxEzM5DrMxEzuPEeJiHzzzTeiKIqEhoZqfQwc1dTUyO9//3s5//zzRUTkiSeekNTUVLnvvvvkyJEjcuDAAZk6dao8+uij3T10n+UxBYSSkhKZP3++zJkzRzZv3iwiIidOnJAJEybI7bffrh23dOlSiYiIkBkzZmjHqbKysuSWW24RRVHk2muvlfz8/G7N0BAzMZO7MBMzuQszeUcmEd/MxUzM5C7MxEzu4ouZHD3//PPy5z//Wc455xyZPXu2mM1mrajhmGnDhg0iIlJUVCTvvvuuhIaGyrBhwyQkJEQuuugij+3d4I3cWkBoWNF64403ZN26dU63zZs3T9avX699/+mnn8r//ve/Jqth//nPf2TQoEFOx3c3ZrJhpu7HTDbM1P2YycbTM4n4Zi5msmGm7sdMNszU/XpCJrXZ4WOPPSb33nuv7Ny5U3Q6nXzwwQfaMV9//bW89957TWbKzMyU9evXy+7du7t24D2Q2woIJSUlUlJS4nRbXV2d9ufMzEyZNWuWBAUFyYwZM2TRokWSm5vb5HO5e2qNipmYyV2YiZnchZm8I5OIb+ZiJmZyF2ZiJnfpCZkcd4G46KKL5J133hERkRtuuEFGjBghO3fulFdeeUXbqpG6l1s6Ytxzzz2YMWMGzj77bFx55ZUoLi52uj8nJwd33303IiMj8dVXX+GWW27B7t27ccMNN6CioqLR8ymKAsC5y2h3YyZmchdmYiZ3YSbvyAT4Zi5mYiZ3YSZmcpeekkmn06G6uhoAYDAYYDQaAQCPPvooDh06hNGjRyMtLU07hrpZd1YrNm3aJGPGjJGJEyfKN998I48++qgMGzZMLrzwQhFxrjZlZ2c7PXb16tViMBgkJyenO4fcKmZiJndhJmZyF2byjkwivpmLmZjJXZiJmdylJ2ZSzZ49W3bv3i3Lly+XiIgI6dWrlwQFBUl6erqbRk7dVkCwWCzy4IMPyqJFi5ymqHz88cfSt29fycrKavHxzz33nAwcOFAyMzM9ZroNMzXGTN2DmRpjpu7BTI15YiYR38zFTI0xU/dgpsaYqXv05Ey5ubkyY8YMMRgMEhkZKS+99JIUFhbKsGHD5PLLL3fX8Hs8v9bnKHRqdoPT1JhZs2bhzDPPRGhoqHZMTU0N/P39ERwc7HS8oy1btuCzzz7DFVdcgd69e3flkFvFTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLswUDACIjY3FqFGjcMYZZ+D666/XMvzlL3/BHXfcgdzcXMTFxXV/mB6uywoITz75JDIzM5Gamoobb7wRISEhmDt3rna/xWKBXq9HYWEhwsPDERwc7PSLf/z4caxYsQKrV6/Ghx9+iJtvvhl//vOfu2q4bcJMzOQuzMRM7sJM3pEJ8M1czMRM7sJMzOQuzGTLVFdXBz8/Pzz99NMICAhwer5LL70UF198MfR6fXdHIQAub6KYnp6OUaNGYdmyZaisrMSTTz6JOXPm4IcffgBQ36RD/UVftWoVpk6dCp1O59TAo7a2Fnv37oXZbMbOnTvxwgsvuO2XhJmYiZlch5mYiZlcyxdzMRMzMZPrMBMzeWMmnc72NrVh8UDF4oEbtX21Q9u88sorMn78eKmsrBQR27Ycp59+upx11lnaPpxqo4/q6mrp16+ffPfdd9rj09LSRMS2rUhpaamrh9chzMRM7sJMzOQuzOQdmUR8MxczMZO7MBMzuQszNc60b9++7h80tcplMxBEBBaLBTt37kRMTIy23UZoaCgefPBBVFdX45VXXgEAraK0fv16WCwWTJs2Dfv378ecOXMwevRoZGVlQVEUhISEuGp4HcJMzOQuzMRM7sJM3pEJ8M1czMRM7sJMzOQuzNR8plGjRiErK8ttOahpnSog7NmzB6WlpQBsU0/0ej3MZjOqq6thtVphsVgAAGeeeSZmzJiBXbt2Yc2aNdrjd+3ahfj4eDz22GMYPnw4YmJikJubi169enVmWJ3CTMzkLszETO7CTN6RCfDNXMzETO7CTMzkLszkHZmoGR2ZtvD111/LyJEjZdiwYTJgwAD505/+pE1NWbNmjeh0Ovntt99ERKS2tlZERDZv3iwjR46Uf/3rX9rznHXWWaIoikyZMkU2bdrUkaG4DDMxk7swEzO5CzN5RyYR38zFTMzkLszETO7CTN6RiVrWrgJCVVWVPPzww9K7d2/5+9//Lps2bZIXXnhBFEWRr7/+WkREKioqZPbs2TJr1iwREaf9RkePHi333HOPiNjWuyxfvlw+/fRTV2XpEGZiJndhJmZyF2byjkwivpmLmZjJXZiJmdyFmbwjE7VNuwoIhw8flkmTJml/ueovwbx58+Sqq67Sjlu7dq0YjUZ56aWXpK6uTkRsv0CTJk2SJ554wlVjdwlmYiZ3YSZmchdm8o5MIr6Zi5mYyV2YiZnchZm8IxO1TbuXMLz99tvatBT1F+Xiiy+Wu+++2+m4p556SqKiouTaa6+Vn376Se69917p3bu3bN++vfOjdjFmYiZ3YSZmchdm8o5MIr6Zi5mYyV2YiZnchZm8IxO1rlPbOJrNZhERGTVqlLz88suN7n/llVdk5syZMmrUKBk5cqSsW7euMz+uWzATM7kLMzGTuzCTd2QS8c1czMRM7sJMzOQuzOQdmahpnSogiIhkZGRIQkKCZGZmNnm/1WqVjIyMzv6YbsVM3oGZvAMzeQdm8h6+mIuZvAMzeQdm8g7MRN6qU9s4ArY9OxMSEtC7d28AQH5+PtatW6dt1aEoCvr27dvZH9OtmMk7MJN3YCbvwEzewxdzMZN3YCbvwEzegZnIW3W4gKD+IqxcuRITJkwAADz55JOIjY3Fl19+CavV6poRdiNm8g7M5B2YyTswk/fwxVzM5B2YyTswk3dgJvJ2fh19oF6vR21tLfbs2YO+ffti8ODBqK6uxldffYVzzjnHlWPsNszkHZjJOzCTd2Am7+GLuZjJOzCTd2Am78BM5PU6s/5h3759oiiKREdHyzPPPOOqZRVuxUzegZm8AzN5B2byHr6Yi5m8AzN5B2byDsxE3qzTTRRfeeUVqaqqcsVYPAYzeQdm8g7M5B2YyXv4Yi5m8g7M5B2YyTswE3krRUTE3bMgiIiIiIiIiMizdXoXBiIiIiIiIiLyfSwgEBEREREREVGrWEAgIiIiIiIiolaxgEBERERERERErWIBgYiIiIiIiIhaxQICEREREREREbWKBQQiIiIiIiIiahULCERERERERETUKhYQiIiIiIiIiKhVLCAQERERERERUatYQCAiIiIiIiKiVv0/Pzgc/06BEVMAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1200x600 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Step 6 - Rescaling, error metrics and visualization\n",
    "\n",
    "# Load the best model weights\n",
    "best_model_path = 'best_model.pth'\n",
    "model.load_state_dict(torch.load(best_model_path, map_location=device))\n",
    "\n",
    "# Evaluate the model\n",
    "model.eval()\n",
    "test_predictions = []\n",
    "with torch.no_grad():  # No gradients needed for inference\n",
    "    for i in range(len(X_test_tensors)):\n",
    "        X_batch = X_test_tensors[i].unsqueeze(0)  # Add batch dimension\n",
    "        y_pred = model(X_batch)  # No hidden state needed for Transformer\n",
    "        test_predictions.append(y_pred.squeeze().item())  # Remove batch dimension and convert to item\n",
    "\n",
    "# Denormalization of predictions and actual values\n",
    "test_predictions_denorm = lastgang_scaler.inverse_transform(np.array(test_predictions).reshape(-1, 1))\n",
    "y_test_denorm = lastgang_scaler.inverse_transform(y_test.reshape(-1, 1))\n",
    "\n",
    "# Calculation of error metrics\n",
    "mse = mean_squared_error(y_test_denorm, test_predictions_denorm)  # Mean Squared Error\n",
    "mae = mean_absolute_error(y_test_denorm, test_predictions_denorm)  # Mean Absolute Error\n",
    "rmse = np.sqrt(mse)  # Root Mean Square Error\n",
    "mape = np.mean(np.abs((y_test_denorm - test_predictions_denorm) / y_test_denorm)) * 100  # Mean Absolute Percentage Error\n",
    "\n",
    "print(f\"Mean Squared Error (MSE): {mse}\")\n",
    "print(f\"Mean Absolute Error (MAE): {mae}\")\n",
    "print(f\"Root Mean Square Error (RMSE): {rmse}\")\n",
    "print(f\"Mean Absolute Percentage Error (MAPE): {mape}%\")\n",
    "\n",
    "# Visualization of actual vs predicted values\n",
    "plt.figure(figsize=(12, 6))\n",
    "test_dates = pd.date_range(start=dfEnergyAll.index[-len(X_test):][0], periods=len(y_test), freq='15T')\n",
    "plt.plot(test_dates, y_test_denorm, label='Actual Values', color='#3E7A6F')\n",
    "plt.plot(test_dates, test_predictions_denorm, label='Predicted Values', color='#7DFFE7')\n",
    "plt.legend()\n",
    "plt.title('Comparison of Actual and Predicted Values: Transformer over 48 Hours')\n",
    "plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M'))  # Format x-axis for dates\n",
    "plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3))  # Set major tick intervals\n",
    "plt.gcf().autofmt_xdate()  # Auto-format date labels for better readability\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "a467f613-a988-4cff-8b07-6c24a18061ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 6 - Rescaling, error metrics and visualization\n",
    "\n",
    "# Saving the model for later\n",
    "torch.save(model.state_dict(), 'transformer_model.pth')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "id": "ec2ae0f8-ea84-46c0-90ce-4961b21cb9b3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "GPU after model training: 2024-05-03 17:30:49\n",
      "GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 14824.0MB, Used: 66214.0MB, Utilization: 24.0%\n",
      "GPU: NVIDIA A100 80GB PCIe, GPU RAM Free: 236.0MB, Used: 80803.0MB, Utilization: 55.00000000000001%\n",
      "CPU after model training:\n",
      "CPU Utilization: 81.2%\n",
      "RAM after model training:\n",
      "Total memory: 146.88 GB\n",
      "Available memory: 110.39 GB\n",
      "Used memory: 34.70 GB\n",
      "Memory usage: 24.8%\n"
     ]
    }
   ],
   "source": [
    "# Step 7 - Show GPU Utilization and Memory Usage after Model Training\n",
    "\n",
    "print(\"GPU after model training:\", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")) # Print GPU utilization after model training\n",
    "print_gpu_utilization() # Call function to print GPU utilization\n",
    "\n",
    "print(\"CPU after model training:\") # Print CPU utilization after model training\n",
    "print_cpu_utilization() # Call function to print CPU utilization\n",
    "\n",
    "print(\"RAM after model training:\") # Print RAM usage after model training\n",
    "print_memory_usage() # Call function to print RAM usage"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dcd59d0a-ef66-4e51-886a-ddfb2f42025f",
   "metadata": {},
   "source": [
    "## 2 - Transformer-Architecture with Energy consumption data and 2 variables 'Lastgang_Moving_Average' and 'Lastgang_First_Difference'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "04646c37-be07-45ad-98ad-9b2851d89658",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 3 - Data Scaling\n",
    "\n",
    "# Initialize the scalers\n",
    "lastgang_scaler = MinMaxScaler(feature_range=(0, 1))  # Scaler for the target variable\n",
    "features_scaler = MinMaxScaler(feature_range=(0, 1))  # Scaler for the feature variables\n",
    "\n",
    "# Apply the scaler to the appropriate columns\n",
    "dfEnergyAll['Lastgang'] = lastgang_scaler.fit_transform(dfEnergyAll['Lastgang'].values.reshape(-1, 1))  # Scale the main target variable\n",
    "dfEnergyAll[['Lastgang_Moving_Average', 'Lastgang_First_Difference']] = features_scaler.fit_transform(dfEnergyAll[['Lastgang_Moving_Average', 'Lastgang_First_Difference']])  # Scale selected features\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "86d884b0-1b5e-4041-bcf6-c0cbe4252f0e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
    "\n",
    "# Step 2 - Data Preparation: Create sequences and add positional encoding\n",
    "def create_sequences(data, seq_length):\n",
    "    xs = []  # list to store sequences\n",
    "    ys = []  # list to store target values corresponding to each sequence\n",
    "    for i in range(len(data) - seq_length):\n",
    "        x = data.iloc[i:(i + seq_length)].to_numpy()  # extract sequence of length seq_length from data\n",
    "        y = data.iloc[i + seq_length, 0]  # target value at the end of the sequence\n",
    "        xs.append(x)\n",
    "        ys.append(y)\n",
    "    return np.array(xs), np.array(ys)  # convert lists to numpy arrays for machine learning processing\n",
    "\n",
    "seq_length = 192  # define the length of sequences\n",
    "X, y = create_sequences(dfEnergyAll, seq_length)  # create sequences and corresponding targets from the dataset\n",
    "\n",
    "# Use the last 192 sequences for testing to maintain a comparable distribution as the TBATS model\n",
    "X_train, X_test = X[:-192], X[-192:]  # split data into training and testing sets\n",
    "y_train, y_test = y[:-192], y[-192:]  # split targets into training and testing sets\n",
    "\n",
    "# Function for positional encoding\n",
    "def positional_encoding(seq_len, d_model):\n",
    "    encoding = np.array([\n",
    "        [pos / np.power(10000, 2 * (j // 2) / d_model) for j in range(d_model)]\n",
    "        if pos != 0 else np.zeros(d_model) \n",
    "        for pos in range(seq_len)\n",
    "    ])\n",
    "    encoding[1:, 0::2] = np.sin(encoding[1:, 0::2])  # apply sine to even indices\n",
    "    encoding[1:, 1::2] = np.cos(encoding[1:, 1::2])  # apply cosine to odd indices\n",
    "    return encoding\n",
    "\n",
    "# Apply positional encodings\n",
    "d_model = X_train.shape[2]  # number of features in the data\n",
    "pos_enc = positional_encoding(seq_length, d_model)  # generate positional encoding based on sequence length and number of features\n",
    "\n",
    "# Add positional encodings to the sequences\n",
    "X_train_enc = np.array([x + pos_enc for x in X_train])  # add positional encoding to training data\n",
    "X_test_enc = np.array([x + pos_enc for x in X_test])  # add positional encoding to testing data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d48f7903-acde-4110-a95d-7291ef66848f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences, positional encoding and the LSTM model\n",
    "\n",
    "# Print the shapes of the training and testing datasets\n",
    "print(f\"X_train Shape: {X_train.shape}\")\n",
    "print(f\"X_test Shape: {X_test.shape}\")\n",
    "\n",
    "# Print the shapes of the training and testing datasets with positional encodings applied\n",
    "print(f\"X_train_enc Shape: {X_train_enc.shape}\")\n",
    "print(f\"X_test_enc Shape: {X_test_enc.shape}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9522a46a-5d2b-462d-8841-57163be8dff2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "# Check Hardware Availability for the PyTorch code\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edc7888b-ee3d-40b0-9106-30113640a475",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "X_train_tensors = torch.Tensor(X_train_enc).to(device)  # Convert training data to tensors and move to the designated device (GPU or CPU)\n",
    "y_train_tensors = torch.Tensor(y_train).view(-1, 1).to(device)  # Convert training labels to tensors, reshape them and move to the device\n",
    "X_test_tensors = torch.Tensor(X_test_enc).to(device)  # Convert testing data to tensors and move to the designated device\n",
    "y_test_tensors = torch.Tensor(y_test).view(-1, 1).to(device)  # Convert testing labels to tensors, reshape them and move to the device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8941331-bb15-43d3-aa83-938e47728b9d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 4 - Creating the sequences and the LSTM model\n",
    "\n",
    "#Create Transformer Model\n",
    "class TransformerModel(nn.Module):\n",
    "    def __init__(self, input_size, hidden_layer_size, output_size, num_layers, nhead):\n",
    "        super(TransformerModel, self).__init__()\n",
    "        self.input_size = input_size  # Number of input features\n",
    "        self.hidden_layer_size = hidden_layer_size  # Size of the hidden layer\n",
    "        self.output_size = output_size  # Size of the output layer\n",
    "\n",
    "        # Embedding layer that maps input features to the hidden layer size\n",
    "        self.embedding = nn.Linear(input_size, hidden_layer_size)\n",
    "\n",
    "        # Transformer Encoder\n",
    "        encoder_layers = nn.TransformerEncoderLayer(d_model=hidden_layer_size, nhead=nhead)\n",
    "        self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=num_layers)\n",
    "\n",
    "        # Linear layer for output\n",
    "        self.linear = nn.Linear(hidden_layer_size, output_size)\n",
    "\n",
    "    def forward(self, src):\n",
    "        # Apply embedding to the source data\n",
    "        src = self.embedding(src)\n",
    "\n",
    "        # Transformer Encoder processes the data\n",
    "        src = src.permute(1, 0, 2)  # Transformer expects [seq_len, batch, features]\n",
    "        output = self.transformer_encoder(src)\n",
    "\n",
    "        # Take only the output of the last time step for prediction\n",
    "        output = output[-1]\n",
    "\n",
    "        # Output through linear layer\n",
    "        output = self.linear(output)\n",
    "        return output\n",
    "\n",
    "# Parameters\n",
    "input_size = 3  # Number of input features\n",
    "hidden_layer_size = 100  # Size of the hidden layer\n",
    "output_size = 1  # Output size\n",
    "num_layers = 2  # Number of layers in the transformer\n",
    "nhead = 2  # Number of attention heads\n",
    "\n",
    "# Instantiate the model\n",
    "model = TransformerModel(input_size, hidden_layer_size, output_size, num_layers, nhead).to(device)  # Create the model and move it to the designated device"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b331b915-ca73-4a0d-93cd-4c59bf6cc766",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 5 - Model Training\n",
    "\n",
    "# Define the number of epochs and batch size\n",
    "loss_function = nn.MSELoss()  # Loss function for measuring the mean squared error loss\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=0.001)  # Optimizer with a learning rate of 0.001\n",
    "epochs = 70  # Total number of epochs to train the model\n",
    "batch_size = 12  # Number of samples per batch\n",
    "\n",
    "# For storing the loss values\n",
    "train_losses = []  # List to store training loss values for each epoch\n",
    "test_losses = []  # List to store validation loss values for each epoch\n",
    "\n",
    "# Initialize variables for Early Stopping\n",
    "best_test_loss = float('inf')  # Best validation loss seen so far, initialized to infinity\n",
    "best_model_path = 'best_model.pth'  # Path to save the best performing model\n",
    "early_stopping_patience = 5  # Number of epochs to continue without improvement before stopping\n",
    "epochs_without_improvement = 0  # Counter to track epochs without improvement\n",
    "\n",
    "for epoch in range(epochs):  # Loop over each epoch\n",
    "    model.train()  # Set the model to training mode\n",
    "    train_loss = 0.0  # Reset training loss for this epoch\n",
    "    for i in range(0, len(X_train_tensors), batch_size):  # Iterate over the training data in batches\n",
    "        X_batch = X_train_tensors[i:i + batch_size]  # Get the current batch of input data\n",
    "        y_batch = y_train_tensors[i:i + batch_size]  # Get the current batch of target data\n",
    "\n",
    "        # Dynamic adjustment of the batch size for the last batch of the epoch\n",
    "        actual_batch_size = X_batch.size(0)\n",
    "\n",
    "        optimizer.zero_grad()  # Reset the gradients to zero\n",
    "\n",
    "        # No need to manage hidden states for the Transformer model\n",
    "        y_pred = model(X_batch)  # Forward pass through the model\n",
    "\n",
    "        loss = loss_function(y_pred, y_batch)  # Calculate loss\n",
    "        loss.backward()  # Backpropagation\n",
    "        optimizer.step()  # Update model weights\n",
    "        \n",
    "        train_loss += loss.item() * actual_batch_size  # Accumulate the loss\n",
    "\n",
    "    # Calculate the average training loss for this epoch\n",
    "    train_loss /= len(X_train_tensors)\n",
    "    train_losses.append(train_loss)\n",
    "\n",
    "    # Validation phase\n",
    "    model.eval()  # Set the model to evaluation mode\n",
    "    test_loss = 0.0\n",
    "    with torch.no_grad():  # No gradient calculations\n",
    "        for i in range(0, len(X_test_tensors), batch_size):\n",
    "            X_batch = X_test_tensors[i:i + batch_size]\n",
    "            y_batch = y_test_tensors[i:i + batch_size]\n",
    "\n",
    "            y_pred = model(X_batch)  # Forward pass through the model for validation\n",
    "            loss = loss_function(y_pred, y_batch)  # Calculate loss\n",
    "            test_loss += loss.item() * actual_batch_size  # Accumulate the loss\n",
    "        \n",
    "    # Calculate the average validation loss for this epoch\n",
    "    test_loss /= len(X_test_tensors)\n",
    "    test_losses.append(test_loss)\n",
    "\n",
    "    if test_loss < best_test_loss:\n",
    "        best_test_loss = test_loss  # Update the best test loss\n",
    "        torch.save(model.state_dict(), best_model_path)  # Save the best model\n",
    "        epochs_without_improvement = 0  # Reset the improvement counter\n",
    "        print(f'New best model saved at epoch {epoch+1} with test loss {test_loss}.')\n",
    "    else:\n",
    "        epochs_without_improvement += 1  # Increment the no-improvement counter\n",
    "\n",
    "    print(f'Epoch {epoch + 1}, Train Loss: {train_loss}, Test Loss: {test_loss}')\n",
    "\n",
    "    if epochs_without_improvement >= early_stopping_patience:\n",
    "        print(f'Early Stopping after {epoch+1} epochs!')  # Stop training if no improvement\n",
    "        break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "df8b91d4-cd5e-4359-9700-8f071cf4f5b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 5 - Model Training\n",
    "\n",
    "#Printing the learning curve\n",
    "plt.plot(train_losses, label='Train Loss')\n",
    "plt.plot(test_losses, label='Test Loss')\n",
    "plt.xlabel('Epochs')\n",
    "plt.ylabel('Loss')\n",
    "plt.title('Learning Curve')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ddd6b5d3-6cff-4d55-8272-c56b43074fe1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Step 6 - Rescaling, error metrics and visualization\n",
    "\n",
    "# Load the best model weights\n",
    "best_model_path = 'best_model.pth'\n",
    "model.load_state_dict(torch.load(best_model_path, map_location=device))\n",
    "\n",
    "# Evaluate the model\n",
    "model.eval()\n",
    "test_predictions = []\n",
    "with torch.no_grad():  # No gradients needed for inference\n",
    "    for i in range(len(X_test_tensors)):\n",
    "        X_batch = X_test_tensors[i].unsqueeze(0)  # Add batch dimension\n",
    "        y_pred = model(X_batch)  # No hidden state needed for Transformer\n",
    "        test_predictions.append(y_pred.squeeze().item())  # Remove batch dimension and convert to item\n",
    "\n",
    "# Denormalization of predictions and actual values\n",
    "test_predictions_denorm = lastgang_scaler.inverse_transform(np.array(test_predictions).reshape(-1, 1))\n",
    "y_test_denorm = lastgang_scaler.inverse_transform(y_test.reshape(-1, 1))\n",
    "\n",
    "# Calculation of error metrics\n",
    "mse = mean_squared_error(y_test_denorm, test_predictions_denorm)  # Mean Squared Error\n",
    "mae = mean_absolute_error(y_test_denorm, test_predictions_denorm)  # Mean Absolute Error\n",
    "rmse = np.sqrt(mse)  # Root Mean Square Error\n",
    "mape = np.mean(np.abs((y_test_denorm - test_predictions_denorm) / y_test_denorm)) * 100  # Mean Absolute Percentage Error\n",
    "\n",
    "print(f\"Mean Squared Error (MSE): {mse}\")\n",
    "print(f\"Mean Absolute Error (MAE): {mae}\")\n",
    "print(f\"Root Mean Square Error (RMSE): {rmse}\")\n",
    "print(f\"Mean Absolute Percentage Error (MAPE): {mape}%\")\n",
    "\n",
    "# Visualization of actual vs predicted values\n",
    "plt.figure(figsize=(12, 6))\n",
    "test_dates = pd.date_range(start=dfEnergyAll.index[-len(X_test):][0], periods=len(y_test), freq='15T')\n",
    "plt.plot(test_dates, y_test_denorm, label='Actual Values', color='#3E7A6F')\n",
    "plt.plot(test_dates, test_predictions_denorm, label='Predicted Values', color='#7DFFE7')\n",
    "plt.legend()\n",
    "plt.title('Comparison of Actual and Predicted Values: Transformer over 48 Hours')\n",
    "plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M'))  # Format x-axis for dates\n",
    "plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=3))  # Set major tick intervals\n",
    "plt.gcf().autofmt_xdate()  # Auto-format date labels for better readability\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}