ppo-LunarLander-v2 / config.json
Sarim24's picture
Upload PPO LunarLander-v2 trained agent
783c772
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a13b6b08430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a13b6b084c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a13b6b08550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a13b6b085e0>", "_build": "<function ActorCriticPolicy._build at 0x7a13b6b08670>", "forward": "<function ActorCriticPolicy.forward at 0x7a13b6b08700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a13b6b08790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a13b6b08820>", "_predict": "<function ActorCriticPolicy._predict at 0x7a13b6b088b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a13b6b08940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a13b6b089d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a13b6b08a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a13b6b01480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695571712642714797, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpOr70pxC66ZhCAslF2erAKrBu7StluMwAAgD8AAIA/zbpevOVvuj8D1Vq+pweLPrsMBTrDtE69AAAAAAAAAACa0eI76kYTPsTOizxSX2u+V1SvPYdgg7wAAAAAAAAAAECiwb2Hv2w/7teNPfpclr4Zb2i9CkorvQAAAAAAAAAAq9iEvmadeT9Ogbi+AW6xvsYBtr7vHIG9AAAAAAAAAABtVbc+rF+OvYARLrtNITi3PeF/vj8TJLsAAIA/AACAP03HlD6xtVy90GqQugUzhzmWjb6+q7rMOQAAgD8AAIA/M9P2OhSYn7o6vtK54RJ4tvFJ3LpavfM4AACAPwAAgD9tIMY+pCeNPkUmz77PCqi+C02WPZ2t1b0AAAAAAAAAAMDCvT0AXJA/mpW/PaR7575KG6Y9aly1PAAAAAAAAAAATQZxPUh1kLrD+n83PFZyMmUwFDtfWpS2AACAPwAAgD9mfL090T/nPuDPmj29t7O+J1LVPQhoCb0AAAAAAAAAAHNNnD2uGZS6YnqOuRLnhLS4rAm5gJekOAAAgD8AAAAA2puyvcloGz4ZdR8+6SFjviWpB7wFOo29AAAAAAAAAACArai9ZRgQP2pSIz6TMq6+hNYavX7V07wAAAAAAAAAAKYf/z13xFw/qnVjPWArkr4XzKE9/S5GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHpJJbt7a+MAWyUTSwBjAF0lEdAkmmR5TqB3HV9lChoBkdAck+Jhvze42gHTVoBaAhHQJJqd2NedCp1fZQoaAZHQHF0gUUO/cpoB00eAWgIR0CSarO5avA5dX2UKGgGR0BtzehAWzniaAdNNwFoCEdAkmz85n13+3V9lChoBkdAcn2hYeT3ZmgHTREBaAhHQJJtDJ0W/Jx1fZQoaAZHQHEu46wMYuVoB01CAWgIR0CSbSaakRBedX2UKGgGR0BvSYz+FUQ1aAdNKAFoCEdAkm5uAI6bOXV9lChoBkdAb94Zx7zClGgHTRUBaAhHQJJuxl4C6pZ1fZQoaAZHQG1lX6ZYxL1oB00NAWgIR0CSbvN/e+EidX2UKGgGR0BweXpHI6sAaAdL+2gIR0CScc+vyLAIdX2UKGgGR0BvpuJzkp7UaAdL82gIR0CScrDArQPadX2UKGgGR0BxfkTZg5R1aAdNJAFoCEdAknLKBEroXHV9lChoBkdAcQ73nIQvpWgHS/9oCEdAknPPNRm9QHV9lChoBkdAcL1DYAbQ1WgHTQkBaAhHQJJz0GOdXkp1fZQoaAZHQHN2u8PFvQ5oB00qAWgIR0CSdIiSaEzwdX2UKGgGR0BuUZpUPxx2aAdNEwFoCEdAknSlmFrVOXV9lChoBkdAcFbiuMdcS2gHTSQBaAhHQJJ1eDSPU8V1fZQoaAZHQHIMNKIznA9oB00ZAWgIR0CSdcNiYsundX2UKGgGR0BtWzWiDdxiaAdNLgFoCEdAknaOnqFAV3V9lChoBkdAcHNGoaUA1mgHTQcBaAhHQJJ3GXAuZkV1fZQoaAZHQHBwWOEM9bJoB00sAWgIR0CSeCpn6EamdX2UKGgGR0BxlVF9a2WqaAdNQQFoCEdAknjKl54W13V9lChoBkdAcwmcGTs6aWgHTR8BaAhHQJJ5Oo86mwd1fZQoaAZHQHAnTLB9Cu5oB003AWgIR0CSeZ8gpz91dX2UKGgGR0BzDh6HCXQdaAdNNQFoCEdAknnNDlYEGXV9lChoBkdAcOsxN7BwdmgHS/FoCEdAknnp6Y3Ns3V9lChoBkdAQRR5Rjz7M2gHS8loCEdAknp3mzSkTHV9lChoBkdATreMIeHSGGgHS8hoCEdAknuly7wrlXV9lChoBkdAcRKmhufmLmgHTSkBaAhHQJJ8tG8VYZF1fZQoaAZHQHEvNiYsunNoB002AWgIR0CSfRdlum78dX2UKGgGR0ByWW8brC3xaAdNcAFoCEdAkn4qziS7oXV9lChoBkdAcXXWac7Qs2gHTSYBaAhHQJJ+KpeeFtd1fZQoaAZHQHBrj8gpz91oB00RAWgIR0CSfqRKHwgDdX2UKGgGR0AkWMir1dxAaAdLpmgIR0CSfrrBj4HpdX2UKGgGR0BybXDm8ujAaAdNHgFoCEdAkn+39rGipXV9lChoBkdAbFafzSThYWgHTXwBaAhHQJKADcJtzjp1fZQoaAZHQHEgG4d6syVoB00KAWgIR0CSgCrgOz6adX2UKGgGR0Bx5a7/XGwSaAdNCQFoCEdAkoCuEZiuuHV9lChoBkdAcKcFo+Ofd2gHTSwBaAhHQJKCYlAu7H11fZQoaAZHQHFqIVRDTjNoB003AWgIR0CSgl4LkS26dX2UKGgGR0BxZOnCO3lTaAdNRgFoCEdAkoNuRxLkCHV9lChoBkdAcWmiKiwjdGgHTS4BaAhHQJKDgNSZSel1fZQoaAZHQG2Q4RNATqVoB00NAWgIR0CSg76eXiR5dX2UKGgGR0ASYzP8hs68aAdLy2gIR0CShD6VdHDrdX2UKGgGR0BxYyO0b961aAdNCQFoCEdAkoSi4z7/GXV9lChoBkdAcH0sk6cRUWgHTQQBaAhHQJKGTqUu+RJ1fZQoaAZHQG+nGbCrLhdoB00DAWgIR0CShl4k/r0KdX2UKGgGR0Bu65/XoTwlaAdNQgFoCEdAkoasHObAlHV9lChoBkdAceyo0hvBJ2gHS/NoCEdAkocD+m3vyHV9lChoBkdAcDuzAN5MUWgHTToBaAhHQJKZU1ZTyax1fZQoaAZHQHDcKYE4ecRoB00rAWgIR0CSmU8zQ/ordX2UKGgGR0BxC6ciGFi8aAdNHwFoCEdAkpmIIa99MXV9lChoBkdAQUqouPFNtmgHS9BoCEdAkpoK7dznzXV9lChoBkdAcZqQYDTz/mgHS/NoCEdAkpoRhx5s03V9lChoBkdAb4EUOd5IH2gHS/ZoCEdAkptvllsguHV9lChoBkdAcdC2/SH/LmgHTQ0BaAhHQJKb06zVtoB1fZQoaAZHQD9wwwj+rENoB0vkaAhHQJKb6Jhvze51fZQoaAZHQDl8u27Wd3BoB0uwaAhHQJKcIK9f1Hx1fZQoaAZHQHDTqhYeT3ZoB008AWgIR0CSnD8D0UXYdX2UKGgGR0BzBL62v0ROaAdNTwFoCEdAkp90R3/xUnV9lChoBkdAbniO4oZydWgHTQ0BaAhHQJKgZK02LpB1fZQoaAZHQHJCjPjXFtNoB00cAWgIR0CSoIHIIWxhdX2UKGgGR0Bs5rADaGpNaAdNHwFoCEdAkqHBM36yjnV9lChoBkdAce372+PBBWgHTQYBaAhHQJKjdkZrHlx1fZQoaAZHQHCXi2hIvrZoB0v1aAhHQJKjzXZoPCl1fZQoaAZHQGY8KiXY151oB03oA2gIR0CSo9rPMSsbdX2UKGgGR0BvKt47ihnKaAdNJgFoCEdAkqTrsv7FbXV9lChoBkdAcj6gElme2GgHTSUBaAhHQJKlI371qWV1fZQoaAZHQHIVeRxLkCFoB00oAWgIR0CSpfX0XgtOdX2UKGgGR0BwUfALy+YdaAdNEQFoCEdAkqelnZkCm3V9lChoBkdAcwSn4fwI+mgHTRcBaAhHQJKoqjEehf11fZQoaAZHQGyzLAHmig1oB00mAWgIR0CSqSkbgjyGdX2UKGgGR0BweGVZ9uxbaAdNQwFoCEdAkqorAtWdVnV9lChoBkdAT5diKBNEgGgHS/NoCEdAkquwSrYGuHV9lChoBkdAbv5m/WUbDWgHTQ0BaAhHQJKsEwmE5AB1fZQoaAZHQHEk6mXPZ7JoB0v+aAhHQJKsWdtl7MR1fZQoaAZHQG2BIfjjrAxoB00MAWgIR0CSrlbvPToddX2UKGgGR0BxTdXxOLzgaAdNCgFoCEdAkrBcLfDUE3V9lChoBkdAcQDxdIGyHGgHTRQBaAhHQJKw7V4HHFR1fZQoaAZHQHLd6AavRqpoB00vAWgIR0CSseL61stTdX2UKGgGR0BvKiXrt3OfaAdNDQFoCEdAkrIQHZ9NOHV9lChoBkdAcpRmsNlRQGgHTRQBaAhHQJKyJiiItUZ1fZQoaAZHQGW8wf6oESxoB03oA2gIR0CStO9AHE/CdX2UKGgGR0BxCzjkuHvdaAdNJQFoCEdAkrU+lj3Eh3V9lChoBkdAcbRCf6Ggz2gHTQsBaAhHQJK1ahTOxB51fZQoaAZHQHDkHr2QGOdoB00NAWgIR0CStiD6nBLxdX2UKGgGR0Bw8ESXdCVsaAdNCwFoCEdAkrcPigkC3nV9lChoBkdAcWVWn0kGA2gHS/9oCEdAkrceJUHY6HV9lChoBkdAcHiRPGhmG2gHTQ4BaAhHQJK3ZRR/EwZ1fZQoaAZHQHB7HueBg/loB0v9aAhHQJK4bPAwfyR1fZQoaAZHQHGxQGfPHDJoB03IAWgIR0CSuVo3rD64dX2UKGgGR0BvUASzw+dLaAdNDQFoCEdAkrqj850bLnV9lChoBkdAcDje2NNrTGgHTSgBaAhHQJK7La/RE4N1fZQoaAZHQHKOfBJqZc9oB00bAWgIR0CSu+GH58BudX2UKGgGR0Bzcvi5uqFRaAdNNQFoCEdAkryFdgOSXHV9lChoBkdAcPY4T9KmK2gHTUEBaAhHQJK9EUIsyzp1fZQoaAZHQHCxYNVinYRoB00SAWgIR0CSveO3DvVmdX2UKGgGR0BuGjvw3HaOaAdNBAFoCEdAkr6vV7Qb/HV9lChoBkdAcCmLoOhCdGgHTSMBaAhHQJK+wm+j/Mp1fZQoaAZHQHDJO3trsSloB01FAWgIR0CSwBmq5sj3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}