Sasidhar1826 commited on
Commit
9dd8097
1 Parent(s): 7c3ea24

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fine-Tuned Metaphor Detection Model
2
+
3
+ This is a fine-tuned version of the model used for metaphor detection in text. It was trained on a custom dataset with sentences labeled as either metaphors or literals.
4
+
5
+ ## Model Details
6
+ - **Model architecture**: BERT-based model
7
+ - **Number of labels**: 2 (Metaphor, Literal)
8
+ - **Training epochs**: 1
9
+ - **Batch size**: 8
10
+ - **Learning rate**: 1e-5
11
+
12
+ ## How to use
13
+ You can use this model to predict whether a sentence contains a metaphor or not.
14
+
15
+ ```python
16
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
17
+ import torch
18
+
19
+ # Load model and tokenizer
20
+ tokenizer = AutoTokenizer.from_pretrained("your-username/fine-tuned-metaphor-detection")
21
+ model = AutoModelForSequenceClassification.from_pretrained("your-username/fine-tuned-metaphor-detection")
22
+
23
+ # Example text
24
+ text = "Time is a thief."
25
+
26
+ # Tokenize input and get predictions
27
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
28
+ with torch.no_grad():
29
+ outputs = model(**inputs)
30
+ logits = outputs.logits
31
+ prediction = torch.argmax(logits, dim=-1)
32
+
33
+ print("Prediction:", "Metaphor" if prediction.item() == 1 else "Literal")